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Abstract

We introduce a variational implicit-explicit (IMEX)
integrator for mechanics problems with forces act-
ing on both fast and slow time scales. This differs
from traditional IMEX methods, since the splitting
is done with respect to the Lagrangian rather than
the Euler-Lagrange equations. This guarantees
symplecticity and preservation of other geometric
structures, as is well known for variational integra-
tors, but which is not generally true for other IMEX
methods.

Furthermore, we prove that our IMEX integrator
eliminates the problem of numerical resonance in-
stability, exhibited by fully explicit geometric meth-
ods such as Verlet-I/r-RESPA and asynchronous
variational integrators (AVIs).

Background

Many problems in mechanics, from molecular dy-
namics to elasticity, require numerical integration
of both fast (stiff) and slow (non-stiff) potential
forces. For these highly oscillatory problems, the
fast force is typically taken to be linear, while the
slow force is nonlinear.

This presents a numerical challenge: to ensure
stability, the fast force requires us to take small
time steps, or to use an implicit integrator. This
is ordinarily not too expensive, since the fast force
is linear. However, it is prohibitively expensive to
use such an integrator for the nonlinear slow force,
since this requires a large number of function eval-
uations and/or a nonlinear solver.

This problem has motivated the development of
various “hybrid” integrators, which treat the fast
and slow forces separately. There have been two
main approaches to doing this:

1. Multiple Time Stepping: Use an explicit inte-
grator with a different time step size for each
force. These include substepping methods,
such as Verlet-I/r-RESPA, as well as asyn-
chronous methods, such as AVIs.

2. Implicit-Explicit (IMEX) Methods: Use the
same time step for both forces, but integrate the
fast force implicitly and the slow force explicitly.

These multiple time stepping methods are all vari-
ational integrators [Lew et al., 2003], and hence
they preserve geometric structures. However, it
can be difficult to ensure numerical stability: it
is not sufficient to choose a stable time step for
the fast and slow forces individually, as numer-
ical resonance instability can arise between the
fast and slow scales. This danger is well-known
for substepping methods [Biesiadecki and Skeel,
1993], and has been shown to arise even for asyn-
chronous time stepping in AVIs [Fong et al., 2007].

Traditional IMEX methods, on the other hand, are
generally not geometric integrators, since splitting
is done at the level of the Euler-Lagrange equa-
tions rather than the Lagrangian [Crouzeix, 1980;
Ascher et al., 1995].

A Variational IMEX Method

Suppose we have a Lagrangian of the form

L(q, q̇) = 1
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where the potential energy is split into a slow com-
ponent U (q) and a fast component W (q). Then
define the following discrete Lagrangian,
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which uses the trapezoid rule for the slow potential
and the midpoint rule for the fast potential.

Using the discrete Legendre transform, this gener-
ates a map
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To simplify this, we define the intermediate stage
p1/2 = M
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)
and then rewrite the above as
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In particular, this reduces to Velocity Verlet when
∇W ≡ 0 and to Midpoint Euler when ∇U ≡ 0.

Linear Stability Analysis

To prove that this variational IMEX integrator does
not exhibit resonance instability, we consider a
simple 1D test problem. Given a particle of unit
mass, let U (q) = 1

2ΛU q2 and W (q) = 1
2ΛW q2, so that

∇U and ∇W are both linear. After some simplifica-
tion, the discrete Euler-Lagrange (DEL) equations
for this system can be written(

1+ h2

4
ΛW

)(
qk+1−2qk +qk−1

h2

)
=− (ΛU +ΛW ) qk.

Therefore, this is equivalent to Verlet integration of
a simple harmonic oscillator with constant

Λ= ΛU +ΛW

1+ h2

4 ΛW

.

The stability condition for Verlet integration is
h2Λ≤ 4, which is equivalent to

h2 (ΛU +ΛW ) ≤ 4+h2ΛW .

The ΛW terms cancel, leaving h2ΛU ≤ 4, which is
identical to the stability condition for Verlet in-
tegration of the slow scale by itself. Therefore,
because the stability conditions for the fast and
slow scales essentially decouple, the variational
IMEX method does not exhibit any numerical res-
onance instability.

Numerical Comparisons
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Figure 1: Maximum energy error vs. time step
size for Verlet, r-RESPA, and variational IMEX.
Variational IMEX shows good energy behavior at
long time steps, without the resonance instability
“spikes” displayed by r-RESPA.
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Phase plots for Variational and Non−Variational IMEX
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Figure 2: Phase plot comparison for IMEX meth-
ods. The variational IMEX method is better at pre-
serving energy and the structure of periodic orbits,
while non-variational IMEX gradually gains energy
and spirals outward.
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