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Chapter 1

Data Structures

1.1 Overview.
The multigraph package can be used to solve large sparse linear systems of equations
of the form

Ax = b. (1.1)

In this chapter, we discuss the main data structures used in the package, and give
a brief overview of its overall structure. See [3, 4] for algorithmic details and some
numerical results.

We assume that the sparsity pattern of A is symmetric, although the numerical
values need not be. We will begin by describing the basic two-level method for
solving (1.1) Let B be an n × n nonsingular matrix, called the smoother, which
gives rise to the basic iterative method used in the multigraph preconditioner. In
our case, B is an approximate factorization of A, i.e.,

B = (L+D)D−1(D + U) ≈ P tAP, (1.2)

where L is (strict) lower triangular, U is (strict) upper triangular with the same
sparsity pattern as Lt, D is diagonal, and P is a permutation matrix.

Given an initial guess x0, m steps of the smoothing procedure produce iterates
xk, 1 ≤ k ≤ m, given by

rk−1 = P t(b−Axk−1)

Bδk−1 = rk−1 (1.3)

xk = xk−1 + P tδk−1

The second component of the two-level preconditioner is the coarse grid cor-
rection. Here we assume that the matrix A can be partitioned as

P̂AP̂ t =

(
Aff Afc

Acf Acc

)
(1.4)

1
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where the subscripts f and c denote fine and coarse, respectively. Similar to the
smoother, the partition of A in fine and coarse blocks involves a permutation matrix
P̂ . The n̂× n̂ coarse grid matrix Â is given by

Â =
(
Vcf Icc

)(Aff Afc

Acf Acc

)(
Wfc

Icc

)
= VcfAffWfc + VcfAfc +AcfWfc +Acc. (1.5)

The matrices Vcf and W t
fc are n̂×(n− n̂) matrices, with identical sparsity patterns;

thus Â has a symmetric sparsity pattern. If At = A, we require Vcf = W t
fc, so

Ât = Â.
Let

V̂ =
(
Vcf Icc

)
P̂ , Ŵ = P̂ t

(
Wfc

Icc

)
. (1.6)

In standard multigrid terminology, the matrices V̂ and Ŵ are called restriction and
prolongation, respectively. Given an approximate solution xm to (1.1), the coarse
grid correction produces an iterate xm+1 as follows.

r̂ = V̂ (b−Axm)

Âδ̂ = r̂ (1.7)

xm+1 = xm + Ŵ δ̂

As is typical of multilevel methods, we define the Two-Level Preconditioner
M implicitly in terms of the smoother and coarse grid correction. A single cycle
takes an initial guess x0 to a final guess x2m+1 as follows:

Two-Level Preconditioner

i. xk for 1 ≤ k ≤ m are defined using (1.3).

ii. xm+1 is defined using (1.7).

iii. xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (1.3).

The generalization from two-level to multilevel consists of applying recursion
to the solution of the equation Âδ̂ = r̂ in (1.7). Let ` denote the number of levels
in the recursion. Let M̂ ≡ M̂(`) denote the preconditioner for Â; if ` = 2 then
M̂ = Â. Then (1.7) is generalized to:

r̂ = V̂ (b−Axm)

M̂ δ̂ = r̂ (1.8)

xm+1 = xm + Ŵ δ̂

The general ` level preconditioner M is then defined as follows:
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`-Level Preconditioner

i. if ` = 1, M = A; i.e., solve (1.1) directly.

ii. if ` > 1, then, starting from initial guess x0, compute x2m+1 using (iii)-(v):

iii. xk for 1 ≤ k ≤ m are defined using (1.3).

iv. xm+1 is defined by (1.8), using p = 1 or p = 2 iterations of the ` − 1 level

scheme for Âδ̂ = r̂ to define M̂ , and with initial guess δ̂0 = 0.

v. xk for m+ 2 ≤ k ≤ 2m+ 1 are defined using (1.3).

The case p = 1 corresponds to the symmetric V-cycle, while the case p = 2
corresponds to the symmetric W-cycle. We note that there are other variants of both
the V-cycle and the W-cycle, as well as other types of multilevel cycling strategies
[6]. However, in our code we restrict attention to just the symmetric V-cycle, with
m = 1 presmoothing and postsmoothing iterations.

For the coarse mesh solution (` = 1), our procedure is somewhat non-traditional.
Instead of direct solution of (1.1), we compute an approximate solution using one
smoothing iteration.

If A is symmetric then so is M , and the `-Level Preconditioner is used as
a preconditioner for the composite step conjugate gradient method (CSCG). In
the nonsymmetric case, the `-level Preconditioner is used in conjunction with the
composite step biconjugate gradient method (CSBCG). See [1] for details of these
Krylov space methods.

1.2 Matrix Data Structures.
Let A be an n × n matrix with elements Aij , and a symmetric sparsity structure;
that is, both Aij and Aji are treated as nonzero elements (i.e. stored and processed)
if |Aij | + |Aji| > 0. All diagonal entries Aii are treated as nonzero regardless of
their numerical values.

