
A New Parallel Domain Decomposition Method for the Adaptive

Finite Element Solution of Elliptic Partial Differential Equations

Randolph E. Bank∗and Peter K. Jimack†

Abstract

We present a new domain decomposition algorithm for the parallel finite element solution
of elliptic partial differential equations. As with most parallel domain decomposition methods
each processor is assigned one or more subdomains and an iteration is devised which allows the
processors to solve their own subproblem(s) concurrently. The novel feature of this algorithm
however is that each of these subproblems is defined over the entire domain — although the vast
majority of the degrees of freedom for each subproblem are associated with a single subdomain
(owned by the corresponding processor). This ensures that a global mechanism is contained
within each of the subproblems tackled and so no separate coarse grid solve is required in order
to achieve rapid convergence of the overall iteration. Furthermore, by following the paradigm
introduced in [5], it is demonstrated that this domain decomposition solver may be coupled easily
with a conventional mesh refinement code, thus allowing the accuracy, reliability and efficiency
of mesh adaptivity to be utilized in a well load-balanced manner. Finally, numerical evidence is
presented which suggests that this technique has significant potential, both in terms of the rapid
convergence properties and the efficiency of the parallel implementation.

Key words. Partial differential equations, Parallel computing, Domain decomposition, Mesh adap-
tivity, Finite element method.

1 Introduction

Parallel algorithms for the efficient solution of elliptic partial differential equations (PDEs) have
developed significantly over the past fifteen years or so. The majority of these algorithms fall into
the general category of domain decomposition (DD) methods, about which there exists an extensive
body of literature (see for example [27] or previous proceedings in this series). In such methods
the domain must be divided into a number of subdomains (either overlapping or disjoint) and it is
necessary to solve a sequence of smaller problems on these subdomains in order to determine the
overall solution. The attraction of this approach for users of parallel computing systems comes when
the sequence is such that some of these smaller problems may be solved concurrently.

One of the simplest parallel DD algorithms is the additive version of the Schwartz alternating
method. Assuming that there is a one-to-one correspondence between processors and subdomains
this technique only requires data communication between processors owning neighbouring subdo-
mains. Its weakness however is that, as the underlying finite element (or finite difference) mesh is
refined, its rate of convergence deteriorates significantly. (This may be viewed in terms of a cor-
responding preconditioned system whose condition number increases rapidly with the number of
degrees of freedom in the mesh.)

∗Dept. of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA.
†School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK.

1

One approach to overcoming this weakness is to add some coarse mesh correction procedure
directly to the additive Schwartz method (e.g. [17, 35]). Such a mechanism for the global transport
of information appears to be essential for the quality of any algorithm not to deteriorate as the
underlying mesh is refined. In particular, it is also present in iterative substructuring methods
such as [11, 12, 13, 14, 18, 20, 24, 33]. For all of these algorithms the condition number of the
underlying preconditioned system increases only very slowly, if at all, as the mesh is refined. The
price that is paid for this improvement however is that the additional communication overhead and
load-balancing costs associated with the global mechanism are quite significant. This tends to make
efficient parallel implementations for irregular meshes (due to the use of adaptivity or the geometric
complexity of the domain for example) quite challenging.

A further development of the concept of a global or coarse mesh correction comes from the
use of multilevel methods (e.g. [15, 37]). In these algorithms the coarse mesh is itself only a little
coarser than the original mesh and is also partitioned by subdomain, so the coarse level correction
problem may also be solved by a domain decomposition method. When the same two-level method is
applied recursively to n levels using a nested sequence of meshes a (parallelizable) multilevel method
is obtained. This is one approach to obtaining a global correction in a naturally parallel manner
however it does tend to add further to the overall (global) communication overheads which now
build up at each level. Practical parallel implementation on locally refined unstructured meshes is
also far from straightforward.

In [36] Xu discusses how all of these DD techniques (and numerous others which are cited) relate
to more general subspace correction ideas (with parallel multigrid algorithms also being considered
in the same context). It may be observed that in all of the above approaches parallelism is achieved
through each processor working on its own subdomain with an additional global correction introduced
in some manner. The parallel algorithm that we introduce in this paper (motivated by the work
of [5, 30, 31]) is rather different however since each processor works over the entire domain. The
function spaces that each processor computes with are nevertheless very different from each other:
each having the vast majority of their degrees of freedom in the particular subdomain owned by that
processor. One way of viewing the proposed algorithm is therefore as a variation on the subspace
correction approach. In Section 2, where this algorithm is introduced in detail, we take a more
geometric view however and describe the method in terms of different finite element meshes and
their corresponding stiffness matrices. An empirical study of the convergence properties of the
algorithm is presented in Section 3. This is put forward as justification for the approach, along
with some further variants which are also described. Finally, in Section 4, the parallel efficiency of
our implementation is considered and a number of issues which warrant further investigation are
discussed.

2 The parallel algorithm

The parallel technique that we introduce in this section is designed to utilize standard sequential
adaptive mesh algorithms based upon local h-refinement, such as [4, 10, 16, 28, 34] (and many more),
with only minimal modifications. The initial implementation described here is for linear problems
in two space dimensions however we foresee no significant obstacles to extending the technique to
nonlinear problems (as in [4, 23] for example) or to three space dimensions (as in [10, 34]). In order
to simplify the description below it is convenient to make a small number of assumptions at this
point. These are considered further at the end of the section.

