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Abstract. In Part I of this work, we develop superconvergence estimates for piecewise linear fi-
nite element approximations on quasiuniform triangular meshes where most pairs of triangles sharing
a common edge form approximate parallelograms. In particular, we first show a superconvergence
of the gradient of the finite element solution uh and to the gradient of the interpolant uI . We
then analyze a postprocessing gradient recovery scheme, showing that Qh∇uh is a superconvergent
approximation to ∇u. Here Qh is the global L2 projection. In Part II, we analyze a superconver-
gent gradient recovery scheme for general unstructured, shape regular triangulations. This is the
foundation for an a posteriori error estimate and local error indicators.
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1. Introduction. The study of superconvergence and a posteriori error esti-
mates has been an area of active research; see the monographs by Verfürth [17], Chen
and Huang [8], Wahlbin [18], Lin and Yan [16], Babuška and Strouboulis [3], and a
recent article Lakhany, Marek and Whiteman [13] for overviews of the field. In this
two-part work we study some new superconvergence results. In Part I, we develop
some superconvergence results for finite element approximations of a general class of
elliptic partial differential equations, based mainly on the geometry of the underlying
triangular mesh. In Part II, we develop a gradient recovery techniques that can force
superconvergence on general shape regular meshes. Patch recovery techniques have
been studied by Zienkiewicz and Zhu and has itself evolved into an active subfield of
research [25, 14, 23, 24, 9, 22]. Although our algorithm in some respects resembles
this and other similar schemes [12, 19, 4, 6, 2, 10], it draws much of its motivation
from multilevel iterative methods.

Let Ω ⊂ IR2 be a bounded domain with Lipschitz boundary ∂Ω. For simplicity
of exposition, we assume that Ω is a polygon. We assume that Ω is partitioned by
a shape regular triangulation Th of mesh size h ∈ (0, 1). Let Vh ⊂ H1(Ω) be the
corresponding continuous piecewise linear finite element space associated with this
triangulation Th, and uh ∈ Vh be a finite elements approximation to a second order
elliptic boundary value problem.

Our development has three main steps. In the first step, we prove a supercon-
vergence result for |uh − uI |1,Ω, where uI is the piecewise linear interpolant for u. In
particular, we show in Theorem 3.1 that

|uh − uI |1,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω. (1.1)

Estimate (1.1) holds on quasi-uniform meshes, where an O(h2) approximate parallel-
ogram property is satisfied for pairs of adjacent triangles in most parts of Ω except
for a region of size O(h2σ)); see Section 2 for details.
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The estimate (1.1) is well-known in the literature for the special case σ = ∞,
namely the O(h2) approximate parallelogram property is satisfied for all pairs of
adjacent triangles and it is also known for cases when the O(h2) approximate par-
allelogram property is satisfied except for triangles along a few lines, see Xu [20]
and Lin and Xu [15] or except for triangles along the domain boundary, see Lin and
Yan [16], Hlavacek and Krizek [11]. Lakhany, Marek and Whiteman [13] consider a
less restrictive O(h1+α) approximate parallelogram property. Our new estimate (1.1)
is a significant generalization of these known results. First, our analysis is based on
local identities for each element that simplifies existing techniques. For example, our
result can be extended in a straightforward fashion to the mesh in which an O(h1+α)
(instead of O(h2)) approximate parallelogram property holds for most pairs of trian-
gles (see [13]). Second, the assumptions that we make are weaker than existing ones
and should hold for many practical grids for some σ > 0, although in some cases σ
could be very small.

One important case that our theory does not cover in this paper is locally refined
grids. Lakhany, Marek and Whiteman [13] has some results on this topic for piecewise
uniform grids (see also Lin and Xu [15]). Because of the local nature of our analysis,
our technique can be extended to this type of grid. We will report this type of
extension in future work.

Superconvergence results typically depend on delicate estimates involving cancel-
lation of the lowest order terms in some asymptotic expansion of the local error. When
one derives elementwise expressions using continuous finite element spaces, often one
encounters boundary integrals involving the normal component of the gradient of the
test function. Thus, although one can determine that some cancellation takes place
between certain error local components, it is difficult to combine elementwise state-
ments because the normal components of the gradient of vh ∈ Vh are discontinuous.
On the other hand, tangential components of ∇vh along element edges are continuous.
Thus our approach is to derive some expressions for the element error that involve
only the tangential derivative of the test function on the element boundary. The key
identity of this type is Lemma 2.3.

We also note that Lemma 2.3 is an identity rather than an estimate. Thus global
versions of this identity give exact characterizations of the the error for arbitrary
triangulations. In effect, one can see exactly cancellations that might occur even on
completely unstructured meshes. The O(h2) approximate parallelogram property can
be viewed in this context as one set of sufficient conditions for obtaining superconver-
gent bounds for those terms.

The techniques used in our analysis are related to but much more refined than
many existing superconvergence techniques in the literature such as those summarized
in [8, 16]. For example, the identity in Lemma 2.3 may be compared with the integral
identities for rectangular elements [16]. In fact it was not known how the integral
identities for rectangular elements in [16] could be generalized to triangular elements.
The Lemma 2.3 offers clues for such generalizations and more work can obviously be
done in this direction.