Our data structure is a modified and generalized version of the data structure
introduced in the (symmetric) Yale Sparse Matrix Package [5]. It is a row-wise
version of the data structure described in [2]. In our scheme, the nonzero entries
of A are stored in a linear array a, and accessed through an integer array ja. Let
ηi be the number of nonzeros in the strict upper triangular part of row i, and set
η =

∑n
i=1 ηi. The array ja is of length n+1+η and the array a is of length n+1+η

if At = A. If At 6= A, then the array a is of length n+ 1 + 2η. The entries of ja(i)
1 ≤ i ≤ n+ 1 are pointers defined as follows:

ja(1) = n+ 2

ja(i+ 1) = ja(i) + ηi, 1 ≤ i ≤ n

The locations ja(i) to ja(i+ 1)− 1 contain the ηi column indices corresponding to
the row i in the strictly upper triangular matrix.
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In a similar manner, the array a is defined as follows:

a(i) = Aii, 1 ≤ i ≤ n
a(n+ 1) is arbitrary

a(k) = Aij , 1 ≤ i ≤ n, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1

If At 6= A, then

a(k + η) = Aji, 1 ≤ i ≤ n, j = ja(k), ja(i) ≤ k ≤ ja(i+ 1)− 1

In words, the diagonal is stored first, followed by the strict upper triangle stored row-
wise. If At 6= A, then this is followed by the strict lower triangle stored column-wise.
Since A is structurally symmetric, the column indexes for the upper triangle are
identical to the row indexes for the lower triangle, and hence need not be duplicated
in storage.

As an example, let

A =


A11 A12 A13 0 0
A21 A22 0 A24 0
A31 0 A33 A34 A35

0 A42 A43 A44 0
0 0 A53 0 A55


Then

1 2 3 4 5 6 7 8 9 10 11
ja 7 9 10 12 12 12 2 3 4 4 5
a A11 A22 A33 A44 A55 A12 A13 A24 A34 A35

Diagonal Upper Triangle

12 13 14 15 16
ja
a A21 A31 A42 A43 A53

Lower Triangle

If desired, the user can specify a block structure for the matrix A. This block
structure is used only in the coarsening phase of the algorithm (i.e. in creating V̂ and
Ŵ ). If the matrix has nblock blocks, the user provides and integer array ib of length
nblock + 1, defined as follows: Let ξi be the order of block i, for 1 ≤ i ≤ nblock.
Then

ib(1) = 1

ib(i+ 1) = ib(i) + ξi, 1 ≤ i ≤ nblock.

For the case of just one block, one should set

ib(1) = 1

ib(2) = n+ 1
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The data structure for storing B = (L + D)D−1(D + U) is quite analogous
to that for A. It consists of two arrays, ju and u, corresponding to ja and a,
respectively. The first n+1 entries of ju are pointers as in ja, while entries ju(i) to
ju(i+1)−1 contain column indices of the nonzeros of row i in of U . In the u array,
the diagonal entries of D are stored in the first n entries. Entry n+ 1 is arbitrary.
Next, the nonzero entries of U are stored, in correspondence to the column indices
in ju. If Lt 6= U , the nonzero entries of L follow, stored column-wise.

The data structure we use for the n × n̂ matrix Ŵ and the n̂ × n matrix V̂
are similar. It consists of an integer array jv and a real array v. The nonzero
entries of Ŵ are stored row-wise, including the rows of the block Icc. As usual, the
first n + 1 entries of jv are pointers; entries jv(i) to jv(i + 1) − 1 contain column
indices for row i of Ŵ . In the v array, the nonzero entries of Ŵ are stored row-wise
in correspondence with jv but shifted by n + 1 since there is no diagonal part. If
V̂ t 6= Ŵ , this is followed by the nonzeros of V̂ stored column-wise.

1.3 The ka Data Structure.
To avoid excessive clutter in the calling sequences, all of the relevant matrices for
all of the levels are stored in just two arrays, an integer array ja and a real array
a. In order to keep track of the internal structure of these arrays, a matrix of
pointers, ka, is created in subroutine mginit and used in subroutine mg. A casual
user need not be concerned with this array (other than allocating storage for it),
but it is available to the user should access to the various matrices generated by
the multigraph method be desired. ka is a 10 × (lvl + 1) integer array, where
lvl ≤ maxlvl is the number levels employed by the method. Column i corresponds
to variables associated mainly with level lvl + 1 − i; that is, the first column is
associated with the finest level, the second column with the next finest level, and
so on.

i ka(i, ∗)
1 n, the order of the matrix
2 nptr, pointer for multilevel vector arrays
3 japtr pointer for the integer data structure ja
4 iaptr pointer for the real data structure a
5 juptr pointer for the integer data structure ju
6 iuptr pointer for the real data structure u
7 jvptr pointer for the integer data structure jv
8 ivptr pointer for the real data structure v
9 iqptr pointer for the inverse permutation for P
10 ibptr block labels, computed from the ib array

Table 1.1. The ka array.
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Chapter 2

Multigraph Routines

2.1 Overview.
The multigraph implementation consists of four main routines, mginit, mgilu, mg,
and cycle. Subroutine mginit is the initialization routine that creates the levels
and their associated data structures. Subroutine mgilu performs a subset of the
operations of mginit, and can be used when one solves a sequence of linear systems
with a family of related matrices (e.g. in a Newton iteration). Subroutine mgilu
computes new values for all of the real variables (a, u and v), while retaining the
integer data structures produced by mginit; this significantly reduces the initial-
ization time. Subroutine mg solves (1.1) using either the composite set conjugate
gradient or composite step biconjugate gradient method. Subroutine cycle is the
V-cycle preconditioner called by mg. It is documented separately, as it can be called
directly as the preconditioner in other iterative solvers. For such a situation, we
also provide subroutines mtxmlt and perm for matrix multiplication and reorder-
ing, respectively. Two other routines, gphplt and mtxplt, are visualization tools
that are discussed in Chapter 3.

