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BACKGROUND TALK PURPOSE

Motivate addition of a primal-proximity term to a
primal-dual augmented Lagrangian merit function

I Forsgren, Gill (1998)
I Gill, Robinson (2010)

Proximity term similar to Friedlander, Orban 2012
We’ll show

I the proximity term restores primary purpose of penalty term
I search directions have strong correspondence to standard

nonlinear regression approaches
I improved performance for infeasible problems
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BACKGROUND LARGE-SCALE NONLINEAR
NONCONVEX PROBLEMS

Two primal-dual merit based solvers in PROC OPTMODEL:
1 Interior-point
2 Active-set

for nonlinear (possibly nonconvex) optimization problems:

NLP (Nonlinear Programming Problem)
minimize

x∈Rn
f(x)

subject to c(x) = 0
x ≥ 0.

c(x) ∈ Rm

f(x), c(x) are twice continuously differentiable
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BACKGROUND NOTATION

Gradient of objective: g = g(x) = ∇f(x)
Jacobian of constraints: J = J(x) = c′(x)
Lagrangian: L(x, y) = f(x)− c(x)Ty
Hessian of Lagrangian: H = ∇2

xxL(x, y)
Augmented Lagrangian:

P(x; ye, µ) = f(x)− yTec(x) +
1

2µ
∥c(x)∥2

Augmented Lagrangian Gradient:

∇xP(x; ye, µ) = g− JT(ye − c(x)/µ)

Primal multipliers: π = ye − c(x)/µ
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PDAL MERIT
FUNCTION

PRIMAL-DUAL AUGMENTED
LAGRANGIAN MERIT FUNCTION

Classical augmented Lagrangian merit function:

P(x; ye, µ) = f(x)− yTec(x) +
1

2µ
∥c(x)∥2

Both solvers use FGR (Forsgren, Gill, Robinson) merit function:

M(x, y; ye, µ) = P(x; ye, µ) +
1

2µ
∥c(x) + µ(y− ye)∥2

Simplifies to sequence of bound constrained subproblems

Bound-constrained subproblem (ye, µ fixed)
minimize
x∈Rn,y∈Rm

M(x, y)

subject to x ≥ 0.
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PDAL MERIT
FUNCTION KKT SYSTEMS

Approximate Newton’s system for ∇2M∆v = −∇M:H(x, y) +
1

2µ
JTJ JT

J µI

(
px
py

)
︸ ︷︷ ︸

B≈∇2M

= −
(

g− JT(2π − y)
c(x) + µ(y− ye)

)
︸ ︷︷ ︸

∇M

Sparse equivalent formulation:(
H(x, y) JT

J −µI

)(
px
−py

)
= −

(
g− JTy

c(x) + µ(y− ye)

)
Compare to classical equations(

H(x, y) JT
J 0

)(
p̂x
−p̂y

)
= −

(
g− JTy
c(x)

)
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PDAL MERIT
FUNCTION QP SUBPROBLEM EQUIVALENCE

Ill-conditioned QP

minimize
v∈Rn+m

(v− vk)T∇M+
1

2
(v− vk)TB(v− vk)

subject to x ≥ 0, v = (x, y).

Dual regularized QP (Gill, Kungurtsev, Robinson 2013)

minimize
v∈Rn+m

gT(x− xk) +
1

2
(x− xk)H(x− xk) +

1

2
µ∥y∥22

subject to c+ J(x− xk) + µ(y− yke) = 0, x ≥ 0.
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PDAL MERIT
FUNCTION

USING TRUST-REGIONS FOR
NONCONVEX CASE

Trust-region subproblem

minimize
v∈Rn+m

(v− vk)T∇M+
1

2
(v− vk)TB(v− vk)

subject to ∥v∥ ≤ δ, x ≥ 0

We apply an SSM that extends Steihaug-Toint
Constraint Preconditioner handles inherent ill-conditioning

PK =

(
I JT
J −µ

)
equivalently PB =

I+
1

2µ
JTJ JT

J µ


Interior uses Forsgren, Gill (1998) for inequalities
B can be indefinite
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PDAL MERIT
FUNCTION FGR STRENGTHS AND CHALLENGES

