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Outline

Introduction

∆-Dogs for problems with a linear constraints.

∆-Dogs for problems with a general convex constraints.

Minimizing the cost function that is derived by the infinite
time-averaged.

Conclusion.



Properties of the Derivative free Algorithms

Advantages

Does not need any information about the derivative.

Can handle problems with noisy or inaccurate cost function
evaluations.

Capability of the global Search

Disadvantages

High computational cost with respect to the dimension of the
problem.

Slow speed of convergence.



General classification of the Derivative free methods

Direct methods

Nelder-Mead method

Response surface methods

Branch and bound algorithms

Bayesian approaches

Adaptive search algorithms

Hybrid methods



General implementation of the response surface methods

Design a model (interpolation ) for the cost function based on
the current data points.

Find the most promising points for the global minimum based
on the model.

Calculate the cost function evaluation at the new data point.

Add it to the data set, continue the algorithm until the global
(local) minimum is found.



Optimization base on the kriging interpolations

Advantages

Have an estimation for both the cost function and its
uncertainty at each feasible point.

Can handle scattered data.

Could be extended to high dimensional problems

Disadvantages

Has the numerical inaccuracy when the data points are
clusttred in some region of the domain.

Finding parameters of the Kriging interpolation is a hard
non-convex subproblem.

Minimizing the search function at each step is a non-smooth,
non-convex optimization algorithm.



Performance of the Kriging for an illposed example
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Performance of the polyharmonic spline for an illposed
example
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Initialization of the algorithm for problems with bounded
Linear constraints

In order to initialize the algorithm, a set of data points is
needed that its convex hull is the feasible domain.

The minimal subset of the feasible domain that its convex hull
is our constraint is the set of vertices.

There are some algorithms to find all vertices of a linear
constrained problem.

The box constraint is a special case which the corners are
these vertices.



The Optimization Algorithm for the problems with linear
constraints

1. Find all vertices of the feasible domain.

2. Define a set of initial evaluation points and add the
vertices to it.

3. Calculate an interpolating function p(x) among the set of
evaluation points.

4. Perform a Delaunay triangulation among the points.



The Optimization Algorithm for the problems with linear
constraints

1. Find all vertices of the feasible domain.

2. Define a set of initial evaluation points and add the
vertices to it.

3. Calculate an interpolating function p(x) among the set of
evaluation points.

4. Perform a Delaunay triangulation among the points.



The Optimization Algorithm for the problems with linear
constraints

1. Find all vertices of the feasible domain.

2. Define a set of initial evaluation points and add the
vertices to it.

3. Calculate an interpolating function p(x) among the set of
evaluation points.

4. Perform a Delaunay triangulation among the points.



The Optimization Algorithm for the problems with linear
constraints

1. Find all vertices of the feasible domain.

2. Define a set of initial evaluation points and add the
vertices to it.

3. Calculate an interpolating function p(x) among the set of
evaluation points.

4. Perform a Delaunay triangulation among the points.



The Global Optimization Algorithm for the problems with
linear constraints

5. For each simplex Si
Calculate its circumcenter xC and the circumradius R.

Define an error function ei (x) on each simplex such that
ei (x) = R2 − (x − xC )T (x − xC ).
Define a search function in this simplex as
ci (x) = p(x)− K ei (x).
Minimize the search function ci (x) = p(x)− K ei (x) in this
simplex.

6. Take the minimum of the result of the minimization
performed in each simplex and add it to the set of evaluation
points.

7. Repeat steps 3 to 6 until convergence.
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Schematic implementation of the algorithm
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The schematic Implementation of the algorithm
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Error function plots in 2 dimension



Minimizing the search function

The search function p(x)− Ke(x) has to be minimized in
each simplex.

A good initial estimate for the value of the minizer of this
search function is derived by replacing p(x) with the linear
interpolation.

For interpolation based on the radial basis functions, the
gradient and Hessian of the search function is derived
analytically; thus, the search function can be minimized by
using the Newton method.

If the linear constraints of the above optimization problems be
relaxed with the whole feasible domian; the global minimizer
of the search function is not changed.



Convergence Result

The above algorithm will converge to the global minimum, if
there is a K that for all steps of the algorithm, there is a point
x̃ which

pn(x̃)− K en(x̃) ≤ f (x∗), (1)

where f (x∗), pn(x) and en(x) are the global minimum,
interpolating function and uncertainty functions at step n
respectively.

The above equation is true; if we have:

K ≥ λmax(∇2f (x)−∇2pn(x))/2, (2)

for all steps of the algorithm.



Choose the optimal value for K

If we have a lower bound for the global minimum (y0), we

could minimize p(x)−y0
e(x) instead of the above search function.

If y0 is the global minimum; the second method is equivalent
to the optimal choice for the tuning parameter K .

This new approach will converge to the global minimum even
if the search function is not globally minimized at each step.



Results

f (x) =
N∑
i=0

1

2i
cos(3iπ x), N = 300;
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Figure : Weierstrass function (dashed line), interpolant (solid line),
candidate minimum points (squares)



Results

f (x , y) = x2 + y2
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Figure : parabola function



Results

f (x , y) = −xsin(
√
|x |)− ysin(

√
|y |)
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Figure : Schwefel function



Results

f (x) = (1− x1)2 + 100(x2 − x21 )2
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Figure : Rosenbrock function



Perturbed Rosenbrock function

fP(x) = f (x) +
10

πN
sin(Nπx1)2sin(Nπx2)2 N →∞

The position of the local minima for the perturbed rosenbrock function

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure : Rosenbrock function



Generalization of the algorithm for problems with convex
constraints

Above algorithm in restricted to convex hull of the available
evaluation points.

The modification that solves above problems is to project the
a search point at each step to the feasible boundary if the
search point is out (or on the boundary) of the this convex
hull from an interior points.

We proved the convergence of the above algorithm if the
feasible boundary is smooth or the global minizer is an interior
point.

This algorithm is efficient if the feasibility check is a cheap
process.

The new modified algorithms needs d + 1 initial points
instead of 2d points.



Results
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Figure : Rosenbrock function in a circle



Results
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Minimizing the long time averaged statistics

The objective function that has been considered is as follow:

min
x

lim
T→∞

1

T

∫ T

0
F (x , t)dt (3)

Assumptions

F(x,t) is the only accessible value that is derived with a
simulation or an experiment.

F(x,t) is a stationary process.

Above function is a non-convex function.

The dimension of the design parameters is small.



Construct the model for the problem

The mathematical model that is designed for the above problem is

F (x , t) = f (x) + v(x , t) (4)

v(x , t) = N (0, σ2) (5)

g(x ,N) =
1

N

N∑
i=1

F (x , i∆t) (6)

The computational cost of calculating g(x ,N) is proportional
to N.

g(x ,N) is an approximate for f (x) that is more accurate as N
increased.

An estimation for the error of g(x ,N) has been derived based
on the long-memory process theory.



The process of the algorithm for Weierstrass test function



The outcome of the algorithm for Weierstrass test function
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Conclusions

A new optimization algorithm has been developed that found
the global minimum with a minimum number of function
evaluations.

Any smooth interpolating function can be used in this
algorithm.

This algorithm is not sensitive to the noisy or inaccurate cost
function evaluations.

The global minimum can be approximate pretty fast, yet the
speed of the convergence for the algorithm is slow.

This method can be combined a local method to develop a
fast converging algorithm.

This algorithm can deal with problems with general convex
constraints.

A new method that uses ∆-Dogs has been developed which
minimized the simulated based optimization problems in
which the cost function evaluations are derived from
infinite-time-average statistics.


