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BACKGROUND TALK PURPOSE

@ Motivate addition of a primal-proximity term to a
primal-dual augmented Lagrangian merit function
» Forsgren, Gill (1998)
» Gill, Robinson (2010)

@ Proximity term similar to Friedlander, Orban 2012
@ We'll show

» the proximity term restores primary purpose of penalty term

» search directions have strong correspondence to standard
nonlinear regression approaches

» improved performance for infeasible problems




LARGE-SCALE NONLINEAR
BACKGROUND |\ o\ cONVEX PROBLEMS

Two primal-dual merit based solvers in PROC OPTMODEL:
@ Interior-point
@ Active-set

for nonlinear (possibly nonconvex) optimization problems:

NLP (Nonlinear Programming Problem)

minimize  f(x)

XER"
subjectto c¢(x)
X

VIl
o

@ c(x) e R™
@ f(x), c(x) are twice continuously differentiable

§sas  Hs.




BACKGROUND NOTATION

@ Gradient of objective: g = g(x) = Vf(x)
@ Jacobian of constraints: J = J(x) = ¢/(x)
@ Lagrangian: L(x,y) = f(x) — ¢(x)y

@ Hessian of Lagrangian: H = V2,L(x,
@ Augmented Lagrangian:

Y)

P(X: Yor 1) = F(x) — yI6(x) + inc(m?

@ Augmented Lagrangian Gradient:

VP (X Yo, 1) = g — J(ye — c(x)/1)

@ Primal multipliers: m = ye — ¢(x)/p




PDAL MERIT PRIMAL-DUAL AUGMENTED
FUNCTION LAGRANGIAN MERIT FUNCTION

Classical augmented Lagrangian merit function:
T 1 2
P(X; Ye, ) = f(x) = yec(X) + EHC(X)II
Both solvers use FGR (Forsgren, Gill, Robinson) merit function:
1
M(X,¥: Ver 1) = P(X: Ve 1) + 51600 + Y = Ye) I?

Simplifies to sequence of bound constrained subproblems

Bound-constrained subproblem (ye, u fixed)

minimize M(x
XERN yeRM (x.¥)

subjectto x> 0.
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PDAL MERIT

FUNCTION KKT SYSTEMS

Approximate Newton’s system for V2MAv = —VM:

1
Hx,y) + —JdYU JTY) (px (g- J2r — y)
( J " MI> (Py) a (C(X) + p(y — Ye))

VM
B~V2M

Sparse equivalent formulation:

(T2 L) (5 == (o0 i)

Compare to classical equations

(7 1)) ()




PDAL MERIT

FUNCTION QP SUBPROBLEM EQUIVALENCE

[ll-conditioned QP

minimize (v — vx) VM + 1(v —vi) B(v — v)
veRn+m 2
subject to x>0,v=(xy).

Dual regularized QP (Gill, Kungurtsev, Robinson 2013)

s 1 1
minimize  g7(x — xx) + = (X — x)H(Xx — x) + = p||yl|3

subject to ¢+ J(x—xx) +ply —y&) =0,x> 0.
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PDAL MERIT USING TRUST-REGIONS FOR
FUNCTION NONCONVEX CASE

Trust-region subproblem

1

minimize (v — vx) VM + (v — v¢)'B(v — v)
veRn+m 2

subject to vl <d0,x>0

@ We apply an SSM that extends Steihaug-Toint
@ Constraint Preconditioner handles inherent ill-conditioning

1
T STy T
Pk = <fl jy) equivalently Pg = I+ 2MJJ J
J p

@ Interior uses Forsgren, Gill (1998) for inequalities
@ B can be indefinite

§sas  Hs.



PDAL MERIT
FUNCTION FGR STRENGTHS AND CHALLENGES

Strengths

@ Primal and dual variables treated nearly identically
Regularized subproblem
Potentially locally quadratic convergence rate
If ye — y*, 1 need not converge to 0
Preconditioning optional when 1 is large
Natural constraint preconditioner available
Challenges (modifications/safe-guards needed)

@ No longer constraint scale invariant
@ Less aggressive at reducing constraint violation
@ Intermediate values of y, y, grow quickly towards bounds

@ . often much smaller than classical approaches




PDAL MERIT SAS TEST SUITE
FUNCTION (1097 TEST PROBLEMS)

NLP Solvers by Time
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PDAL MERIT
FUNCTION

PRIMARY GOAL
@ Preference for minimal algorithmic changes
@ Improve constraint handling

@ Secondary purpose of y is regularization
@ Primary purpose of p is counter balance to objective

» Can p remain constant if objective is constant?
» Can p remain constant if approaching vertex solution?

@ Yo — y* no longer critical for performance
@ Can y,, y remain bounded for infeasible problems?

e yuyé—c(::) (1)
o LIV = o @)

if infeasible and ux — 0




PDAL MERIT WHY LAGRANGE ESTIMATE IS
FUNCTION CRUCIAL

minimize —105x
XER
subjectto 107°x = 0.

Assume y, = 0, then

1
M(x,y) = —10°x + o ((107°%)% + (107°x + py)?)

po | x(u) | e(x(p))

1 100 | 1010
1076 | 109 10*
10716 | 1 106

Linearized constraint approach of course solves in 1 step.




CONSTANT
OBJECTIVE FULL ROW RANK ASSUMPTION
INTERIOR

Let J = ¢/(x) and assume full row rank.

Newton’s method on c(x) = 0
while not converged do:

@ Find s such that J(x)s = —c(x)
@ Perform line-search on ||c(x + as)|/3

Could choose min-M norm:
minimize 1HSH2
sERN 2 M

subjectto Js+c=0.

9Sas | Bm.