Strengths
Primal and dual variables treated nearly identically
Regularized subproblem
Potentially locally quadratic convergence rate
If ye → y∗, µ need not converge to 0

Preconditioning optional when µ is large
Natural constraint preconditioner available

Challenges (modifications/safe-guards needed)
No longer constraint scale invariant
Less aggressive at reducing constraint violation
Intermediate values of y, ye grow quickly towards bounds
µ often much smaller than classical approaches
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PDAL MERIT
FUNCTION

SAS TEST SUITE
(1097 TEST PROBLEMS)
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PDAL MERIT
FUNCTION PRIMARY GOAL

Preference for minimal algorithmic changes
Improve constraint handling
Secondary purpose of µ is regularization
Primary purpose of µ is counter balance to objective

I Can µ remain constant if objective is constant?
I Can µ remain constant if approaching vertex solution?

ye → y∗ no longer critical for performance
Can ye, y remain bounded for infeasible problems?

yk+1
e → yk → yke −

c(xk)
µk

(1)

⇒ ∥yke∥, ∥yk∥ → ∞ (2)

if infeasible and µk → 0
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PDAL MERIT
FUNCTION

WHY LAGRANGE ESTIMATE IS
CRUCIAL

minimize
x∈R

−105x

subject to 10−5x = 0.

Assume ye = 0, then

M(x, y) = −105x+
1

2µ

(
(10−5x)2 + (10−5x+ µy)2

)

µ x(µ) c(x(µ))
1 1015 1010

10−6 109 104

10−16 .1 10−6

Linearized constraint approach of course solves in 1 step.
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CONSTANT
OBJECTIVE
INTERIOR

FULL ROW RANK ASSUMPTION

Let J = c′(x) and assume full row rank.

Newton’s method on c(x) = 0
while not converged do:

1 Find s such that J(x)s = −c(x)
2 Perform line-search on ∥c(x+ αs)∥22

Could choose min-M norm:

minimize
s∈Rn

1

2
∥s∥2M

subject to Js+ c = 0.
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CONSTANT
OBJECTIVE
INTERIOR

KKT INTERPRETATION

minimize
sx∈Rn

∥sx∥2M
subject to Jsx + c = 0.

Can be found as solution to(
M JT
J 0

)(
sx
−sy

)
= −

(
JTy
c

)

If M denotes positive-definite approximation to H:
Note, if M = I, sx = J†c = −JT(JJT)−1c
Addition of objective simply select different sx sequence
classic KKT equations for NLP
Newton’s method on c(x) = 0 always in background
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CONSTANT
OBJECTIVE
INTERIOR

NO ROW RANK ASSUMPTION

Let J = c′(x).

Levenberg-Marquardt on c(x) = 0
while not converged do:

1 Solve (σI+ JTJ)s = −JTc
2 Perform line-search on ∥c(x+ αs)∥22

Can show s is solution to:

minimize
s∈Rn

1

2

(
σ∥s∥22 + ∥Js+ c∥22

)
Typically LM assumes

∑
i=1 ci∇2ci(x) → 0
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CONSTANT
OBJECTIVE
INTERIOR

SPARSE EQUATIONS

minimize
s∈Rn

1

2

(
σ∥s∥22 + ∥Js+ c∥22

)
Can be found as solution to sparse system(

λI JT
J −µI

)(
sx
−sy

)
= −

(
JTy

c+ µy

)
where

σ = λµ

y can be anything
As σ → 0

I full row rank: sx → −JT(JJT)−1c (min two-norm)
I full col rank: sx → −(JTJ)−1JTc (least-squares)
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CONSTANT
OBJECTIVE
INTERIOR

REGULARIZED KKT INTERPRETATION

Regularized Newton-systems have the form:(
H(x, y) JT

J −µI

)(
sx
−sy

)
= −

(
JTy

c+ µy

)
where

H(x, y) = −
∑m

i=1 yi∇2ci(x)
λI missing (sometimes added as part of trust-region solver)
Intermediate y can grow large
Negligible second-order term from LM starts to dominate
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CONSTANT
OBJECTIVE
INTERIOR