The second major component is a superconvergent approximation to ∇u. This
approximation is generated by a gradient recovery procedure. In particular, in Theo-
rem 4.2, we show

||∇u−Qh∇uh||0,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω. (1.2)

where Qh is the L2 projection. When the mesh does not satisfy the O(h2) parallel-
ogram property or σ becomes very close to zero, then the superconvergence demon-
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strated in (1.2) will be diminished. Intuitively, it appears that this is due mainly to
high frequency errors introduced by the small nonuniformities of the mesh. Preferen-
tially attenuating high frequency errors in mesh functions is of course a widely studied
problem in multilevel iterative methods. Our proposal here is to apply these ideas in
the present context. Thus, to enhance the superconvergence effect on general shape
regular meshes, we compute SmQh∇uh, where S is an appropriate multigrid-like
smoothing operator. In the second part of this manuscript [7], we analyze this proce-
dure and prove superconvergence estimates somewhat like (1.2) for ||u−SmQh∇uh||0,Ω.

In the third major component of our analysis, we use the recovered gradient to
develop an a posteriori error estimate. An obvious choice is to use (I−SmQh)∇uh to
approximate the true error ∇(u− uh). In [7], we show this is a good choice, and that
in many circumstances we can expect the error estimate to be asymptotically exact;
that is

lim
||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω

= 1.

as h→ 0 and m→∞ in an appropriate fashion.

We also use the recovered gradient to construct local approximations of interpo-
lation errors to be used as local error indicators for adaptive meshing algorithms; see
[7] for details.

We remark that both our gradient recovery scheme and our a posteriori error
estimate are largely independent of the details of the partial differential equation.
Indeed, all of the preliminary lemmas in Section 2 are also independent of the PDE.
The PDE directly enters only in the proof of Theorem 3.1, and there the properties
we assume are standard. This suggests that superconvergence can be expected for a
wide variety of problems, as long as the adaptive meshing yields smoothly varying,
shape regular meshes.

The rest of this paper is organized as follows: Section 2 contains technical iden-
tities and estimates that form the basis for the estimate (1.1). In Section 3, prove
(1.1) for a general linear elliptic boundary value problems under standard assump-
tions. We also explore an application to nonlinear elliptic problems. In Section 4 we
develop and analyze the superconvergent gradient recover scheme in the case of O(h2)
parallelogram meshes. In Section 5 we present a few numerical examples illustrating
the effectiveness of our procedures.

2. Preliminary Lemmas. We begin with some geometric identities for a canon-
ical element τ . Let τ have vertices ptk = (xk, yk), 1 ≤ k ≤ 3, oriented counterclock-
wise, and corresponding nodal basis functions (barycentric coordinates) {φk}3k=1. Let
{ek}3k=1 denote the edges of element τ , {θk}3k=1 the angles, {nk}3k=1 the unit outward
normal vectors, {tk}3k=1 the unit tangent vectors with counterclockwise orientation,
{`k}3k=1 the edge lengths, and {dk}3k=1 the perpendicular heights (see Fig.1). Let p̃
be the point of intersection for the perpendicular bisectors of the three sides of τ . Let
|sk| denote the distance between p̃ and side k. If τ has no obtuse angles, then the sk
will be nonnegative; otherwise, the distance to the side opposite the obtuse angle will
be negative.

There are many relationships among these quantities; in particular we note the
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Fig. 2.1. Parameters associated with the triangle τ

following, which hold for 1 ≤ k ≤ 3 and k ± 1 permuted cyclically:

`kdk = `k+1`k−1 sin θk = 2|τ |,
2`k+1`k−1 cos θk = `2k+1 + `2k−1 − `2k,
sin θk = nk−1 · tk+1 = −nk+1 · tk−1,

cos θk = −tk−1 · tk+1 = −nk−1 · nk+1,

∇φk = −nk/dk,

sk = −|τ | `k∇φk−1 · ∇φk+1 =
`k cos θk
2 sin θk

.

Let Dτ be a symmetric 2× 2 matrix with constant matrix entries. We define

ξk = −nk+1 · Dτnk−1.

The important special case Dτ = I corresponds to −∆, and in this case ξk = cos θk.
Let qk = φk+1φk−1 denote the quadratic bump function associated with edge ek and
let ψk = φk(1− φk). In Lemma 2.1, we collect several simple identities that are used
in the proof of Lemma 2.3.

Lemma 2.1.

sin θk∇u · Dτnk = ξk−1
∂u

∂tk−1
− ξk+1

∂u

∂tk+1
(2.1)

∂u

∂tk+1
= − cos θk−1

∂u

∂tk
− sin θk−1

∂u

∂nk
(2.2)

∂u

∂tk−1
= − cos θk+1

∂u

∂tk
+ sin θk+1

∂u

∂nk
(2.3)∫

τ

∂u

∂tk
= − sin θk+1

∫
ek−1

u+ sin θk−1

∫
ek+1

u (2.4)

sin θk

∫
ek−1

qk−1u =

∫
τ

ψk+1
∂u

∂tk+1
+ sin θk−1

∫
ek

qku (2.5)

sin θk

∫
ek+1

qk+1u = −
∫
τ

ψk−1
∂u

∂tk−1
+ sin θk+1

∫
ek

qku. (2.6)

Proof. We note that (2.1) is an immediate consequence of

Dτnk =
nk+1 · Dτnk
nk+1 · tk−1

tk−1 +
nk−1 · Dτnk
nk−1 · tk+1

tk+1 =
ξk−1

sin θk
tk−1 −

ξk+1

sin θk
tk+1.
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Proofs for (2.2)-(2.3) follow the same pattern. For (2.4), we note that from Green’s
Identity

∫
τ

∇u · tk =

3∑
j=1

nj · tk.
∫
ek

u.

For (2.5)-(2.6), we note that ψk is constant along lines parallel to ek, and ∂ψk/∂tk ≡ 0.
Thus

∂(ψku)

∂tk
= ψk

∂u

∂tk
.

Also, on edge ek we have qk = ψk+1 = ψk−1. Equations (2.5)-(2.6) follow from these
observations and (2.4).