CONSTANT
OBJECTIVE KKT INTERPRETATION
INTERIOR

. . . 2
minimize S
nimi Il

subjectto Jsy+c=0.

Can be found as solution to

(5 0) (%)=~ ()

If M denotes positive-definite approximation to H:
@ Note, if M =1, s, = Jic = —J(JJ)"lc
@ Addition of objective simply select different sy sequence
@ classic KKT equations for NLP
@ Newton’s method on c(x) = 0 always in background




CONSTANT

OBJECTIVE NO ROW RANK ASSUMPTION
INTERIOR

Let J = cd/(x).

Levenberg-Marquardt on c(x) = 0
while not converged do:

@ Solve (ol +JN)s=-Jc
@ Perform line-search on ||c(x + as)|[3

Can show s is solution to:

(lIslz + [1Js + cll3)

o 1
minimize —
SERN 2

Typically LM assumes Y., ¢;V2ci(x) — 0

9Sas | Bm.



CONSTANT
OBJECTIVE SPARSE EQUATIONS
INTERIOR

1

minimize = (o||s||2 + ||Js + cl|2
nimize  (olls|3 + Js + cl3)

Can be found as solution to sparse system

MNOJTN (s (Y
J —ul)\-s,)  \c+uy

where
@ o= \u

@ y can be anything
@ Aso—0

» full row rank: s, — —J"(JJT)~1c (min two-norm)
» full col rank: s, — —(J7J)~'J'c (least-squares)




CONSTANT
OBJECTIVE REGULARIZED KKT INTERPRETATION
INTERIOR

Regularized Newton-systems have the form:

(5 ) (%)== (00)

where

® H(x,y) = = ¥, yiV?ci(x)

@ )/ missing (sometimes added as part of trust-region solver)
@ Intermediate y can grow large

@ Negligible second-order term from LM starts to dominate




CONSTANT | o GULARIZED KKT INTERPRETATION

OBJECTIVE
INTERIOR (WITH PRIMAL PROXIMITY TERM)

Regularized Newton-systems have the form:

H(x,vy) + M JT sx\_ ([ JYy
J —ul) \—=sy) C+ uy

If y converges to m = —c/u then

m
Ol +IU+ 7)) eVie)se = —Jc
i=1

Results:
@ Ify = 0 is Levenberg-Marquardt
@ If v = 1 is regularized Newton on r(x) = ||c(x)||3
@ Send )\ — 0 not 4.
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FEASIBILITY PROXIMAL-POINT PRIMAL-DUAL
CONTROL MERIT FUNCTION

Transformation steps:
® Scale M(X, y; Ve, 1) by
@ Redefine y = uy, Ye = uye
@ Add proximity term
Proximal-point Primal-Dual Augmented Lagrangian:

1
PXyim A Ye) = pfx) = yée(x) + - lle(x)[*

1 A
+511e() +y =yl + 5 lx = xell
@ .. placement similar to Byrd, Curtis, Nocedal 2008.

@ )\ proximity term similar to Friedlander, Orban 2012
@ yin H(x,y) replaced with ~y (original is approximation)

9Sas | Bm.



FEASIBILITY PROXIMAL-POINT PRIMAL-DUAL
CONTROL MERIT FUNCTION

Alternative derivation:
@ Hard-code =1
@ Add scale term v to objective
@ Add proximity term
Proximal-point Primal-Dual Augmented Lagrangian:

1
PXyiv 1A Ye) = vfx) = y@o(x) + Slle()|?

1 A
+31600 + ¥ = Yoll? + Slx — el




FEASIBILITY PRIMAL-DUAL REGULARIZED QP
CONTROL SYMMETRY

Primal-Dual regularized QP

L 1 W A
minimize g+ SxTHx+ S y[3 + 5 lx — xel3
subjectto ¢+ Jx+ p(y —Ye) =0,x > 0,

Dual of Primal-Dual regularized QP

o 1 A 7
T, AT A Ky 2
mln}llr)?lze c'y+ 2x Hx + 2||x|]2 + 3 lly — yell5
subjectto g+ Hx — JTy + A\(x — x¢) > 0.

Friedlander, Orban (2012)

Copyright 2014, SAS I SSaS :'o"""x'."‘w



NUMERICAL SIMPLIFICATION FOR FEASIBILITY
RESULTS RESTORATION MODE

Simplifications for feasibility restoration:

@ ye=0

@ y=m=—c(X)

@ Xe = Xy

e ~v=0

@ 1 = 0 (is now "fscale”)

@ )\ increase/decrease like trust-region algorithm
Preliminary results:

@ Old: SAS Test suite with easy problem filtered out

@ New: Randomly generated two sets of 900
feasible/infeasible problems
» (< Ax<uwithm>n
» (alx—b)? <u, forl,....m

9Sas | Bm.



NUMERICAL NUMERICAL RESULTS COMPARISON
RESULTS FOR HARDER SAS TEST SUITE

AS fscale0 vs AS NewV02 by Time
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NUMERICAL

RESULTS RANDOMLY GENERATED TEST SUITE |

IP vs AS by Time
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NUMERICAL RANDOMLY GENERATED TEST SUITE
RESULTS Il

IP vs AS by Time
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CONCLUSIONS FEASIBILITY CONTROL RECOVERED

@ Works quite well for most test-problems we’ve tried
@ Need to refine ~ (y-scale for H) and v (f-scale)heuristics
@ Repeat modification to Interior-Point

@ Revise convergence proofs with proximity term present




CONCLUSIONS REFERENCES AND DOCUMENTATION

SAS/OR 13.1 User’s Guide
Mathematical Programming

http://support.sas.com/documentation/cdl/en/ormpug/
66851/PDF/default/ormpug. pdf
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