This version of the multigraph package is written in fortran90. There is only
one version of the source code. The precision of the arithmetic is governed through
the module mthdef where the precision of integer and floating point numbers can
be specified through the parameters iknd and rknd, respectively. Module mthdef
is included in every subroutine and function in the package, and thus represents a
global specification of precision.

2.2 Subroutine mginit.
mginit is called using the statement:

call mginit( n, ispd, nblock, ib, maxja, ja, maxa, a, ncfact, maxlvl,
maxfil, ka, lvl, dtol, method, iflag )

7



8 MULTIGRAPH USERS’ GUIDE 1.0

A discussion of these parameters follows.

• n is an integer specifying the order of the system of equations.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used.

• nblock is an integer specifying the number of blocks in the matrix (see Section
1.2).

• ib is an integer array of size nblock + 1 containing the block structure, as
defined in Section 1.2.

• maxja is an integer specifying the size of the array ja.

• ja is an array of integers, containing all the integer data structures for all
levels defined in Chapter 1. On input, the head of ja should contain the
integer data structure corresponding the the linear system (1.1) to be solved.

• maxa is an integer specifying the size of the array a. A good (but inexact)
guide is to choose maxa ∼ maxja when ispd = 1 and maxa ∼ 2maxja when
ispd = 0.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. On input, the head of a should contain the real data
structure corresponding the the linear system (1.1) to be solved.

• ncfact is an integer specifying the coarsening factor. If the matrix at a given
level is of order n, then the matrix for the next coarser level will be of order
n̂ ≈ n/ncfact. We require ncfact ≥ 2.

• maxlvl is an integer specifying the maximum number of levels to be used.

• maxfil is an integer specifying the maximum storage allowed for certain ma-
trices. In particular, the ja and ju arrays for a system of order ni will have
maximum size ni + 1 + nimaxfil. Note that maxfil controls the average
number of nonzeros per row, but NOT necessarily the fill-in in any particular
row.

• ka is a 10×(lvl+1) integer array, which on output contains pointers as defined
in Section 1.3.

• lvl is an integer, which on output contains the number of levels actually gen-
erated by mginit. In particular lvl ≤ maxlvl.

• dtol is a nonnegative real, specifying the drop tolerance for the ILU factor-
izations.
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• method is an integer specifying the smoother for the multigraph algorithm.
method = 0 is the default ILU with drop tolerance; method = 1 is ILU(0)
(ja ≡ ju at all levels); method = 2 is symmetric Gauss-Seidel (ja ≡ ju
and a ≡ u at all levels). method = 1 and method = 2 are provided mainly
as a baseline to compare with method = 0; however, for certain problems
they can provide comparable performance using less time and space for the
initialization, and therefore are independently useful.

• if lag is an integer that on output contains the error flag. if lag = 0 signifies
no error; if lag = 20 signifies insufficient storage. Although this could refer to
maxja, maxa, or lenz, the typical failure is for lenz.

2.3 Subroutine mgilu.
Subroutine mgilu performs a subset of the computations of mginit. In particular,
for a related family of matrices, one can save the level and fill-in structures (essen-
tially the contents of the ja array) and simply compute new numerical values for
matrix elements (the a array). One calls mginit for the first member of the family
of matrices and then mgilu for the remainder. For example, in a Newton iteration,
one might expect the changes in the Jacobian matrices to be sufficiently small that
the level and fill-in structures could be used for all (or perhaps just several) Newton
steps. Thus one would call mginit once to initialize the arrays and compute the
first set of matrices, and then call mgilu for all other matrices, which would then
reuse the level and fill-in structure from the call to mginit.

mgilu is called using the statement:

call mgilu( ja, a, lvl, ka )

A discussion of these parameters follows.

• ja is an array of integers, containing all the integer data structures for all
levels defined in Chapter 1. This should be the output from the original call
to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. On input, the head of a should contain the real data
structure corresponding the the linear system (1.1) to be solved.

• lvl is an integer, which contains the number of levels. This should be the
output from the original call to mginit.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the original call to mginit.

It is important to note that mginit reorders the original matrix stored in
the ja and a data structures. mgilu assumes that the new matrix provided in a
corresponds to this reordering. The inverse permutation array for the ordering can
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be found using the pointer iqptr = ka(9, 1). If p(i) is the permutation, and q(i) the
inverse permutation, then p(q(i)) = i, 1 ≤ i ≤ n.

As a convenience, we provide subroutine jamap0, which takes a pair (i, j) in
the original ordering and provides pointers to the locations of Aij and Aji in the
reordered data structures. jamap0 is called using the statement:

call jamap0( i, j, n, ispd, ij, ji, ja )

A discussion of these parameters follows.

• i and j are the indices for the desired matrix element, given in the original
ordering.

• n is an integer specifying the order of the system of equations.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used.

• On output, ij and ji are pointers to the a array where matrix entries Aij and
Aji, respectively, are stored. ij = ji if i = j or ispd = 1, and ij = ji = 0 if
entry (i, j) is not present in the data structure.

• ja is an array of integers, containing all the integer data structures for all
levels defined in Chapter 1. This should be the output from the original call
to mginit.

2.4 Subroutine mg.
Subroutine mg solves the linear system (1.1) using the output from mginit (or
mgilu). In the nonsymmetric case, subroutine mg can also solve problems of the
form

Atx = b. (2.1)

mg is called using the statement:

call mg( ispd, lvl, mxcg, eps1, ja, a, dr, br, ka, relerr, iflag, hist )

A discussion of these parameters follows.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used. ispd = −1 indicates that nonsymmetric storage is used and one
should solve (2.1).