Lemma 2.2. Let u ∈W 3,∞(Ω). Let uI and uq be the continuous piecewise linear
and piecewise quadratic interpolants, respectively, for u. Then∫

ek

(u− uI) =
`2k
2

∫
ek

qk
∂2u

∂t2
k

, (2.7)∫
τ

(u− uI) = − 1

24

∫
τ

3∑
k=1

`2k
∂2uq

∂t2
k

+

∫
τ

(u− uq). (2.8)

Proof. Identity (2.7) is equivalent to the following:

∫ b

a

u(s)ds− (b− a)

2
(u(a) + u(b)) =

1

2

∫ b

a

(s− a)(s− b)u′′(s)ds

which follows by an integration by parts. To show, (2.8), we note that uq − uI
is a piecewise quadratic polynomial that is zero at all of the vertices in the mesh,
and therefore can be expressed in terms of the quadratic bump functions. A simple
calculations shows in a given element τ

uq − uI =

3∑
k=1

`2kt
t
kMτ tk qk(x, y), (2.9)

where

Mτ = −1

2

(
∂11uq ∂12uq
∂21uq ∂22uq

)
. (2.10)

The matrix Mτ is constant since uq is quadratic. Let mk = (pk+1 + pk−1)/2 denote
the midpoint of the k-th edge. Then

ttkMτ tk
2

=
2u(mk)− u(pk+1)− u(pk−1)

`2k
.
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Identity (2.8) follows from∫
τ

(u− uI) =

∫
τ

(uq − uI) +

∫
τ

(u− uq)

= −1

2

3∑
k=1

`2k
∂2uq

∂t2
k

∫
τ

qk +

∫
τ

(u− uq)

= −|τ |
24

3∑
k=1

`2k
∂2uq

∂t2
k

+

∫
τ

(u− uq)

= − 1

24

∫
τ

3∑
k=1

`2k
∂2uq

∂t2
k

+

∫
τ

(u− uq).

The following is a fundamental identity in our analysis.
Lemma 2.3. Let Dτ be a 2× 2 symmetric matrix with constant entries. Then∫
τ

∇(u− uI) · Dτ∇vh =

3∑
k=1

∫
ek

ξkqk
2 sin θk

{
(`2k+1 − `2k−1)

∂2u

∂t2
k

+ 4|τ | ∂2u

∂tk∂nk

}
∂vh
∂tk

−
∫
τ

3∑
k=1

`kξk

2 sin2 θk

{
`k+1ψk−1

∂3u

∂2tk+1∂tk−1
+ `k−1ψk+1

∂3u

∂2tk−1∂tk+1

}
∂vh
∂tk

.

Proof. Using Lemmas 2.1-2.2, we have∫
τ

∇(u− uI) · Dτ∇vh =

3∑
k=1

∫
ek

(u− uI)∇vhvh · Dτnk

=

3∑
k=1

∫
ek

(u− uI)
{
ξk−1

sin θk

∂vh
∂tk−1

− ξk+1

sin θk

∂vh
∂tk+1

}

=

3∑
k=1

{
ξk

sin θk+1

∫
ek+1

(u− uI)
∂vh
∂tk

}
−

{
ξk

sin θk−1

∫
ek−1

(u− uI)
∂vh
∂tk

}

=

3∑
k=1

{
`2k+1ξk

2 sin θk+1

∫
ek+1

qk+1
∂2u

∂t2
k+1

∂vh
∂tk

}
−

{
`2k−1ξk

2 sin θk−1

∫
ek−1

qk−1
∂2u

∂t2
k−1

∂vh
∂tk

}

=

3∑
k=1

`kξk
2 sin θk

{
`k+1

∫
ek+1

qk+1
∂2u

∂t2
k+1

∂vh
∂tk
− `k−1

∫
ek−1

qk−1
∂2u

∂t2
k−1

∂vh
∂tk

}

=

3∑
k=1

ξk
2 sin θk

∫
ek

qk

{
`2k+1

∂2u

∂t2
k+1

− `2k−1

∂2u

∂t2
k−1

}
∂vh
∂tk

−
∫
τ

3∑
k=1

`kξk

2 sin2 θk

{
`k+1ψk−1

∂3u

∂tk−1∂t
2
k+1

+ `k−1ψk+1
∂3u

∂tk+1∂t
2
k−1

+

}
∂vh
∂tk

.

To complete the proof, we focus attention on the term

`2k+1

∂2u

∂t2
k+1

− `2k−1

∂2u

∂t2
k−1

.
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Using Lemma 2.1 once again, we have

∂2u

∂t2
k+1

= cos2 θk−1
∂2u

∂t2
k

+ 2 cos θk−1 sin θk−1
∂2u

∂tk∂nk
+ sin2 θk−1

∂2u

∂n2
k

,

∂2u

∂t2
k−1

= cos2 θk+1
∂2u

∂t2
k

− 2 cos θk+1 sin θk+1
∂2u

∂tk∂nk
+ sin2 θk+1

∂2u

∂n2
k

.

We also need the following identities:

`2k+1 sin2 θk−1 − `2k−1 sin2 θk+1 = 0,

`2k+1 cos2 θk−1 − `2k−1 cos2 θk+1 = `2k+1 − `2k−1,

`2k+12 cos θk−1 sin θk−1 + `2k−12 cos θk+1 sin θk+1 = 4|τ |.