Assumption 2.1 Some local error estimator is available which, given a triangular element, is able

2

to return an estimate of the error on that element.

Assumption 2.2 The domain has been triangulated with a coarse mesh and this mesh has been
partitioned into p sub-meshes (where p represents the number of processors in use) which each have
an approximately equal total error (as defined by the above error estimator when applied to each
element of the coarse mesh). Furthermore, each processor holds a complete copy of this coarse mesh
and has a record of which subdomain (i.e. sub-mesh) each element of the coarse mesh belongs to.

Assumption 2.3 A sequential hierarchical refinement code is available for locally refining the coarse
mesh based upon local error estimates. At this stage only piecewise linear approximations will be
considered on the refined meshes and the location of each node will remain fixed once it has been
created (i.e. neither p-refinement (e.g. [1, 2]) nor r-refinement (e.g. [4, 16]) will be considered).

2.1 Introduction to the algorithm

In order to introduce the proposed algorithm it is simplest to consider the special case where p = 2.
Based on our assumptions above each coarse element may be refined locally on each processor until
the error in each leaf element satisfies some prescribed tolerance (or some maximum refinement
depth is reached). If, on processor i, this tolerance is chosen to be extremely large for each element
not belonging to subdomain i, then the final mesh on that processor will only be refined inside
subdomain i or immediately outside it. (Typical h-refinement codes only permit a difference of at
most one level of refinement between neighbouring elements in which case there may be a “safety
layer” of refinement on the outer border of subdomain i on processor i.) In fact, it is actually
convenient to extend this region of refinement on processor i by an extra “layer” of elements by
only setting an artificially high tolerance on elements not in subdomain i and which do not border
subdomain i. (Note that an element’s parent may border subdomain i without the element itself
being on the border. In this situation the element will be given a large error tolerance, even though
its parent was not, so as to prevent further local refinement.) Figure 1 illustrates this for the case
p = 2 on the domain (0, 1)× (0, 1) with one subdomain consisting of the region above the line y = x
and the other consisting of the region below this line.

We now define a global fine mesh as being the union from i = 1 to p of the fine mesh on subdomain
i created by processor i. To avoid complications at this point we make the following assumption
(which will also be considered further in Subsection 2.4 below).

Assumption 2.4 The union from i = 1 to p of the fine mesh on subdomain i created by processor
i is a conforming finite element mesh over the entire domain.

When solving a linear elliptic PDE such as

−∇ · (A∇u) + b · ∇u+ cu = f on Ω ⊂ <2 (2.1)

(where A is symmetric and strictly positive-definite, b may be 0 and c ≥ 0) subject to well-posed
boundary conditions (e.g. u|∂Ω = 0 for simplicity) using the Galerkin finite element method on the
global fine mesh one obtains a system of n linear algebraic equations of the form

∫
Ω

A∇(
n∑

j=1

ujαj)

 · ∇αi dx+

∫
Ω
b · ∇(

n∑
j=1

ujαj)αi dx+

∫
Ω
c(

n∑
j=1

ujαj)αi dx =

∫
Ω
fαi dx (2.2)

for i = 1, ..., n. Here n is the total number of vertices in the global fine mesh (excluding the Dirichlet
boundary), αj is the usual piecewise linear finite element basis function which has value 1 at vertex

3

Figure 1: A typical pair of locally refined meshes for two subdomains. In this small example the
coarse mesh contains 64 elements and at most three levels of refinement are permitted.

j of the mesh, and uj is the solution value at vertex j which is to be determined. It is conventional
to express these equations in matrix form as the n× n linear system

Ku = f , (2.3)

where the stiffness matrix K and the load vector f have entries given by

Kij =

∫
Ω

(∇αi · (A∇αj) + αi(b · ∇αj) + cαiαj) dx , (2.4)

fi =

∫
Ω
fαi dx . (2.5)

It is this sparse system that we wish to solve in parallel.

Suppose the vector, u, of unknown nodal values on the global fine mesh is written as uT =
(uT1 , u

T
2 , u

T
s) where u1 is the vector of unknowns strictly inside subdomain 1, u2 is the vector of un-

knowns strictly inside subdomain 2 and us is the vector of unknowns shared by the two subdomains.
The system (2.3) may be expressed in block matrix form as A1 0 B1

0 A2 B2

C1 C2 As

 u1

u2

us

 =

 f
1
f

2
f
s

 (2.6)

with the obvious block structure. Note however that it is also possible to apply the Galerkin finite
element method on the meshes generated by the two processors. On processor 1 this yields the
system A1 0 B1

0 Ã2 B̃2

C1 C̃2 As

 u1,1

u2,1

us,1

 =

 f
1

f̃
2
f
s

 (2.7)

4

whilst on processor 2 this yields the system Ã1 0 B̃1

0 A2 B2

C̃1 C2 As

 u1,2

u2,2

us,2

 =

 f̃
1
f

2
f
s

 . (2.8)

Note that the matrix blocks with a tilde over them are smaller than the corresponding blocks in
(2.6) since they correspond to the use of a coarser finite element mesh. The use of the additional
layer of refined leaf elements around the subdomains ensures that the block As appears in (2.7) and
(2.8) in its original form (i.e. as in (2.6)).

To obtain an approximate solution to the fine mesh problem (2.6) one may solve the two smaller
problems (2.7) and (2.8) concurrently and then set u

(1)
1

u
(1)
2

u
(1)
s

 =

 u1,1

u2,2
1
2(us,1 + us,2)

 . (2.9)

Note that a communication between the two processors is required in order to evaluate the average
1
2(us,1 + us,2).