• lvl is an integer specifying the number of levels. This should be the output
from the call to mginit.

• mxcg is an integer specifying the maximum number of CSCG iterations (ispd =
1) or CSBCG iterations (ispd 6= 1).
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• eps1 it the convergence tolerance. The iteration terminates when the residual
norm is reduced by a factor of eps1 or when mxcg iterations is achieved,
whichever occurs first.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

• dr is a real array of size n, which on output contains the solution of the linear
system.

• br is a real array of size n, which on input contains the right hand side of the
linear system.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.

• relerr is a real number which on output specifies the ratio of the norms of
initial and final residuals.

• if lag is an integer that on output contains the error flag. if lag = 0 signifies
no error; if lag = 12 indicates that the error tolerance eps1 was not reached
in mxcg iterations, but the iteration appeared to be converging. if lag = −12
indicates that the iteration appeared to diverge. hist is a real array of size
22, which collects data used by the graphics routine gphplt.

2.5 Subroutines cycle, mtxmlt and perm.
Subroutine cycle implements the V-cycle preconditioner, and is called as needed by
mg. It is documented separately here, as it can be used as a preconditioner in other
preconditioned iterative methods. cycle is called using the statement:

call cycle( ispd, lvl, ja, a, x, b, ka )

A discussion of these parameters follows.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric storage
is used. ispd = −1 indicates that nonsymmetric storage is used and one
should solve (2.1).

• lvl is an integer specifying the number of levels. This should be the output
from the call to mginit.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.
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• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

• x is a real array of size n, which on output contains the approximate solution
of the linear system.

• b is a real array of size n, which on input contains the right hand side of the
linear system.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.

Subroutine mtxmlt computes b = Ax or b = Atx. It is a companion routine
to cycle for use in a preconditioned iterative method. mtxmlt is called using the
statement:

call mtxmlt( n, ja, a, x, b, ispd )

A discussion of these parameters follows.

• n is an integer specifying the order of the system of equations.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

• x is a real array of size n, which on contains the input vector.

• b is a real array of size n, which on output contains Ax or Atx.

• ispd is an integer specifying the symmetry of the matrix. ispd = 1 indicates
that symmetric storage is used; ispd = 0 indicates that nonsymmetric stor-
age is used. In both cases b = Ax is computed. ispd = −1 indicates that
nonsymmetric storage is used and b = Atx is computed.

Both cycle and mtxmlt assume that all vectors are ordered according the
minimum degree ordering computed in mginit. If the input and output are provided
in the original ordering, then subroutine perm should be called as necessary to
reorder the data.

perm is called using the statement:

call perm( n, x, ja, isw )

A discussion of these parameters follows.

• n is an integer specifying the order of the system of equations.
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• x is a real array of size n, which contains the vector to be reordered.

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• isw is an integer switch. If isw = 1, the input is assumed to be in the original
order, and the output is reordered using the order generated in mginit. If
isw = −1, the input is assumed to be ordered using the order provided by
mginit and the output is restored to the original order.
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Chapter 3

Graphics

3.1 Overview.
The graphics tools associated with the multigraph package consist of subroutines
gphplt and mtxplt. These routines are written in self-contained, portable Fortran,
addressing the graphics output device through subroutines pline, pfill, pframe and
pltutl. The specifications for these routines are given in Section 3.4.

Subroutine gphplt displays various graphs and charts containing timings, con-
vergence histories, and other items of interest. Subroutine mtxplt displays sparse
matrices associated with the multigraph solver.

3.2 Subroutine gphplt.
gphplt is called using the statement

call gphplt( ip, rp, sp, hist, ka, time )

Subroutine gphplt uses three parameters specified in the ip array and one
parameter specified in the sp array.

• igrsw is an integer switch specifying the graphs to be drawn. The possibilities
are given in Table 3.1,

• gdevce is an integer switch specifying the graphics output device.

• mxcolr is an integer specifying the number of colors available; we assume
mxcolr ≥ 2.

• gtitle is an string specifying the title for the graph.

The case igrsw = 0 is probably the most useful. In the large frame, a con-
vergence history of the multigraph iteration is displayed; iteration number appears
on the x-axis, and log(relerr) appears on the y-axis. In one of the smaller frames,

15
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igrsw displayed graph
0 convergence history
1 storage profile
-1 timings
2 ip array
-2 rp array
3 ka array
-3 sp array

Table 3.1. The values of igrsw.

times for mginit and mg are displayed in a pie chart. In the other, storage statistics
for various matrices are displayed; log(n) for each level appears on the x-axis, and
the average number of nonzeros in ja, ju and jv for each level are displayed in
different colors on the y-axis. The cases igrsw = ±1 are permutations of the three
frames.

The case igrsw = 2 displays the ip array, an integer array of size 100 containing
global parameters used by the test driver program. The case igrsw = −2 displays
the rp array, a real array of size 100 containing global parameters used by the test
driver program. The case igrsw = −3 displays the sp array, a character*80 array
of size 100 containing global parameters used by the test driver program. Finally,
igrsw = 3 displays the sizes of all major arrays on all levels.

The remaining arguments are summarized by:

• hist is a real array of size 22, which contains the convergence history. It is
the output from subroutine mg.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.

• time is a real array of size 2, containing the execution times of mginit and
mg.

3.3 Subroutine mtxplt.
Subroutine mtxplt displays the sparsity structure of the stiffness matrix A, the
LDU factors from the ILU , or the error matrix E associated with an approximate
factorization. mtxplt is called using the statement

call mtxplt( ip, rp, sp, ja, a, ka )

Subroutine mtxplt uses several parameters specified in the ip and rp arrays
and one parameter specified in the sp array.