Combining these equations leads to

`2k+1

∂2u

∂t2
k+1

− `2k−1

∂2u

∂t2
k−1

= (`2k+1 − `2k−1)
∂2u

∂t2
k

+ 4|τ | ∂2u

∂tk∂nk
,

completing the proof.
Let e be an interior edge in the triangulation Th. Let τ and τ ′ be the two

elements sharing e. We say that τ and τ ′ form an O(h2) approximate parallelogram
if the lengths of any two opposite edges differ only by O(h2). Let x be a vertex lying
on ∂Ω, and let e and e′ be the two boundary edges sharing x as an endpoint. Let
τ and τ ′ be the two elements having e and e′, respectively, as edges, and let t and
and t′ be the unit tangents. Take e and e′ as one pair of corresponding edges, and
make a clockwise traversal of ∂τ and ∂τ ′ to define two additional corresponding edge
pairs. In this case, we say that τ and τ ′ form an O(h2) approximate parallelogram if
|t− t′| = O(h), and the lengths of any two corresponding edges differ only by O(h2).

Definition 2.4. The triangulation Th is O(h2σ) irregular if:
1. Let E = E1⊕E2 denote the set of interior edges in Th. For each e ∈ E1, τ and

τ ′ form an O(h2) approximate parallelogram, while
∑
e∈E2 |τ |+ |τ

′| = O(h2σ).
2. Let P = P1⊕P2 denote the set of boundary vertices. The elements associated

with each x ∈ P1 form an O(h2) approximate parallelogram, and |P2| = κ,
where κ is fixed independent of h.

The boundary points P and the decomposition P = P1⊕P2 are used only in the
case of Neumann boundary conditions. Generally speaking, we expect P2 to consist
of the geometric corners of Ω and perhaps a few other isolated points.

We can now state our main Lemma.
Lemma 2.5. Let the triangulation Th be O(h2σ) irregular. Let Dτ be a piecewise

constant matrix function defined on Th, whose elements Dτij satisfy

|Dτij | . 1,

|Dτij −Dτ ′ij | . h,

for i = 1, 2, j = 1, 2. Here τ and τ ′ are a pair of triangles sharing a common edge.
Then ∣∣∣∣∣∑

τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh

∣∣∣∣∣ . h1+min(1,σ)| log h|1/2||u||3,∞,Ω|vh|1,Ω. (2.11)
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Proof. Applying Lemma 2.3∑
τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh = I1 + I2 (2.12)

where

I1 =
∑
τ∈Th

3∑
k=1

∫
ek

ξkqk
2 sin θk

{
(`2k+1 − `2k−1)

∂2u

∂t2
k

+ 4|τ | ∂2u

∂tk∂nk

}
∂vh
∂tk

I2 = −
∑
τ∈Th

∫
τ

3∑
k=1

`kξk

2 sin2 θk

{
`k+1ψk−1

∂3u

∂2tk+1∂tk−1
+ `k−1ψk+1

∂3u

∂2tk−1∂tk+1

}
∂vh
∂tk

I2 is easily estimated by

|I2| . h2||u||3,Ω|vh|1,Ω. (2.13)

To estimate I1, let E = E1 ⊕ E2 denote the set of interior edges. For each e ∈ E , let τ
and τ ′ share e as a common edge. Denote, with respect to τ ,

αe =
ξk

2 sin θk
(`2k+1 − `2k−1), βe =

ξk
2 sin θk

4|τ |,

and with respect to τ ′,

α′e =
ξk′

2 sin θk′
(`2k′+1 − `2k′−1), β′e =

ξk′

2 sin θk′
4|τ ′|.

Take n and t to correspond to τ . Then we can write

I1 = I11 + I12 + I13,

where

I1j =
∑
e∈Ej

∫
e

qe

{
(αe − α′e)

∂2u

∂t2 + (βe − β′e)
∂2u

∂t∂n

}
∂vh
∂t

for j = 1, 2, and

I13 =
∑
e⊂∂Ω

∫
e

qe

{
αe
∂2u

∂t2 + βe
∂2u

∂t∂n

}
∂vh
∂t

.

Using the elementary identity∣∣∣∣∫
e

f

∣∣∣∣ . h−1

∫
τ

|f |+
∫
τ

|∇f |,

we obtain (for z = t and z = n)∣∣∣∣∫
e

qe
∂2u

∂t∂z

∂vh
∂t

∣∣∣∣ . h−1

∫
τ

|∇2u||∇vh|+
∫
τ

|∇3u||∇vh|. (2.14)
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We can estimate this term in a slightly different way:∣∣∣∣∫
e

qe
∂2u

∂t∂z

∂vh
∂t

∣∣∣∣ . h−1|u|2,∞,Ω
∫
τ

|∇vh|. (2.15)

For e ∈ E1,

|αe − α′e| . h3,

|βe − β′e| . h3.

Combining this with (2.14), we have

|I11| . h2

∫
Ω

(|∇2u|+ h∇3u|)|∇vh| . h2||u||3,Ω|vh|1,Ω, (2.16)

or, by (2.15), we have

|I11| . h2|u|2,∞,Ω|vh|1,Ω.

Now we turn to the estimate for I12. For e ∈ E2, we simply estimate

|αe − α′e| ≤ |αe|+ |α′e| . h2,

|βe − β′e| ≤ |βe|+ |β′e| . h2.

Using (2.15), this leads to

|I12| . h1+σ|u|2,∞,Ω|vh|1,Ω.

We now consider I13. It is easy to see that, if vh = 0 on ∂Ω, then I13 = 0. In the
general case, we set

Be(u) = αe
∂2u

∂t2 + βe
∂2u

∂t∂n

and

Be(u) = |e|−1

∫
e

Be(u).

Then

I13 =
∑
e⊂∂Ω

∫
e

qeBe(u)
∂vh
∂t

=
∑
e⊂∂Ω

∫
e

qeBe(u)
∂vh
∂t

+
∑
e⊂∂Ω

∫
e

qe(Be(u)−Be(u))
∂vh
∂t

.