Having obtained this approximation to the solution the corresponding residual may now be
calculated using the identity

r(1) =

 r
(1)
1

r
(1)
2

r
(1)
s

 =

 f
1
f

2
f
s

−
 A1 0 B1

0 A2 B2

C1 C2 As

 u

(1)
1

u
(1)
2

u
(1)
s

 . (2.10)

This may also be achieved in parallel since

r
(1)
1 = f

1
−A1u

(1)
1 −B1u

(1)
s (2.11)

for which all necessary data is present on processor 1, and

r
(1)
2 = f

2
−A2u

(1)
2 −B2u

(1)
s (2.12)

for which all necessary data is present on processor 2. Also,

r(1)
s = f

s
−

2∑
i=1

(
Ciu

(1)
i −As(i)u

(1)
s

)
(2.13)

where As(i) is the contribution to As which is obtained by restricting integration to subdomain i
only. (This may be assembled at no extra computational cost at the same time that As is being
assembled on processor i.) Note that although each term in the sum may be computed concurrently
by each of the processors a further communication is required to add these two contributions. In
general this residual will be non-zero and so it is necessary to form a fixed point iteration based
upon solution of the error equation:

Ke(k) = r(k) (2.14)

u(k+1) = u(k) + e(k) . (2.15)

The algorithm for this fixed point iteration is shown in Figure 2. Note that it is necessary to restrict

r
(k)
1 to the coarse mesh covering subdomain 1 on processor 2 and r

(k)
2 to the coarse mesh covering

subdomain 2 on processor 1. This is done using the rectangular matrices M1 and M2 respectively,
which make use of the hierarchical data structure which is present by Assumption 2.3. These matrices
are discussed further over the next two subsections.

5

1/. Initialise: k = 0

u
(0)
1 = 0; u

(0)
2 = 0; u

(0)
s = 0

r
(0)
1 = f

1
; r

(0)
2 = f

2
; r

(0)
s = f

s

2/. Repeat

2.1

 A1 0 B1

0 Ã2 B̃2

C1 C̃2 As

 z1,1

z2,1

zs,1

 =

 r
(k)
1

M2r
(k)
2

r
(k)
s

2.2

 Ã1 0 B̃1

0 A2 B2

C̃1 C2 As

 z1,2

z2,2

zs,2

 =

 M1r
(k)
1

r
(k)
2

r
(k)
s

2.3

 z1

z2

zs

 =

 z1,1

z2,2
1
2(zs,1 + zs,2)

2.4

 u
(k+1)
1

u
(k+1)
2

u
(k+1)
s

 =

 u
(k)
1

u
(k)
2

u
(k)
s

+

 z1

z2

zs

2.5

 r
(k+1)
1

r
(k+1)
2

r
(k+1)
s

 =

 f
1
f

2
f
s

−
 A1 0 B1

0 A2 B2

C1 C2 As

 u

(k+1)
1

u
(k+1)
2

u
(k+1)
s

2.6 k += 1

Until ‖r(k)‖ ≤ TOL

Figure 2: An algebraic description of the 2 subdomain version of the fixed point iteration for the
solution of (2.3) (which may be partitioned as (2.6)).

2.2 Generalization of the algorithm

Having introduced the fixed point iteration for p = 2 it is now possible to generalize this to arbitrary
choices of p. The mesh generation and matrix assembly on each processor are unaltered, and we
will again work with Assumption 2.4 for the time-being. Hence we may define a global fine mesh as
before and the corresponding Galerkin finite element equations, (2.3), may be partitioned as

 Ai 0 Bi

0 Āi B̄i

Ci C̄i Ai,s

 ui

ūi
ui,s

 =

 f
i
f̄
i

f
i,s

 (2.16)

for any choice of i ∈ {1, ..., p}. Here ui is a vector of fine mesh nodal values inside subdomain i, ūi is
a vector of fine mesh nodal values outside subdomain i and ui,s are the remaining fine mesh nodal
values, on the interface of subdomain i. The rest of the partition into blocks follows from this.

As with the case p = 2 it is only possible to fully assemble the finite element equations for the

6

meshes actually generated on each processor. For processor i these may be written as Ai 0 Bi

0 Ãi B̃i

Ci C̃i Ai,s

 ui

ũi
ui,s

 =

 f
i

f̃
i

f
i,s

 , (2.17)

where the tilde above a block again indicates that it is smaller than the corresponding block in (2.16)
due to the use of a coarser finite element mesh. Now, by introducing the restriction operator Mi, from
the part of the global fine mesh outside subdomain i to the coarser mesh covering the same region
on processor i, the overall fixed point iteration shown in Figure 2 may be generalized to p processors.
This is done in Figure 3. Note that in this figure Ai,s(i) and f

i,s(i)
represent the contributions to Ai,s

and f
i,s

respectively obtained by restricting integration to subdomain i only. Since the latter terms

are typically assembled from each element in turn there is no additional computational overhead
associated with accumulating the partial assemblies Ai,s(i) and f

i,s(i)
as well.

2.3 Parallel implementation issues

The algorithm of Figure 3 has been developed with a distributed memory programming model in
mind and a straightforward parallel implementation may be obtained with calls to only a small num-
ber of communication subprograms (using the Message Passing Interface (MPI), [29], for example).
In this subsection we discuss the main features of such an implementation, making frequent reference
to the steps enumerated in Figure 3 and Assumptions 2.1 to 2.4 (which are discussed and justified
in Subsection 2.4 below).