• imtxsw specifies the matrix to be displayed, as summarized in Table 3.2. If
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imtxsw > 0, the magnitude of matrix elements is displayed; if imtxsw < 0,
the (signed) value is displayed.

• mdevce is an integer switch specifying the graphics output device.

• mxcolr is an integer specifying the number of colors available; we assume
mxcolr ≥ 2.

• iscale in an integer that specifies the scaling to be used for the cases imtxsw =
±2,±4,±6 as summarized in Table 3.2.

• lines is an integer that specifies the line drawing option, as summarized in
Table 3.2.

• numbrs in an integer that specifies numbering options, as summarized in
Table 3.2.

• (mx,my,mz) are three integers specifying the viewing perspective.

• ncon is an integer specifying the number of colors in the cases cases imtxsw =
±2,±4,±6.

• level is an integer, 1 ≤ level ≤ lvl, specifying the level of the matrix to be
displayed. If level > lvl or level < 1, then lvl is used.

• (smin, smax) are real numbers that optionally specify lower and upper bounds
for the color range for the cases imtxsw = ±2,±4,±6. Matrix elements with
values falling outside the given range are colored white.

• rmag is a real number specifying the magnification factor.

• (cenx, ceny) are real numbers that specify the center of the picture when
rmag > 1.

• mtitle is an string specifying the title for the graph.

The remaining arguments are summarized by:

• ja is an array of integers, containing all the integer data structures for all levels
defined in Chapter 1. This should be the output from the call to mginit.

• a is an array of reals, containing all the real data structures for all levels
defined in Chapter 1. This should be the output from a call to mginit or
mgilu.

• ka is a 10×(lvl+1) integer array, which contains pointers as defined in Section
1.3. This should be the output from the call to mginit.
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imtxsw displayed matrix
±1 LDU colored by element type
±2 LDU colored by element size
±3 A colored by element type
±4 A colored by element size
±5 E colored by element type
±6 E colored by element size

iscale scale
0 linear
1 logarithmic

2 sinh−1

lines line drawing option
0 no lines
-2 matrix element boundaries

numbrs labeling option
0 no labels
-1 matrix element values
-2 matrix element locations

Table 3.2. The values of switches.

3.4 Graphics Interface.
The four device dependent routines in the graphics package are

subroutine pltutl( ncolor, red, green, blue )
subroutine pframe( list )
subroutine pline( x, y, z, n, icolor )
subroutine pfill( x, y, z, n, icolor )

Subroutine pltutl takes various actions depending on the value of the integer
ncolor. ncolor > 0 specifies initialization; ncolor denotes the number of colors
to be used and satisfies 2 ≤ ncolor ≤ mxcolr. red, green and blue are vectors of
length ncolor. The entries red(i), green(i), and blue(i), 1 ≤ i ≤ ncolor, are floating
point numbers on the interval [0, 1], corresponding to rgb values for the ith color.
Color number 1 is always white (red(1) = green(1) = blue(1) = 1.0), and color
number 2 is always black (red(2) = green(2) = blue(2) = 0.0). The rgb values of
the remaining entries depend on the picture to be drawn and the value of mxcolr.
pltutl should create a color map with the required colors, as these will be referenced
in future calls to pline and pfill. If pltutl is called with ncolor < 0, the drawing
is complete and any necessary postprocessing should be carried out (e.g., close the
plot file).

The drawing space used by the graphics routines is always assumed to be either
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the unit square (0, 1)× (0, 1) or the rectangle (0, 1.5)× (0, 1). For devices that have
a so-called z-buffer, the drawing space is either the unit cube (0, 1)× (0, 1)× (0, 1)
or the brick (0, 1.5) × (0, 1) × (0, 1). The graphics display itself is always viewed
as rectangular with aspect ratio 3/2, which is either a single rectangular frame or
three square frames. These frames are numbered 1 to 4 as illustrated in Figure
3.1. The graphics routines write their output to various lists. A list consists of
a frame, and certain attributes (rotating/non-rotating, lighted/non-lighted). Some
attributes may not have realizations for certain graphics devices. The nine available
lists are summarized in Table 3.3.

When graphics is initiated for a certain list, say list k, subroutine pframe(k)
is called to indicate that subsequent calls of pline and pfill contain data to be
written to list k. pframe(−k) indicates that the output to the given list should be
terminated. By convention, graphics routines are allowed only one open list at a
time. Therefore, when pframe is invoked with a positive argument, the given list
should be opened and the mapping from the unit cube or brick to the actual device
coordinates for the given list should be computed. If rotation or lighting attributes
are available, these should be set as specified in Table 3.3. When pframe is invoked
with a negative argument, the given list should be closed.

1 4

3

2

Figure 3.1. Frame definitions.

list frame rotating lighted
1 1 no no
2 2 no no
3 3 no no
4 4 no no
5 4 yes no
6 4 yes no
7 4 yes yes
8 4 yes yes
9 4 no yes

Table 3.3. list specifications for pframe.

Subroutine pline has arguments x, y, z, n, and icolor. x, y, and z are vectors
of length n ≥ 2. The points (x(i), y(i), z(i)) will lie in the unit cube or the brick
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(0, 1.5) × (0, 1) × (0, 1). The z coordinate is useful only for devices that have a
z-buffer, and can be ignored in other cases. icolor is an integer between 1 and
ncolor, where ncolor was the argument that initialized pltutl, indicating the color
to be used. pline should draw the given polyline (x(i), y(i), z(i)) to (x(i+ 1), y(i+
1), z(i+ 1)), 1 ≤ i ≤ n− 1, with the specified color in the proper frame.