For the second term, we have∣∣∣∣∣ ∑
e⊂∂Ω

∫
e

qe(Be(u)−Be(u))
∂vh
∂t

∣∣∣∣∣ . h3|u|3,∞,Ω
∑
e⊂∂Ω

∫
e

∣∣∣∣∂vh∂t
∣∣∣∣

. h5/2|u|3,∞,Ω|vh|1,Ω.
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We now estimate the first term. Let P = P1 ⊕ P2 denote the set of vertices on ∂Ω.
Then we have ∑

e⊂∂Ω

∫
e

qeBe(u)
∂vh
∂t

=
∑
e⊂∂Ω

Be(u)
∂vh
∂t

∫
e

qe

=
∑
e⊂∂Ω

Be(u)
∂vh
∂t

|e|
6

=
1

6

∑
x∈P

(
Be(u)−Be′(u)

)
vh(x)

For x ∈ P1, we have

|αe − αe′ | . h3,

|βe − βe′ | . h3.

Thus ∣∣Be(u)−Be′(u)
∣∣ . h3|u|3,∞,Ω.

For x ∈ P2, we have∣∣Be(u)−Be′(u)
∣∣ ≤ ∣∣Be(u)

∣∣+
∣∣Be′(u)

∣∣ . h2|u|2,∞,Ω.

Combining these estimates, we have∣∣∣∣∣∑
x∈P

(
Be(u)−Be′(u)

)
vh(x)

∣∣∣∣∣ . h2 (|u|3,∞,Ω + κ|u|2,∞,Ω) ||vh||∞,∂Ω

. h2| log h|1/2||u||3,∞,Ω||vh||1,Ω.

In the last step, we used the well known Sobolev inequality

||vh||∞,Ω . | log h|1/2||vh||1,Ω.

||vh||1,Ω can be replaced by |vh|1,Ω by a standard argument. Thus our final estimate is

|I13| . h2| log h|1/2||u||3,∞,Ω|vh|1,Ω.

Consequently

|I1| . h1+min(1,σ)| log h|1/2||u||3,∞,Ω|vh|1,Ω. (2.17)

Combining (2.12) with (2.13) and (2.17), we obtain (2.11).

For pure Dirichlet boundary conditions, we have the following better estimate.
Corollary 2.6. Assume the conditions of Lemma 2.5, except the second part of

Definition 2.4 concerning regularity on the elements near the boundary. Then∣∣∣∣∣∑
τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh

∣∣∣∣∣
. h1+min(1,σ)(||u||3,Ω + ||u||2,∞,Ω)|vh|1,Ω, vh ∈ Vh ∩H1

0 (Ω).
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Proof. Use I13 = 0 in Lemma 2.5.
In the general case, without the second part of Definition 2.4, we have the slightly

weaker result.
Corollary 2.7. Assume the conditions of Lemma 2.5, except the second part of

Definition 2.4 concerning regularity on the elements near the boundary. Then∣∣∣∣∣∑
τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh

∣∣∣∣∣ . h1+min(1/2,σ)(||u||3,Ω + ||u||2,∞,Ω)|vh|1,Ω, vh ∈ Vh.

Proof. We always have the following estimate for I13.

|I13| . h3/2|u|2,∞,∂Ω|vh|1,Ω.

We conclude with a final technical result needed in Section 4.
Lemma 2.8. Let the triangulation Th be O(h2σ) irregular. Then∣∣∣∣∣∑

τ

∫
∂τ

3∑
k=1

`2k
∂2u

∂t2
k

vh · n

∣∣∣∣∣ . h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||0,Ω. (2.18)

Proof. Let e ≡ ek be an arbitrary edge of element τ . We begin with the identity

`2k
∂2u

∂t2
k

+ `2k+1

∂2u

∂t2
k+1

+ `2k−1

∂2u

∂t2
k−1

= (αe − δe)
∂2u

∂t2
k

+ βe
∂2u

∂tk∂nk
+ δe

∂2u

∂n2
k

,

where

αe = `2k + `2k+1 + `2k−1,

βe = (`2k+1 − `2k−1)4|τ |/`2k,
δe = 8|τ |2/`2k.

For e ∈ E , let τ and τ ′ share e as a common edge. Take n and t to correspond to τ .
Then we can write ∑

τ

∫
∂τ

3∑
k=1

`2k
∂2u

∂t2
k

vh · n = I1 + I2 + I3,

where

Ij =
∑
e∈Ej

∫
e

{
(αe − α′e)

∂2u

∂t2 + (βe − β′e)
∂2u

∂t∂n

}
vh · n

for j = 1, 2 and

I3 =
∑
e∈∂Ω

∫
e

{
(αe − δe)

∂2u

∂t2 + βe
∂2u

∂t∂n
+ δe

∂2u

∂n2

}
vh · n.

Following the pattern of proof in Lemma 2.5, we estimate

|I1| . h2||u||3,Ω||vh||0,Ω,
|I2| . h1+σ|u|2,∞,Ω||vh||0,Ω,

|I3| . h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||0,Ω.

(2.18) now follows directly from these estimates.
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3. Elliptic Boundary Value Problems. We consider the nonself-adjoint and
possibly indefinite problem: find u ∈ H1(Ω) such that

B(u, v) =

∫
Ω

(D∇u+ bu) · ∇v + cuv dx = f(v) (3.1)

for all v ∈ H1(Ω). Here D is a 2× 2 symmetric, positive definite matrix, b a vector,
and c a scalar, and f(·) is a linear functional. We assume all the coefficient functions
are smooth.