Step 1 is the parallel mesh generation phase. By Assumption 2.1 there exists some error indicator
upon which to base the local refinement of each mesh (which may be undertaken independently on
each processor by Assumption 2.3), and by Assumption 2.2 we may reasonably expect that the
meshes generated will all have a similar number of elements (since the error per element will be
approximately equal to some fixed target value and the total error per subdomain is approximately
equal). If Assumption 2.4 is also valid then no inter-processor communication at all is required in
the parallel generation of these matching, load-balanced meshes. Again we emphasize that, as in
Figure 1, although each mesh covers the entire domain the vast majority of the nodes and elements
are located in and around subdomain i.

The assembly of the finite element equations (Step 2) may clearly be completed in parallel without
the need for inter-processor communication since each processor works only with its own mesh. In
practice the stiffness matrix should be stored using a sparse data structure (as in [7] for example),
with only a small amount of additional memory required for the separate storage of Ai,s(i) and f

i,s(i)
.

In our implementation we also compute a sparse incomplete LU factorization of the stiffness matrix
on each processor at this stage, to be used as a preconditioner in the iterative solution of the system
at Step 4.1. This too may be completed independently on each processor using standard sequential
algorithms (e.g. [8, 9]).

The initialization of Step 3 also requires no inter-processor communication. It should be noted

that initialization of ũ
(0)
i and r̃

(0)
i is not strictly necessary in the version of the algorithm given in

Figure 3 since they are not used in subsequent steps. A slight modification of the algorithm however

would be to use r̃
(0)
i instead of Mir̄

(0)
i at the first pass of Step 4.1 in order to avoid some global

communication (see below). This corresponds to solving (2.17) on each processor at the first pass of
Step 4.1.

7

1/. Generate the mesh for processor i

2/. Assemble the FE equations (2.17) (saving Ai,s(i) and f
i,s(i)

separately for later use)

3/. Initialise: k = 0

u
(0)
i = 0; ũ

(0)
i = 0; u

(0)
i,s = 0

r
(0)
i = f

i
; r̃

(0)
i = f̃

i
; r

(0)
i,s = f

i,s

4/. Repeat

4.1

 Ai 0 Bi

0 Ãi B̃i

Ci C̃i Ai,s

 zi

z̃i
zi,s

 =

r

(k)
i

Mir̄
(k)
i

r
(k)
i,s

4.2 Let each entry of zi,s be averaged over all corresponding entries found on

neighbouring processors

4.3 u
(k+1)
i = u

(k)
i + zi; u

(k+1)
i,s = u

(k)
i,s + zi,s

4.4 r
(k+1)
i = f

i
−Aiu

(k+1)
i −Biu

(k+1)
i,s ; r

(k+1)
i,s = f

i,s(i)
− Ciu

(k+1)
i −Ai,s(i)u

(k+1)
i,s

4.5 Let each entry of r
(k+1)
i,s be summed over all corresponding entries found on

neighbouring processors

4.6 k += 1

Until ‖r(k)‖ ≤ TOL

Figure 3: An algebraic description of the algorithm to be followed by processor i (from 1 to p) in the
p subdomain version of the fixed point iteration for the solution of (2.3) (which may be partitioned
as (2.16)).

Step 4.1 is the most complex step of the algorithm from a parallel programming point of view.
Obtaining the right-hand side of the linear system requires global (all-to-all) communication between
the processors and consequently needs to be implemented as efficiently as possible. Due to the
importance of this implementation we postpone a detailed description until the end of this discussion
of the overall algorithm. Once the right-hand side of each linear system has been obtained on
each processor however the systems may clearly be solved independently using standard sequential
algorithms. Since the stiffness matrices are sparse it is appropriate to use an iterative solver for these
equations (e.g. [3]), possibly with an ILU factorization (computed at Step 2) as a preconditioner,
and so the issue of convergence needs to be considered. Experiments suggest that a fairly large
convergence tolerance is optimal (see Section 4 for further details).

The next step, 4.2, also requires inter-processor communication, but only locally between pro-
cessors owning neighbouring subdomains (i.e. subdomains which share one or more vertex). Each
processor sends to each of its neighbours a list of those entries of zi,s which correspond to vertices

8

shared with that neighbour. Such a list is also received from each neighbour and each item of data
is added to the corresponding entry in zi,s. To obtain an average, each entry in zi,s is divided by
a positive integer, mi,s(j) say, where mi,s(j) is equal to the number of subdomains which share the
vertex corresponding to the jth entry of zi,s on processor i. Note that mi,s(j) can be computed after
Step 1 of the algorithm without any inter-processor communication since, for 2-d meshes, mi,s(j) = 2
for any node on the boundary of subdomain i which is not in the original coarse mesh and, by As-
sumption 2.2, the value of mi,s(j) may easily be determined for any node present in the original
coarse mesh.

Steps 4.3 and 4.4 are clearly local operations on each processor and Step 4.5 may be completed
using the same local communication routines required for Step 4.2. (It should be noted that this
neighbour-to-neighbour communication pattern occurs in most distributed memory parallel finite
element codes (e.g. [20, 24]) and so is well-understood.)