Subroutine pfill has arguments x, y, z, n, and icolor. x, y, and z are vectors
of length n ≥ 3. The points (x(i), y(i), z(i)) will lie in the unit cube or the brick
(0, 1.5)× (0, 1)× (0, 1), and define an n-sided (planar) polygonal region with sides
(x(i), y(i), z(i)) to (x(i+1), y(i+1), z(i+1)) for 1 ≤ i ≤ n−1, and (x(n), y(n), z(n))
to (x(1), y(1), z(1)). icolor is an integer between 1 and ncolor, where ncolor was
the argument that initialized pltutl, indicating the color to be used. pfill should
color the specified polygon with the specified color in the proper frame.



Chapter 4

Test Driver

4.1 Overview.
Program atest is the test driver used in the development and testing of the multi-
graph solver. atest is a flexible program in that it accepts simple command strings
directing it to call subroutines or perform other tasks. It is not limited to a fixed
sequence of tasks on a particular run; any routine can be called as often as desired,
with certain parameters reset for each call at the discretion of the user.

The program atest can operate in three modes, governed by the switch mode.
If mode = −1, atest runs as an interactive program, accepting commands from
the user via a terminal window. If mode = 0, atest runs interactively, accepting
commands from the user via an X-windows interface. This interface is based on the
Motif widget set and can be used only in environments supporting X-windows.
Finally, if mode = 1, atest runs as a batch program, reading commands from a
journal file and sending all output to appropriate output files.

A common command syntax is used for all three modes. This is described first
for the case mode = −1 in Section 4.2. The extensions used in the X-windows
interface are described in Section 4.3.

Several files are written by atest. The file bfile contains a complete record
of all commands and printed output produced during the session. The file jwfile
contains a record of all commands read and processed during the session, formatted
as a journal file. See Section 4.8 for a discussion of journal files. atest sets the
default values bfile = output.out and jwfile = journl.jnl. atest also creates a
temporary file jtfile = jnltmp.jnl which it uses in connection with journal files.

4.2 Terminal Mode.
In terminal mode, commands are entered from a terminal window in character
strings of 80 characters, counting blanks. The syntax of a command can take
several forms, but the root command is always a single letter. The commands that
are currently recognized by atest are summarized in Table 4.1.

21
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Command Action
f call mginit
s call mg
g call gphplt
m call mtxplt
l create a linear system
r read data set from a file
j read journal file
q quit

Table 4.1. Available commands for atest.

The terminal window prompt is the string command:. At this prompt, one
can enter a command string (e.g., s), reset parameters as described below, or enter
a blank line to see a list of the available commands. In this latter case the terminal
window will appear as follows.

command:

factor f solve s gphplt g mtxplt m

linsys l read r journl j quit q

command:

A syntax error in a given command string causes the entire string to be ignored.
atest will display the string command error and present the command prompt for
a new input string.

The most simple commands are just single lower case letters as shown in
Table 4.1. However, associated with most commands are various parameters which
can be reset before calling the given routine. To see a listing of the parameters
associated with a given command and their current values, without executing the
command itself, enter the command in upper case at the command prompt. For
example, the command M will display the parameters which can be interactively
reset in connection with mtxplt.

command:M

imtxsw i 2 iscale s 0 lines l 0 numbrs n 0

mdevce d 3 mx mx 1 my my 1 mz mz 1

ncon c 11 level l 0 mxcolr mc 100 smin sn 0.0

smax sx 0.0 rmag m 1.0 cenx cx 0.5 ceny cy 0.5

mtitle t "mtxplt"

command:

These are eleven integer, five real, and one string parameters affecting sub-
routine mtxplt which can be interactively reset by the user. To the right of each
parameter is a one- or two-letter alias (to avoid typing long names), followed by the
current value.
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To reset some parameters associated with a command c (c = s, f, g, etc.),
without invoking the command itself, one can type a string of the form

command:C name1=value1, name2=value2, ... , namek=valuek

Note that the root command appears in upper case. The namek refer to variable
names or their aliases, and valuek refer to integer, real, or string values. Several
parameters can be reset, with different entries separated by commas. Values for
integer parameters should be integers, while values for real parameters can be spec-
ified using integer, fixed point, or exponential notation. There are three types of
string parameters: short, file, and long. Short and file strings contain no blank
characters, or special characters used by atest (”=,) and hence can be entered di-
rectly. Long strings, such a titles for graphics output, could have blanks and other
reserved characters and must appear within double quotes. Long string parame-
ters can contain any printable ascii characters (other than double quotes). Blank
spaces are ignored everywhere but within the value field of a long string parameter.
A syntax error in the input line (e.g., a misspelled variable name) causes the entire
command to be ignored and no variables to be reset. atest will respond command
error and then ask for the next command. For example, here we reset iscale = 1,
ncon = 20, cenx = .3, rmag = 10, and mtitle = A new title for mtxplt. Subroutine
mtxplt is not called, but the parameters are updated and redisplayed as

command:M s=1, ncon=20, cenx=.3, rmag=1.e1, t="A new title for mtxplt"

imtxsw i 2 iscale s 1 lines l 0 numbrs n 0

mdevce d 3 mx mx 1 my my 1 mz mz 1

ncon c 20 level l 0 mxcolr mc 100 smin sn 0.0

smax sx 0.0 rmag m 10.0 cenx cx 0.3 ceny cy 0.5

mtitle t "A new title for mtxplt"

command:

One can reset some parameters for a given command c, and then invoke the
command itself, using a string of the form

command:c name1=value1, name2=value2, ... , namek=valuek

Note that the only difference is that the root command now appears in lower case
rather than upper case. Thus

command:m s=1, ncon=20, cenx=.3, rmag=1.e1, t="A new title for mtxplt"

resets the indicated parameters as in the previous example. However, instead of
displaying the updated values, subroutine mtxplt is called.