REGULARIZED KKT INTERPRETATION
(WITH PRIMAL PROXIMITY TERM)

Regularized Newton-systems have the form:(
H(x, γy) + λI JT

J −µI

)(
sx
−sy

)
= −

(
JTy

c+ µy

)
If y converges to π = −c/µ then

(λµI+ JTJ+ γ

m∑
i=1

ci∇2ci)sx = −JTc

Results:
1 If γ = 0 is Levenberg-Marquardt
2 If γ = 1 is regularized Newton on r(x) = ∥c(x)∥22
3 Send λ → 0 not µ.

Copyright 2014, SAS Institute Inc. All rights reserved. 19



FEASIBILITY
CONTROL

PROXIMAL-POINT PRIMAL-DUAL
MERIT FUNCTION

Transformation steps:
Scale M(x, y; ye, µ) by µ

Redefine y = µy, ye = µye
Add proximity term

Proximal-point Primal-Dual Augmented Lagrangian:

P(x, y;µ, λ, ye) = µf(x)− yTec(x) +
1

2
∥c(x)∥2

+
1

2
∥c(x) + y− ye∥2 +

λ

2
∥x− xe∥22

µ placement similar to Byrd, Curtis, Nocedal 2008.
λ proximity term similar to Friedlander, Orban 2012
y in H(x, y) replaced with γy (original is approximation)
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FEASIBILITY
CONTROL

PROXIMAL-POINT PRIMAL-DUAL
MERIT FUNCTION

Alternative derivation:
Hard-code µ = 1

Add scale term ν to objective
Add proximity term

Proximal-point Primal-Dual Augmented Lagrangian:

P(x, y; ν, 1, λ, ye) = νf(x)− yTec(x) +
1

2
∥c(x)∥2

+
1

2
∥c(x) + y− ye∥2 +

λ

2
∥x− xe∥22
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FEASIBILITY
CONTROL

PRIMAL-DUAL REGULARIZED QP
SYMMETRY

Primal-Dual regularized QP

minimize
x,y

gTx+
1

2
xTHx+

µ

2
∥y∥22 +

λ

2
∥x− xe∥22

subject to c+ Jx+ µ(y− ye) = 0, x ≥ 0,

Dual of Primal-Dual regularized QP

minimize
y,x

−cTy+
1

2
xTHx+

λ

2
∥x∥2 +

µ

2
∥y− ye∥22

subject to g+ Hx− JTy+ λ(x− xe) ≥ 0.

Friedlander, Orban (2012)
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NUMERICAL
RESULTS

SIMPLIFICATION FOR FEASIBILITY
RESTORATION MODE

Simplifications for feasibility restoration:
ye = 0

y = π = −c(xk)
xe = xk
γ = 0

µ = 0 (is now ”fscale”)
λ increase/decrease like trust-region algorithm

Preliminary results:
Old: SAS Test suite with easy problem filtered out
New: Randomly generated two sets of 900
feasible/infeasible problems

I ℓ ≤ Ax ≤ u with m ≫ n
I (aTi x− bi)2 ≤ ui, for 1, . . . ,m
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NUMERICAL
RESULTS

NUMERICAL RESULTS COMPARISON
FOR HARDER SAS TEST SUITE
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NUMERICAL
RESULTS RANDOMLY GENERATED TEST SUITE I
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NUMERICAL
RESULTS

RANDOMLY GENERATED TEST SUITE
II
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CONCLUSIONS FEASIBILITY CONTROL RECOVERED

Works quite well for most test-problems we’ve tried
Need to refine γ (y-scale for H) and ν (f-scale)heuristics
Repeat modification to Interior-Point
Revise convergence proofs with proximity term present
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CONCLUSIONS REFERENCES AND DOCUMENTATION

SAS/OR 13.1 User’s Guide
Mathematical Programming

http://support.sas.com/documentation/cdl/en/ormpug/
66851/PDF/default/ormpug.pdf
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