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Original Motivation

Given B € R™™ and k < min(n, m),
min {||XzT —Blr: X eR™k Z ¢ R’"X"}
X.Z

Closely related to SVD
@ k-Dominant (k-D) SVD of nx m = solution
@ Solution + QRand SVD of nx k = k-D SVD of nx m

How about the symmetric case? for A = AT e R™" (e.g., A = BB'),

: T . nxk
min {IXXT = Allg = X e R™}
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Symmetric Low-Rank Product Optimization

A nonlinear, nonconvex least squares problem

min [IXXT - A2
XeRnxk

Fundamental in low-rank matrix approximations
@ Principal subspace of A:

span(X) = span{q1, Q, ..., Gk}

where {qj}l’.‘:1 are dominant eigenvectors of A.

@ For A = BB, columns of X are “principal components” of B.
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@ Let eigenvalues of A be in a descending order
A =>2A=>--2>
@ Eigenvalue Decomposition:
A=Q,NQF, Q'Q,=1, A,diagonal
@ k-D principal eigenspace:
span(Qx) = span{qgi, Gz, - - -, Gk}

@ k-D principal eigenpair: (Qx, Ax)
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Optimal Solutions of SLRP

Equivalence

Assume that A = AT € R™" such that A, > 0. Then X € R™ is a solution
to min ||IXXT - A||§ if and only if it has SVD:

1
X = QN VT,

where (Qk, Ax) is a k-D principal eigenpair of A, V € Rk*k is orthogonal
but otherwise arbitrary.

1st-order condition for SLRP:
AX = X(XTX)

Stationary points span invariant subspaces.

Xin Liu (AMSS) SLRP May 23,2014  5/27



Most Established Eigensolvers

Why not just call eigs (or svds) in MarLas? (ARPACK)
Why not use one of the existing eigensolvers?

Emerging applications demand new capacities.
@ high efficiency at moderate accuracy
@ high eigenspace dimensions
@ high parallel scalability
@ warm-start capacity
Established eigensolvers often lack in one or more aspects.

Advanced scientific computing and evolving computer archtectures
call for new algorithms (either of general or special purpose).
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Block Methods

Block vs. Sequential (Lanczos-type Methods)
@ Block SpMV: AV = [Avy Avy --- Avk]
@ Sequential SpMv’s: Av — A2y ... — AKy
(+ inner products for orthogonalization)

As k increases, block methods are gaining advantages.

Block methods can be warm-started in an iterative setting.
Classic Block Method SSI: (power method)

X+ = orth(AX")
Other block algorithms:
@ Block Jacobian-Davidson: Feast
@ Trace minimization: LOBPCG, LMSVD
Research on block methods seems still largely unsettled.
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Trace Minimization

Trace Minimization

min tr(XTAX) st XX =1
XERnxk

LMSVD, L.-Wen-Zhang, 2013, SISC

Two main types of operations: AX & RR/orth
As k increases, AX < RR/orth — bottleneck
Parallel Scalability

@ AX — Axy UAxo U ... U Axk. Higher.

@ RR/orth inherits sequentiality. Lower.

Avoid bottleneck?
@ Do less RR/orth
No free lunch?
@ Do more BLAS3  (higher scalability than AX)
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Orthogonal Free Models

Unconstrained Model: minycgm« [IX"X|2 + 3tr(XTAX), Dai-Jiang-Cui, 2013
Trace-penalty Minimization

XeRmxk

1
min_ f(X) = Str(XTAX) + %‘HXTX .y
EIGPEN, Wen-Yang-L.-Zhang, 2012, available at "optimization online”

Good properties:

@ Penalty parameter u does not need to be infinity

@ Equivalent to Trace Minimization for eigenspace computation

@ No non-global local minimizer, less undesired saddle point
Algorithm

@ Gradient method

@ Barzilai Borwein stepsize

@ Rayleigh-Ritz restart
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Why SLRP?

Questions to EIGPEN
@ Gradient method + BB (How about high-order methods?)

e Condition number: k = 1: k(V2f,(X)) = £=5; k> 1

max {tr(STV2£,(X)(S)) : tr(STS) = 1,STQx = 0}
SeRnxk

min {tr(STV27,(X)(S)) : tr(STS) = 1,STQx = 0

SERnxk
/ln - /11
Ak+1 — Ak

(V1K) |g:) =

(How about linear convergence rate?)

@ u should be tuned in properly. (How to avoid u?)

Xin Liu (AMSS) SLRP May 23,2014  10/27



Gauss-Newton Review

Nonlinear Least Squares Model:

min f(x) £ %r(x)Tr(x). K(x) : R" - R™.

Linearize: r(x + s) = r(x) + J(x)s, where J(x) is the Jacobian.

Normal equations + Line Search:
(minimize the lienar approximation)

JX)TJ(x)s = =J(x)Tr(x). X =X+ as.

Some properties:
@ Fast for small residual. Slow for large residual.
@ Local convergence may require a < 1 all the time.
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SLRP

SLRP: Nonlinear Least Squares Model

1
in f(X)2 =|IR(X)IE. R(X)x XX -A.
in, (X) 2II (X)IIE (X)

Let J(X) : R™K — R™" be the Jacobian operator of R(X) at X.
Normal equations: (size nk x nk)
J(X)TI(X)(S) = ~J(X)"(R(X)).