Finally, the graphics commands (g and m) have a short form allowing one
crucial parameter (igrsw and imtxsw, respectively) to be reset without typing
even the alias. For example,

command:g0
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is the short form for

command:g igrsw=0

The short and long forms of these commands cannot be mixed. Thus

command:g0, gdevce=1

is not valid.

4.3 X-windows Mode.
When mode = 0, the driver atest creates an X-windows interface, The functional
capabilities are the same as for the terminal window mode, but the possibilities for
data entry are more varied. An example of the X-windows interface appears in
Figure 4.1.

Figure 4.1. The X-windows interface.

The main display contains three elements. The upper portion of the display
contains command buttons. Below the command buttons is a one line command
window. The bottom portion of the display is the history window. The interface
supports up to 10 graphics popup displays, based on the graphics interface defined
in Section 3.4.

The command buttons stand in one to one correspondence with the basic
atest command set shown in Table 4.1. In particular, clicking the left mouse button
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(button one) with the pointer over a command button is equivalent to the typed
lower-case version of that command. For example, clicking mouse button one on the
mtxplt command button causes subroutine mtxplt to be called as in the command
m. On the other hand, clicking on the right mouse button (button three) with
the pointer over a command button is equivalent to the upper case version of the
command. Clicking mouse button three on the mtxplt command button causes the
parameters for the mtxplt command to be displayed in a popup reset window, as
in the typed command M . This is shown is figure 4.2.

Figure 4.2. mtxplt reset window.

The parameters associated with a given command are displayed in the reset
window in a format similar to terminal mode. However, parameter values are dis-
played in one line text-editing windows, and can be reset by typing in the new value.
For some parameter names (e.g., imtxsw in Figure 4.2), the name has a raised but-
ton border. Clicking on the name causes a display of radio buttons, listing available
options for the given parameter, to popup. Clicking on the appropriate option
causes the parameter to be reset to the corresponding value. The radio button
popup associated with the parameter imtxsw appears in Figure 4.3.

For file selection commands (read and journl), the generic reset window is
replaced by the Motif file-selection widget. The file-selection popup for the read
command is shown in Figure 4.4.

The history window displays the contents of the output file, bfile, as it is
created. If the file becomes sufficiently large, only the tail of the file is displayed.

The X-windows driver also supports 10 graphics popup displays (numbered
0-9). The parameter ngraph, 0 ≤ ngraph ≤ 10, states the number of windows to
create initially. Graphics popups can be dismissed an recreated as necessary. These
windows use only X-windows primitives, and display static images which cannot
be manipulated (e.g. rotated) with the mouse. Graphics popups can be resized in
the usual way, but maintain a 3/2 aspect ratio. Also, any existing image is erased
upon resize, and must be redrawn.

When executing a journal file in X-windows mode, if a graphics command (g
or m) is executed, depending on the graphics device selected, atest can pause after
the picture is drawn, and create a small popup continue button. In this case, atest
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Figure 4.3. imtxsw popup.

Figure 4.4. read file selection popup.

waits until the user dismisses the continue popup before continuing to execute the
journal file. This allows time for the user to view the picture before processing the
next command in the journal file.

The X-windows display can be interactively resized in the usual way. How-
ever, atest will adjust the user-specified resizing such that an overall aspect ratio
of 3/2 is maintained. atest also imposes a minimum size requirement on the main
window.

The string parameters bgclr and btnbg allow the user to specify the background
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and button background colors for the main display. Motif automatically defines
the remaining colors used in the display. These parameters can be given any of the
named colors supported by X-windows.

Finally, we remark that the X-windows interface does not follow the pattern
of many X-windows programs, in that the multigraph solver was not integrated
into the X-windows system with the X-windows interface serving as the main
routine. Indeed, the X-windows interface is realized as a collection of C language
subroutines called by a Fortran driver. These routines use the same database of
Fortran character strings as the terminal window interface to define their displays,
and return command strings of the same type described in the terminal windows
interface. Both the X-windows interface and the terminal window interface are
quite generic, in that neither contains direct links to any of the main routines in the
package. Thus changes in the behavior the routines comprising the package have
no impact on the interface routines and at most modest impact on the database of
character strings that define the displays.

4.4 Batch Mode.
When mode = 1, the atest driver runs as a batch program. All commands are read
from the journal file specified in jrfile. One should choose appropriate graphics
output devices (e.g., PostScript or xpm files rather than X-windows displays)
to ensure that the program runs correctly.

4.5 Array Dimensions and Initialization.
atest has six labeled common blocks:

common /atest1/ip(100),rp(100),sp(100)

common /atest2/iu(100),ru(100),su(100)

common /atest3/mode,jnlsw,jnlr,jnlw,ibatch

common /atest4/jcmd,cmdtyp,list

common /atest5/idevce

common /atest6/nproc,myid,mpisw,mpiint,mpiflt

The functionality provided by blocks atest2, atest4 and atest6 is not used in
the current implementation of the multigraph solver, but is embedded in the generic
driver nonetheless.