The final step of the algorithm in Figure 3 is the test for convergence. This too requires a (small)
global communication, as well as a synchronization. In our implementation we use the 2-norm of
the residual and make use of the MPI Allreduce subprogram. Each processor first accumulates

‖ri‖22 +

dim(ri,s)∑
j=1

(ri,s)
2
j

mi,s(j)
(2.18)

(where (ri,s)j is the jth entry of ri,s for j = 1 to dim(ri,s)), and then the global sum is taken in order
to determine the square of the 2-norm of the residual on the global fine mesh.

For the rest of this section we return to the formation of the right-hand side vector in Step 4.1
of the algorithm. Once the issues associated with the accumulation of this vector on each processor
have been satisfactorily resolved the detailed discussion of the parallel implementation issues will be
complete.

In order to form Mir̄
(k)
i , processor i needs to know the restriction of (r

(k)
j , r

(k)
j,s) to the part of

mesh i which covers subdomain j (for j = 1 to p but j 6= i). By calculating this restriction on
processor j and then sending it on to processor i the length of the message that must be sent from
j to i is equal to the number of vertices in mesh i which lie in subdomain j or on its boundary.
Note that as the global fine mesh is refined this length does not increase very significantly (if at
all) since it depends mainly on the size of the coarse starting mesh in subdomain j (plus a small
amount of additional refinement on part of the edge of subdomain j if j is a neighbour of i). Hence
the major programming issue that must be resolved is that of how processor j is able to calculate

the restriction of (r
(k)
j , r

(k)
j,s) to the part of mesh i which covers subdomain j. Once this is done,

assembly of the right-hand side of the system in Step 4.1 may be completed on processor i as soon

as it has received a contribution to the restriction Mir̄
(k)
i from each of the other processors. (Note

that processor j must use the value of r
(k)
j,s calculated at Step 4.4, not 4.5, when performing this

restriction since nodes on the interface with other processors will be counted more than once.)

For processor j to restrict (r
(k)
j , r

(k)
j,s) to the part of mesh i which covers subdomain j this part

of mesh i must be communicated to processor j in a pre-processing step. This may occur any time
after the completion Step 1 of the algorithm (and simultaneously with Step 2 if desired). Once j
has received this mesh from i it must identify which of the vertices of its own mesh correspond to
the vertices received (by Assumptions 2.3 and 2.4 each vertex received must match the location of a
vertex that has been generated on processor j). A naive way of implementing this process for each
vertex received would be to search through each vertex in mesh j which lies in subdomain j, or on
its boundary, until the location matches that of the received vertex. This would be very inefficient

9

as the global fine mesh is refined however since one would be searching through nearly all of the
nodes on mesh j. By including a node level field in the hierarchical mesh data structure however this
search may be trimmed significantly since a node generated at level m of the hierarchical refinement
need only be compared against nodes of the same level on processor j. Further efficiency gains may
be obtained for the larger values of m by searching through the nodes on j which are closest to
the boundary with i first. Once this matching process is complete for each vertex received from
processor i, the hierarchical data structure on processor j may be used to calculate the restriction

of (r
(k)
j , r

(k)
j,s) onto mesh i at each iteration.

2.4 Discussion

We conclude this section with a brief discussion of the underlying Assumptions (2.1 to 2.4) that have
been made in order to justify the parallel algorithm that we have introduced. A numerical study
of the performance of the algorithm is postponed until Sections 3 and 4, where it is respectively
demonstrated that the technique appears to show good conditioning properties when the global finite
element mesh is uniformly refined and that an efficient parallel implementation may be achieved.

The main motivations for the DD method proposed here come from the full domain parallel
multigrid approach of [30, 31] and the parallel adaptive meshing paradigm of [5]. This latter approach
to undertaking parallel adaptive finite element computations addresses the load-balancing problem in
a new way, requiring less communication than existing techniques, and also allows existing adaptive
PDE codes, such as [4, 16, 34], to run in a parallel environment with only a small amount of recoding.
There are three main components.

1. The solution of the small finite element system that is obtained by approximating the problem
of interest on a coarse initial mesh, followed by the use of a posteriori error estimates to
partition the mesh. This partition is undertaken such that each subregion has about the same
total approximate error, and so the size of these subregions could vary considerably in terms
of numbers of coarse elements or grid points.

2. Each processor is provided the complete coarse mesh and instructed to sequentially solve the
entire problem, with the stipulation that its adaptive refinement should be limited largely to
its own subdomain. The target number of elements and grid points for each problem is the
same.

3. A final mesh is made up of the union of the refined subdomains provided by each processor.
This mesh is regularized and a final solution computed, using a parallel domain decomposition
or multigrid technique.

This approach has a number of interesting features, such as the reduction of the load-balancing
problem to the numerical solution of a small elliptic problem on a single processor for example
(but see also Section 4 below), and is justified in detail in [5]. In particular however the new
parallel DD method outlined in this section is ideally suited for the computation of the final, global,
solution required by component 3 above. Moreover, by following this approach each of the first three
Assumptions (2.1 to 2.3) will be automatically satisfied.

In order to satisfy Assumption 2.4 it is proposed in [5] that a conforming global fine mesh be
made from each of the subdomains through the use of local communication between processors
owning neighbouring subdomains, followed by a small amount of additional local refinement where
necessary. An alternative to this comes from the observation that, in the algorithm used in this
paper, the small overlap in the regions that are refined by each processor means that it is quite

10

unusual for Assumption 2.4 not to be satisfied automatically (given a reliable error indicator and
in the absence of r-refinement). Hence, only if a match cannot be found for a boundary node
when completing the pre-processing required for the computations of the right-hand sides in Step
4.1, should any further mesh modification be undertaken. This will save unnecessary neighbour-
to-neighbour communications. If one wishes to make use of local node movement (r-refinement) to
improve mesh quality (as in [4, 16] for example) then this may be undertaken in parallel after the
pre-processing for Step 4.1 has been completed. We have yet to investigate such an approach in
detail however.