In order to insure that (3.1) has a unique solution, we assume the bilinear form
B(·, ·) satisfies the continuity condition

|B(φ, η)| ≤ ν ||φ||1,Ω||η||1,Ω (3.2)

for all φ, η ∈ H1(Ω). We also assume the inf-sup conditions

inf
φ∈H1

sup
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω
= sup
φ∈H1

inf
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω
≥ µ > 0, (3.3)

Let Vh ⊂ H1(Ω) be the space of continuous piecewise linear polynomials associ-
ated with the triangulation Th, and consider the approximate problem: find uh ∈ Vh
such that

B(uh, vh) = f(vh) (3.4)

for all vh ∈ Vh. To insure a unique solution for (3.4) we assume the the inf-sup
conditions

inf
φ∈Vh

sup
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω
= sup
φ∈Vh

inf
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω
≥ µ > 0, (3.5)

Xu and Zikatanov [21] have shown that under these assumptions,

||u− uh||1,Ω ≤
ν

µ
inf

vh∈Vh
||u− vh||1,Ω.

See also Babuška and Aziz [1].
We define the piecewise constant matrix function Dτ in terms of the diffusion

matrix D as follows:

Dτij =
1

|τ |

∫
τ

Dij dx.

Note that Dτ is symmetric and positive definite.
Theorem 3.1. Assume that the solution of (3.1) satisfies u ∈W 3,∞(Ω). Further,

assume the hypotheses of Lemma 2.5, with Dτ defined as above. Then

||uh − uI ||1,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

Proof. We begin with the identity

B(u−uI , vh) =
∑
τ∈Th

∫
τ

∇(u−uI) · Dτ∇vh dx+
∑
τ∈Th

∫
τ

∇(u−uI) · (D−Dτ )∇vh dx

+

∫
Ω

(u− uI)(b · ∇vh + cvh) dx = I1 + I2 + I3.
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The first term I1 is estimated using Lemma 2.5. I2 and I3 can be easily estimated by

|I2|+ |I3| . h2||u||2,Ω||vh||1,Ω.

Thus

|B(u− uI , vh)| . h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||1,Ω.

We complete the proof using the inf-sup condition in

µ||uh − uI ||1,Ω ≤ sup
vh∈Vh

B(uh − uI , vh)

||vh||1,Ω

= sup
vh∈Vh

B(u− uI , vh)

||vh||1,Ω
. h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

We now consider a more general nonlinear problem: find u ∈ H1(Ω) such that

B(u, v) = f(v) (3.6)

for all v ∈ H1(Ω). Here The form B(·, ·) is assumed to be linear in its second argument,
but nonlinear in its first. Once again, f(v) is a linear functional. Let uh be the finite
element approximation: find uh ∈ Vh such that

B(uh, vh) = f(vh) (3.7)

for all vh ∈ Vh. We assume that B(·, ·) is such that its linearization about u is a bilinear
form B(·, ·) as in (3.1), although the coefficient functions will now generally depend
on u. We assume that B(·, ·) satisfies the continuity and inf-sup conditions (3.2),
(3.3) and (3.5), so that both (3.6) and (3.7) have unique solutions. The linearization
process also satisfies

B(u, vh)− B(uh, vh) = B(u− uh, vh) +Q(u− uh, vh) = 0

for all vh ∈ Vh. The form Q(·, ·) contains higher order truncation terms in the
linearization process; as with B(·, ·), it is linear in its second argument. We assume

|Q(u− uh, vh)| . ||u− uh||21,Ω||vh||1,Ω. (3.8)

Theorem 3.2. Assume the hypotheses of Theorem 3.1 and (3.8). Then

||uh − uI ||1,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω + ||u− uh||21,Ω.

Proof. As in the proof of Theorem 3.1

µ||uh − uI ||1,Ω ≤ sup
vh∈Vh

B(uh − uI , vh)

||vh||1,Ω

≤ sup
vh∈Vh

B(u− uI , vh)

||vh||1,Ω
+
Q(u− uh, vh)

||vh||1,Ω
. h1+min(1,σ)| log h|1/2||u||3,∞,Ω + ||u− uh||21,Ω.

If ||u−uh||1,Ω is sufficiently small (e.g., ||u−uh||1,Ω ≤ C(u)h), then we will observe
superconvergence.
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4. A Gradient Recovery Algorithm for O(h2) Approximate Parallelo-
gram Meshes. In this section, we show that Qh∇uI can superconverge to ∇u for
meshes that are O(h2σ) irregular.

Theorem 4.1. Let u ∈ W 3,∞(Ω), and assume the hypotheses of Lemma 2.8.
Then

||∇u−Qh∇uI ||0,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

Proof. Given vh ∈ Vh × Vh, we have

(Qh∇(u−uI),vh) = (∇(u−uI),vh) = −((u−uI),∇·vh) +

∫
∂Ω

(u−uI)vh ·n (4.1)

We estimate the two terms on the right hand side of (4.1). First,∣∣∣∣∫
∂Ω

(u− uI)vh · n
∣∣∣∣ . h3/2|u|2,∞,Ω||vh||0,Ω.