Infinitely many solutions since J(X) is rank deficient.
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GN Directions

Special structure of normal equations allows low-cost solution:

SXTX + XSTX = AX - X(XTX)

GN Direction
Let X € R™K pe full rank, and Px = X(X"X)~'XT. Then

1
Go = (/ = Esox) (AX(XTX)™" - X) + XC,
where CT = —C, satisfies the normal equations. In particular, for C = 0,

So = (I - %PX) (AX(XTX)™" - X)

is a minimum weighted-norm Gauss-Newton direction at X.

v
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Gauss-Newton Algorithm (Theoretical Version)

Gauss-Newton (GN):

@ While not “converged”, do
Q@ lfomin(X) <d,set X =X+ P; —- Correction Step
@ Select o = min (1,03, (X)/IVA(X)l), set X = X + aSo.

min

Calculation GN step:

e Y=X(X"X)',G=AY - X

@ So=G-X(YTG)/2
Computational cost:

@ 1 block SpMV: AY

@ 3 dense matrix multiplications

@ 1 k X k linear system with nrhs
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Practical Implementation

So far, in practice
@ o = 1 appears always to work well;
@ Correction step can hardly be invoked.
[X,Y] = GN(A, X)
@ While not “converged”, do
Q@ Y =XX"X)"
Q@ X =AY -X(YTAY - )/2

Simple Algorithm
@ Two-liner with no parameters
@ No orthogonalization

@ No Rayleigh-Ritz (unless eigenpairs are required)
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Step Size and Correction Step

Full Rankness: omin(X™") > 0.75 omin(X')

Correction Step:

An/ A4 In
° 0= (4+«@) k

@ X, =X+P(= %uv;, where UTX =0and UTU = 1)
Key properties:
o f(X;) < f(X)- 122
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Convergence Results

Theorem (Global Convergence)

Suppose that A > 0. Let {X'} be generated by SLRPGN(TH) starting from
a full-rank initial point. Then after finite number of iterations, step-size
« = 1 will always be taken, no more correction step, and Vf(X;) — 0.

f(X) does not have any local (non-global) minimum. It is unlikely that the
iterates get trapped at a saddle point. Better local convergence result
holds if we further assume Ax > Ak 1.

Theorem (Q-Linear Rate)

Suppose A > 0 and Ak > Ax11. Then {X N a sequence generated by
SLRPGN(PR) starting from a full-rank initial point X° € £L(y), globally
converges to L(f*), where L(y) := {X | f(X) < y} denotes the level set, f*
denotes the global minimum of SLRP andy > f* is a constant. Moreover,

Ak+1

the gradient sequence {Vf(X')} converges to zero at a Q-linear rate Tt
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Experiment Environment

Platform

All the experiments were preformed on a linux workstation with 2 Intel
Xeon E5-2697 CPUs (2.70GHz, 12 cores) and 128GB of memory running
Ubuntu 12.04 and MarLas 2013b.

Tested Methods
@ MaraB EIGS — Lanczos-based (ARPACK, Sorensen et.al.)
@ LANSVD — Lanczos-based (PROPACK, R. M. Larsen)
@ LMSVD — block subspace method (L.-Wen-Zhang, SISC, 2013)
@ SLRPBB — BB + gradient (EIGPEN) (Wen-Yang-L.-Zhang)
@ SLRPGN - proposed GN algorithm

Required Accuracy: moderate
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Comparison with the Gradient Method
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Matrix Separation

Robust Principal Component Analysis

Data matrix is
M= Lo+So+a)€Rmxn,

where L is low-rank, Sy is sparse and w is small noise.

Given M, find Ly and Sy approximately by solving:

Tig LIl + plISll, st L+ S =M.
MarLae Code: IALM (Lin et al)
@ Alternating Direction Multiplier Method (ADMM)

@ Calls SVD at every iteration (warm-start desired)
@ Test cases: random instances
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RPCA Results
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(All achieved similar accuracy)
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Matrix Completion

Find a low-rank matrix from a sampled set of its entries

Given the entries of M + w in Q, find X = M by solving:
m)in X1, s.t. Xj = My, Y(i,j) € Q.

MarLae Code: SVT and NNLS
@ Singular Value Thresholding
@ Calls SVD at every iteration (warm-start desired)
@ Test cases: random instances
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SVT Results

CPU Time in Seconds
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(All achieved similar accuracy)
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NNLS Results

The sparse-dense matrix multiplication uses Matlab’s own version
CPU Time in Seconds
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(All achieved similar accuracy)
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NNLS Results

The sparse-dense matrix multiplication uses MKL
CPU Time in Seconds
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Summery and Remarks

SLRP: min [ XXT — A|2.  Output (X, Y)
GN: Y =X(X"X)""; X =AY -X(YTAY -/)/2

GN: simple and parameter-free

Principal subspace without SVD, nor Rayleigh-Ritz

Benefit of concurrency already seen in plain MarLas

Global convergence and local Q-linear convergence rate
Effective for small residuals and low-moderate accuracy (so far)

Further Works
Strategically placed Rayleigh-Ritz will improve accuracy
Other eigen-techniques (poly-filtering, deflation, ...) help too
GN + (a few RR): Potential as eigensolver worth investigating
Parallel scalability to be exploited
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Thank you for your attention!
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