3 Convergence and acceleration

The parallel DD solver introduced in the previous section is designed to make use of standard
sequential algorithms and software as much as possible. This includes code for adaptive meshing,
finite element assembly, solution of sparse systems and a posteriori error estimation. In this section
we justify the algorithm both through an empirical study of its convergence properties and by
considering convergence acceleration using Krylov subspace techniques. Some related mathematical
theory is also discussed as a means of further justification.

3.1 Convergence of the algorithm

We consider the algorithm outlined in Figure 3 when applied to two simple test problems.

Problem 1

−∇ · (∇u) = f .

Problem 2

−∇ · (∇u) +

[
1
1

]
· ∇u = f .

In each case the domain Ω = (0, 1)×(0, 1) and Dirichlet boundary conditions are applied throughout
∂Ω. These are chosen, along with the source term f , so that the exact solution is given by

u(x) = (x1 −
1

2
)2(x2 −

1

2
)2 . (3.1)

Table 1 shows the performance of the algorithm when TOL = 10−6‖r(0)‖2 and the systems
encountered at step 4.1 in Figure 3 are solved exactly at each iteration. For each calculation a
coarse mesh of just 64 elements has been used and the global fine meshes contain between 1024 and
1048576 elements (representing between 2 and 7 levels of uniform refinement respectively of the coarse
mesh). Between 2 and 32 subdomains have been considered (corresponding to the use of between
2 and 32 processors in a parallel implementation — although discussion of parallel performance is
postponed until Section 4).

It is apparent from the results contained in Table 1 that the fixed point iteration proposed
converges very rapidly and (for these examples at least) in a manner which is independent of the
size (h say) of the fine mesh. Moreover, the algorithm performs just as well on the non-self-adjoint

11

Problem 1 Problem 2
Elements/Procs. 2 4 8 16 32 2 4 8 16 32

1024 3 4 4 4 4 3 4 4 4 5
4096 3 4 4 5 4 3 4 5 5 5
16384 3 4 4 5 5 3 4 5 5 5
65536 3 3 4 5 5 3 4 5 5 5
262144 3 3 4 5 5 3 4 5 5 5
1048576 3 3 4 5 5 3 4 5 5 5

Table 1: The performance of the proposed algorithm on two test problems: figures quoted represent
the number of iterations required to reduce the initial residual by a factor of 106.

problem (Problem 2) as on the self-adjoint one; at least in this case, where the convection term
does not dominate. It would also appear that the rate of convergence of the algorithm is only very
weakly dependent upon p, if at all. This observation, along with the apparent independence from the
mesh size, h, leads one to suspect connections between this approach and that of optimal additive
Schwartz algorithms (see, for example, [17, 22, 35, 36]). This connection is discussed in Subsection
3.3 below.

3.2 Acceleration of convergence

The use of Krylov subspace methods ([3, 21]) to accelerate the convergence of fixed point iterations,
such as that proposed in Figure 3, is quite standard. In this subsection we propose using a parallel
GMRES ([32]) algorithm to solve (2.3) (partitioned as in (2.17) on each processor still) using steps
4.1 to 4.2 of Figure 3 as a preconditioner. This requires only very minor modification to the parallel
code described in the previous section: and, in particular, the data structures and partition of the
data are identical. (Furthermore, the code for the parallel matrix-vector products (step 4.4) and the
parallel inner products (2.18) in the fixed point algorithm is directly re-used in the generalization to
preconditioned GMRES.)

The performance of the fixed point algorithm is very good when it is applied to Problems 1 and
2 (see Table 1). Hence, the application of the corresponding preconditioned GMRES algorithm to
these two problems gives results that are very similar: with iteration counts being either one fewer or
exactly the same for each computation. A more demanding test problem is the following anisotropic
diffusion equation.

Problem 3

−∇ ·
([

100 0
0 1

]
∇u
)

= f .

Once more the domain is Ω = (0, 1)× (0, 1), Dirichlet boundary conditions are applied throughout
∂Ω and f is chosen so as to give the exact solution (3.1).

Table 2 shows the number of iterations required for both the original and the accelerated versions
of the algorithm to solve this example on various meshes with different numbers of subdomains.
Again, a convergence tolerance of 10−6‖r(0)‖2 is used and the subproblems at step 4.1 in Figure
3 are solved exactly at each iteration. The cost of a single iteration is almost identical for both
versions of the algorithm.

12

Original Precon. GMRES
Elements/Procs. 2 4 8 16 32 2 4 8 16 32

1024 5 6 11 11 11 5 6 7 8 9
4096 7 7 10 11 12 5 6 8 9 10
16384 8 8 11 16 14 6 7 9 11 11
65536 9 8 12 24 17 6 7 9 12 12
262144 10 9 14 32 20 6 7 10 12 13
1048576 10 9 14 39 23 6 8 10 13 14

Table 2: The performance of the original and the preconditioned GMRES versions of the proposed
algorithm on Problem 3: figures quoted represent the number of iterations required to reduce the
initial residual by a factor of 106.