For the other, we use Lemma 2.2 to get∫
τ

(u− uI)∇ · vh = − 1

24

∫
τ

3∑
k=1

`2k
∂2uq

∂t2
k

∇ · vh +

∫
τ

(u− uq)∇ · vh

= − 1

24

∫
τ

3∑
k=1

`2k
∂2u

∂t2
k

∇ · vh

− 1

24

∫
τ

3∑
k=1

`2k
∂2(uq − u)

∂t2
k

∇ · vh +

∫
τ

(u− uq)∇ · vh

= − 1

24

∫
∂τ

3∑
k=1

`2k
∂2u

∂t2
k

vh · n +
1

24

∫
τ

3∑
k=1

`2k∇
∂2u

∂t2
k

vh

− 1

24

∫
τ

3∑
k=1

`2k
∂2(uq − u)

∂t2
k

∇ · vh +

∫
τ

(u− uq)∇ · vh

= I1 + I2 + I3 + I4

Easy estimates show

|I3|+ |I4| . h3||u||3,τ |vh|1,τ . h2||u||3,τ ||vh||0,τ ,
|I2| . h2||u||3,τ ||vh||0,τ .

|I1| is estimated using Lemma 2.8. Consequently

|(Qh∇(u− uI),vh)| . h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||0,Ω.

Taking vh = Qh∇(u− uI), it follows that

||Qh∇(u− uI)||0,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

Theorem 4.1 now follows from the triangle inequality

||∇u−Qh∇uI ||0,Ω ≤ ||∇u−Qh∇u||0,Ω + ||Qh∇(u− uI)||0,Ω.
14



An immediate consequence of Theorems 3.1 and 4.1 is

Theorem 4.2. Let u ∈ W 3,∞(Ω), and assume the hypotheses of Theorems 3.1
and 4.1. Then

||∇u−Qh∇uh||0,Ω . h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

Proof. Using the triangle inequality

||∇u−Qh∇uh||0,Ω ≤ ||∇u−Qh∇uI ||0,Ω + ||Qh∇(uI − uh)||0,Ω
≤ ||∇u−Qh∇uI ||0,Ω + ||∇(uI − uh)||0,Ω. (4.2)

We estimate the two terms on the right hand side of (4.2) using Theorems 4.1 and
3.1.

Finally, we would like to point out that many results presented above (such as
Theorems 3.1, 3.2, 4.1 and 4.2) can be refined in many ways. Before the end of this
section, let us give one such a refinement for piecewise O(h2σ) irregular grid.

Definition 4.3. The triangulation Th is piecewise O(h2σ) irregular if Ω can be
written as a union of a bounded number of polygonal subdomains and Th is O(h2σ)
irregular on each of these subdomains.

By applying Lemma 2.5 on each subdomain, we can easily get the following result.

Theorem 4.4. Lemma 2.5, Lemma 2.8, Theorem 3.1, Theorem 3.2, Theorem
4.1 and Theorem 4.2 are all valid for piecewise O(h2σ) grids.

The above theorem is related to superconvergence results on piecewise regular (or
strongly regular) grid that were discussed in earlier literature, c.f. Xu [20] and Lin
and Xu [15]. The significance of such an extension will be discussed in the following
section.

5. Applications and Numerical Experiments. In this section, we develop a
few simple applications of our results, and present some numerical examples. The nu-
merical experiments were performed using the PLTMG package [5]. The experiments
were done on an Linux PC using double precision arithmetic and the g77 compiler.

We begin out discussion with a very simple example of piecewise uniform grids.
As shown in Figure 5.1, we began with a uniform 3×3 mesh with nt = 8 elements, and
computed a sequence of uniformly refined meshes through regular refinement of each
element of a given mesh into four similar triangles in the refined mesh by pairwise
connecting the midpoints.

This grid is O(h) irregular (σ = 1/2) by Definition 2.4 but piecewise O(h2σ) irreg-
ular with σ =∞ (namely piecewise regular) by Definition 4.3. Consequently, for this
example, the result claimed by Theorem 4.4 is O(h1/2) better than the corresponding
result from previous sections. In our first experiment, we consider the problem

−∆u+ u = f (5.1)

Ω = (0, 1)× (0, 1) with either Dirichlet or Neumann boundary conditions. The right
hand side f and the boundary conditions were chosen such that u = ex+y was the
exact solution. In this experiment, we begin with the uniform 3× 3 mesh with eight
triangles described above, and make seven levels of uniform regiment. The results are
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Fig. 5.1. A (globally) O(h2σ) irregular grid with σ = 1/2, but piecewise O(h2σ) irregular grid
with σ = ∞

reported in Table 5.1. In Table 5.1 and subsequent tables,

H1 = ||∇(u− uh)||0,Ω,

H̃1 = ||∇(uI − uh)||0,Ω,
H1 = ||∇u−Qh∇uh)||0,Ω,

where uI is the linear interpolant of u. In the last line, the order of convergence was
estimated from the reported data using a least squares technique.

Table 5.1
Results for square domain, uniform refinement.

Dirichlet Problem Neumann Problem

nt H1 H̃1 H1 H1 H̃1 H1

8 1.2e 0 2.7e-1 6.0e-1 9.5e-1 7.2e-1 6.7e-1
32 6.0e-1 8.1e-2 2.4e-1 5.5e-1 2.4e-1 3.0e-1

128 3.0e-1 2.3e-2 8.8e-2 2.9e-1 7.5e-2 1.1e-1
512 1.5e-1 6.1e-3 3.2e-2 1.5e-1 2.2e-2 3.7e-2

2048 7.5e-2 1.6e-3 1.1e-2 7.5e-2 6.1e-3 1.3e-2
8192 3.8e-2 4.4e-4 4.0e-3 3.8e-2 1.7e-3 4.3e-3

32768 1.9e-2 1.2e-4 1.4e-3 1.9e-2 4.5e-4 1.5e-3
131072 9.4e-3 3.0e-5 5.1e-4 9.4e-3 1.2e-4 5.2e-4

order 1.01 1.95 1.51 1.01 1.91 1.55

In Table 5.1, we see quite clearly the first order convergence of ||∇(u − uh)||0,Ω,
and the superconvergence of ||∇(uI − uh)||0,Ω. In the latter case, the rate is nearly
second order, which is consistent with Theorem 4.4. We also note superconvergence
of ||∇u − Qh∇uh)||0,Ω, with order close to 3/2. This perhaps is the result of most
practical significance.