The ip, rp, and sp and integer, real, and character*80 arrays of size 100
that contain various global parameters associated with the driver, subroutines mg,
mginit, gphplt mtxplt, etc. Their structure and current values can be displayed by
appropriate calls to gphplt.

The arrays iu, ru and su are analogous to ip, rp and sp and are provided
for user-defined variables used in usrcmd commands (no commands of this class
are used in the multigraph package). atest3 contains internal control parameters
used by atest; several have corresponding locations in the ip array, allowing the
user to specify defaults as necessary. atest4 contains a character*80 variable list, a
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character*6 variable cmdtyp and an integer jcmd, used for communication between
the main user interface routines and subroutine reset, part of the usrcmd.

The block atest5 has a single integer idevce, which specifies the current graph-
ics output device. Finally, atest6 contains five integer parameters relevant for an
mpi-based parallel computing environment.

The main program has a parameter statement where values of maxn, maxja,
maxa and lenw are defined. In turn, these parameters are used to allocate storage
for all the major arrays used by the package. maxn is the maximum order of linear
systems to be solved; maxja, maxa and lenw are the sizes of the matrix arrays ja,
a, and the work array w, respectively. Their sizes, relative to maxn are problem
dependent, and may need to be adjusted by the user in any particular case.

4.6 Matrix Files.
The read command (r) will read a file containing a data defining a matrix and right
hand side. Although it increases the file size, matrix files are ascii (as opposed
to binary formats such as xdr) to make them readable by humans. The required
format follows:

The first line of the file contains three integers: n, ispd and nblock, (in that
order). n ≥ 1 is the order of the system; ispd = 0, 1 specifies the symmetry
structure, and nblock ≥ 1 specifies the number of blocks. The next nblock+ 1 lines
each contain two integers and are of the form:

k ib(k)

defining the ib array. The next n lines each contain one integer and one real, and
are of the form:

k bk

defining the right hand side. The remaining lines all define matrix elements; each
consists of two integers and one real and are of the form:

i j Aij

The number of nonzeros is not directly specified; EOF (end-of-file) is treated as the
end of matrix elements. Diagonal matrix entries should be defined, even if they are
zero. If ispd = 1, then either aij or aji can be used to specify off-diagonal entries
(specifying both causes no problems, but increases the file size). Within each major
grouping (ib, right hand side, matrix) the entries can be specified in any order. All
lines are free format (blank characters are used to separate entries).

4.7 Matrix Generators.
The driver provides a few routines to generate families of matrices of varying orders,
for example to study the convergence of various multigraph strategies as a function
of n. At the moment, six different classes of matrices are available, each arising
from standard discretizations of simple PDE’s on uniform meshes. The mesh has
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ngrid mesh points in each space dimension. The parameter mtxtyp specifies the
matrix to be generated. A brief summary of each class follows:

• mtxtyp = 0 (star5): This is the usual 5-point star finite difference discretiza-
tion for −∆u on a uniform ngrid× ngrid square mesh. n = ngrid2; Aii = 4
for all diagonal entries, and Aij = −1 for all nonzero off-diagonal entries.

• mtxtyp = 1 (|star5|): This is the same as star5 except Aij = 1 for all nonzero
off-diagonal entries. This is not really a PDE discretization, but provides
a simple class of symmetric positive definite matrices which are NOT M-
matrices.

• mtxtyp = 2 (star7): This is the usual 7-point star finite difference discretiza-
tion for −∆u on a uniform ngrid× ngrid× ngrid cubic mesh in three space
dimensions. n = ngrid3; Aii = 6 for all diagonal entries, and Aij = −1 for all
nonzero off-diagonal entries.

• mtxtyp = 3 (stokes): This is the mini-element discretization, with static con-
densation of cubic bubble functions, for the Stokes equations on a uniform
ngrid×ngrid square mesh in two space dimensions. n = 3ngrid2. These ma-
trices are highly indefinite and correspond to stabilized saddle-point problems.
For this class, we choose nblock = 3, with the three blocks corresponding to
x-velocity, y-velocity, and pressure.

• mtxtyp = 4 (star9): This is the usual 9-point star finite element discretization
for −∆u on a uniform ngrid × ngrid square mesh. n = ngrid2; Aii = 8 for
all diagonal entries, and Aij = −1 for all nonzero off-diagonal entries.

• mtxtyp = 5 (|star9|): This is the same as star9 except Aij = 1 for all nonzero
off-diagonal entries. As with |star5|, this is not really a PDE discretization,
but provides a second simple class of symmetric positive definite matrices
which are not M-matrices.

4.8 Journal Files.
The j command causes atest to read its command strings from the file jrfile, rather
than accepting them interactively from the user. It is the only option available in
batch mode. A journal file is an ascii file containing a sequence of command
strings as described in Section 4.2. The symbol # appearing as the first character
in a line causes that line to be interpreted as a comment. When the end of the
file is reached atest returns to terminal or X-windows mode and again accepts
commands interactively. If a q command is encountered in a journal file, atest will
exit.

When reading a journal file in X-windows mode, if a graphics command (g
or m) is executed, for some devices atest will pause after the picture is drawn until
the continue popup is dismissed. This allows time for the user to view the picture
before proceeding to the next command in the journal file.
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4.9 Timing Routine.
The timing routine cputime is used to compute the execution times for subroutines
mginit and mg. If this routine is not available on a particular system, as suitable
substitute is generally available. cputime is called only from the main program, and
not from any internal subroutines.
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