It is now less apparent that the fixed point algorithm has a performance (in terms of the iteration
count) that is independent of the fine mesh size h. For small values of p (2, 4 and 8) the number
of iterations appears to have stopped growing between the 6th and 7th refinements, however this
is not yet apparent when p = 16 or 32. Also, for this anisotropic example, the performance of the
fixed point algorithm appears to be much more sensitive to the number of subdomains than for the
isotropic diffusion example (Problem 1). Figure 4 shows the partition of the coarse mesh into 16 and
32 subdomains respectively and, for this particular example, it appears that the latter is a better
partition than the former. Other partitions into 16 subdomains are possible of course and it is to
be expected that the rate of convergence when solving highly anisotropic problems such as this will
depend upon the precise decomposition that is used. This fact has been noted in the context of
more conventional domain decomposition solvers by Keyes et al., [26], for example who suggest that
in order to achieve petaflops computing “partitioning... must adapt to coefficients (grid spacing and
flow magnitude and direction) for convergence rate improvement”. This important issue of how to
obtain the most appropriate partitions of a mesh is beyond the scope of this paper however.

Figure 4: The partition of a 64 element coarse mesh into 16 and 32 subdomains.

Use of the preconditioned GMRES version of the algorithm is clearly seen, from Table 2, to be
considerably superior to the original fixed point scheme described in Section 2. In all but the most

13

trivial cases, where the iteration count is unaltered, the GMRES solver requires substantially fewer
iterations when used to solve Problem 3 (with an almost identical cost per iteration). Even more
significantly however, the rate of increase in the number of iterations appears to be substantially
slower as the mesh size, h, is decreased. In fact, it again appears to be the case that the convergence
rate may well be independent of h as h→ 0.

The dependence of the convergence rate on p, the number of subdomains, is harder to speculate
on from this single example however. This is due, at least in part, to the dependence upon the
shape of the subdomains mentioned above. Nevertheless, it does appear that the preconditioned
GMRES approach is more robust in the sense that the performance seems to be less affected by the
apparently poor quality of the partition when p = 16 than the original fixed point iteration.

3.3 Comparison with analytic results

We have now presented a new parallel domain decomposition algorithm that is applicable to the
wide class of PDE (2.1). Furthermore, the empirical evidence presented in the preceding subsections
suggests that the performance of this algorithm as a GMRES preconditioner is nearly optimal. To
see why this may be the case it is informative to contrast the proposed technique with more classical
DD solvers. To this end, for the remainder of this subsection we restrict our consideration to the
particular case where b = 0 in (2.1), whereupon the equation is self-adjoint. In this situation it
follows that the stiffness matrix (K in (2.3)), given by (2.4), is symmetric and positive-definite
(SPD). It is therefore possible to solve (2.3) using the preconditioned conjugate gradient (PCG)
algorithm which is more efficient than GMRES in the sense that the search vectors which span the
Krylov subspace at each iteration are defined via a two-term recurrence relation (as opposed to a
k-term recurrence at iteration k with GMRES).

It is important to note however that in order to solve a SPD system using the PCG algorithm
the preconditioner must itself be a SPD matrix. This is not the case for the preconditioner proposed
in Subsection 3.2 however, even when b = 0. To illustrate this one need only consider the simplest
case of p = 2 where the preconditioner, M say, is given by

M−1 =

 I
0
1
2I

 A1 0 B1

0 Ã2 B̃2

BT
1 B̃T

2 As

−1 I

M2

I

+

 0
I
1
2I

 Ã1 0 B̃1

0 A2 B2

B̃T
1 BT

2 As

−1 M1

I
I

 . (3.2)

Note that in (3.2) the symmetry of K when b = 0 implies that

C1 = BT
1

C̃1 = B̃T
1

C2 = BT
2

C̃2 = B̃T
2

in the notation of Figure 2. Despite this fact it is clear from (3.2) that M is not generally a symmetric
matrix and cannot therefore be used as a preconditioner in the PCG algorithm. Hence, even when
b = 0, the preconditioner proposed in Subsection 3.2 should always be used with a GMRES (or
similar) solver. At first sight this may appear to be a drawback; however the results presented below
(in Table 3) suggest that this is not the case.

In [6], an analysis is presented of a symmetric version of the preconditioner proposed here given

14

by, in the case p = 2 (for simplicity of presentation),

M−1 =

 I
M2

I

T A1 0 B1

0 Ã2 B̃2

BT
1 B̃T

2 As

−1 I

M2

I

+

 M1

I
I

T Ã1 0 B̃1

0 A2 B2

B̃T
1 BT

2 As

−1 M1

I
I

 . (3.3)

The results of this analysis show that the preconditioner is optimal in the sense that the number of
PCG iterations required to solve (2.3) (with b = 0 and c = 0 in (2.4)) is independent of both h (as
h→ 0) and p (as p→∞). Table 3 shows the performance of this symmetric preconditioner on the
two diffusion examples above: Problem 1 and Problem 3. We refer to this as the additive Schwartz
variant of our proposed algorithm.