We then repeated the experiment, replacing uniform refinement with the adaptive
refinement procedure in PLTMG. This adaptive refinement procedure is based on
longest-edge bisection, and also includes a mesh smoothing phase that allows the
vertices in the mesh to move. The result was a sequence of unstructured, nonuniform,
nonnested, shape regular meshes. The target values for the the adaptive procedure
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were selected to produce a sequence of meshes with approximately the same numbers
of elements as the uniform refinement case. The results are shown in Table 5.2.

For the adaptive meshes, the story is a quite different; ||∇(uI−uh)||0,Ω and ||∇u−
Qh∇uh)||0,Ω show less superconvergence In this case σ > 0, but it is clearly much
smaller than in the uniform refinement case. In Part II of this work [7], we show how
to obtain strong superconvergence for such meshes using SmQh∇uh as the recovered
gradient. Here S is a multigrid-like smoothing operator, and m is a small integer
(m = 1 or m = 2 is usually satisfactory). Analysis and a complete description are
deferred to Part II of this work.

Table 5.2
Results for square domain, adaptive refinement.

Dirichlet Problem Neumann Problem

nt H1 H̃1 H1 nt H1 H̃1 H1

8 1.2e 0 2.7e-1 6.0e-1 8 9.5e-1 7.2e-1 6.7e-1
34 5.8e-1 1.0e-1 2.3e-1 36 4.6e-1 2.7e-1 2.3e-1

136 2.2e-1 7.2e-2 7.7e-2 134 2.5e-1 9.3e-2 1.0e-1
528 1.2e-1 3.4e-2 3.8e-2 526 1.2e-1 4.0e-2 3.8e-2

2079 6.0e-2 1.7e-2 1.7e-2 2080 6.0e-2 1.8e-2 1.6e-2
8254 2.9e-2 6.9e-3 7.1e-3 8257 2.9e-2 7.9e-3 7.2e-3

32888 1.4e-2 3.2e-3 3.0e-3 32890 1.4e-2 3.7e-3 3.2e-3
131301 6.9e-3 1.5e-3 1.4e-3 131311 7.0e-3 1.8e-3 1.5e-3

order 1.05 1.10 1.17 1.04 1.11 1.13

In our second experiment, we solved (5.1) on a domain Ω in the shape of Lake
Superior. The true solution u in this case was chosen to be u = sinx sin y. In this
case, the initial mesh with nt = 2765 elements was unstructured and nonuniform,
but shape regular. This mesh is shown in Figure 5.2. As in the first example, we
first computed a sequence of uniformly refined meshes through regular refinement of
each element of a given mesh into four similar triangles. The results are shown in
Table 5.3.

Table 5.3
Lake Superior domain, uniform refinement.

Dirichlet Problem Neumann Problem

nt H1 H̃1 H1 H1 H̃1 H1

2765 9.2e-1 1.5e-1 2.5e-1 9.1e-1 1.6e-1 2.6e-1
11060 4.6e-1 4.5e-2 1.0e-1 4.6e-1 4.8e-2 1.0e-1
44240 2.3e-1 1.3e-2 3.5e-2 2.3e-1 1.4e-2 3.5e-2

176960 1.2e-1 3.6e-3 1.2e-2 1.2e-1 3.8e-3 1.2e-2
order 1.02 1.88 1.54 1.02 1.89 1.54

In Table 5.3, we see quite clearly the first order convergence of ||∇(u − uh)||0,Ω,
and the superconvergence of ||∇(uI − uh)||0,Ω. In the latter case, the rate is nearly
second order, which is again consistent with Theorem 4.4. Evidently, the many small
uniform patches were sufficient to produce a very strong superconvergence effect. We
also see superconvergence of Qh∇uh to ∇u, similar to the first example.

We then repeated the experiment, replacing uniform with adaptive refinement.
The target values for the the adaptive procedure once again were selected to produce a
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Fig. 5.2. Lake Superior mesh with nt = 2765. Elements are colored according to size.

Table 5.4
Lake Superior domain, adaptive refinement.

Dirichlet Problem Neumann Problem

nt H1 H̃1 H1 nt H1 H̃1 H1

2765 9.2e-1 1.5e-1 2.5e-1 2765 9.1e-1 1.6e-1 2.6e-1
11565 2.5e-1 4.0e-2 5.3e-2 11560 2.5e-1 4.3e-2 5.3e-2
45524 1.2e-1 1.8e-2 2.2e-2 45521 1.2e-1 1.9e-2 2.2e-2

179655 6.1e-2 8.3e-3 9.9e-3 179666 6.1e-2 8.7e-3 9.9e-3
order 1.12 1.22 1.32 1.12 1.26 1.32

sequence of meshes with approximately the same numbers of elements as the uniform
refinement case. The results are shown in Table 5.4.

The results here are qualitatively similar to the first example. We note in Table 5.4
slightly elevated estimates for the estimated order of convergence of ||∇(u − uh)||0,Ω.
This is an artifact of the least squares procedure. Notice that in the first adaptive
step, there was an unusually large decrease in ||∇(u− uh)||0,Ω. This was because the
initial nonuniform mesh was adapted mainly to the complex geometry of Ω and not
to the character of the solution. In subsequent adaptive refinement steps, the error is
rapidly approaching first order behavior. The orders for H1 and H1 are also slightly
elevated by unusually large decreases in the first adaptive step.
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