Problem 1 Problem 3
Elements/Procs. 2 4 8 16 32 2 4 8 16 32

1024 7(3) 9(3) 13(4) 16(4) 18(4) 8(5) 12(6) 17(7) 21(8) 24(9)
4096 7(3) 9(3) 14(4) 16(4) 22(4) 9(5) 13(6) 17(8) 21(9) 27(10)
16384 7(3) 8(3) 13(4) 16(4) 21(5) 9(6) 14(7) 17(9) 23(11) 27(11)
65536 6(3) 8(3) 12(4) 15(4) 21(5) 9(6) 14(7) 18(9) 25(12) 28(12)
262144 6(3) 8(3) 12(4) 15(4) 19(5) 8(6) 14(7) 18(10) 25(12) 29(13)
1048576 6(3) 7(3) 11(4) 14(4) 19(5) 8(6) 13(8) 18(10) 24(13) 29(14)

Table 3: The performance of the Additive Schwartz variant of the proposed algorithm on two self-
adjoint test problems: figures quoted represent the number of iterations required to reduce the
2-norm of the initial residual by a factor of 106 (and figures in brackets are the equivalent number
of GMRES iterations when using the preconditioner of Subsection 3.2).

The independence of the number of iterations from h as h → 0 can clearly be seen in Table 3
however the lack of dependency on p is not so apparent for the relatively small values used here.
Comparison with the number of GMRES iterations required to solve the same problems using (3.2)
(and its generalizations to p = 4, 8, 16 and 32) clearly shows the advantage of the latter approach,
despite the slightly increased cost at each iteration. Furthermore, the analytical results in [6], which
apply to the additive Schwartz variant of the algorithm, might reasonably be used to provide some
(although certainly not rigorous) theoretical basis for the parallel DD solver introduced here.

4 Parallel performance

In this section we attempt to assess the parallel performance of the proposed domain decomposition
preconditioner by considering a specific implementation of the preconditioned GMRES algorithm
using MPI (message passing interface [29]). We begin with a short introduction and then focus on
two representative test problems: one which uses uniform mesh refinement and the other using local
mesh refinement. All calculations reported took place on a 32 processor SG Origin 2000 computer
which has a NUMA (non-uniform memory access) virtual shared memory architecture. The non-
uniform nature of the memory access means that, even when there are no other users on the machine,
timings of the same run may vary by a few percent according to how memory has been allocated.
For this reason, all timings quoted in the section represent the best time that was achieved over five
consecutive repetitions of the same computation (always in single-user mode).

15

4.1 Assessing parallel performance

One of the simplest metrics for assessing the quality of a parallel program is to consider the speedup
that it provides when solving a single problem on p processors. Here, speedup is defined to be the
time required to solve the problem using the best available algorithm (and implementation) on a
single processor divided by the time required to solve the problem using the parallel algorithm on p
processors. This is the metric that we use in this section.

In order to apply this metric it is first necessary to establish the best available sequential solver
for the problems that we consider here. This is of course a highly non-trivial issue and the best
sequential algorithm could well vary from one problem to another within the wide class of PDEs
defined by equation (2.1). It is likely however that for many such PDEs the best sequential algorithm
will be based upon multigrid in some way and so we have used as our benchmark sequential code a
generalized conjugate gradient solver with a multilevel ILU preconditioner similar to that described
in [9]. This sequential solver is the same one that is used for the sparse linear systems that must be
solved on each processor at step 4.1 of the parallel algorithm given in Figure 3 and contains a number
of parameters to control the amount of fill-in (via a drop tolerance) and the maximum number of
hierarchical levels permitted. Whenever a sequential time is quoted it is the best time that we were
able to obtain for a range of different choices of these parameters. Similarly, for the parallel timings
a range of choices for these parameters were also considered in order to permit the best times to be
recorded.

A further issue that must be addressed when obtaining parallel results is the accuracy to which it
is necessary to solve the systems at step 4.1 in Figure 3. If these systems are solved very accurately
then unnecessary time is wasted; however highly inaccurate solutions lead to the number of GMRES
iterations increasing significantly. Generally, a reduction in the 2-norm of the residual by a factor
of 102 appears to give optimal or near-optimal solution times however, in the timings which follow,
the figures quoted are always the best ones obtained over a range of different test values for the
reduction in the 2-norm of the residual.

In addition to comparing the parallel solution time on p processors with the best sequential
solution time it is also informative to compare with the time taken by a sequential version of the
p-subdomain preconditioned GMRES solver. Whilst this does not provide a true speedup figure
it does demonstrate clearly the level of parallelism achieved by the p-subdomain solver (we will
refer to this figure as the parallel speedup). Moreover, it also allows one to assess the quality of the
p-subdomain preconditioner itself by comparing this sequential time with that obtained for other
choices of p (and by comparing with the best sequential time). In some cases it may be seen that the
sequential time using p subdomains is greater than the sequential time using q subdomains, where q
is some integer multiple of p. In such situations it may be possible to obtain a better parallel time on
p processors by using the q subdomain version of the algorithm and so we define the optimal speedup
to be the speedup ratio corresponding to the best parallel time on p processors using q subdomains
(where q may be any integer multiple of p between p and 32 inclusive).

4.2 An example with uniform mesh refinement

For this first assessment of the parallel performance of our proposed domain decomposition precon-
ditioner we return to Problem 2, defined in subsection 3.1. This is solved on a mesh of 1048576
triangular elements which is a uniform refinement of an initial coarse grid of 256 congruent triangu-
lar elements. (Note that the choice of 256 elements in the coarse mesh (rather than 64 say) makes
little difference to the quality of the preconditioner but does allow more flexibility when selecting a
partition into p subdomains.)

16

Table 4 shows the time taken by the best sequential algorithm and the sequential times taken for
the p-subdomain preconditioned GMRES algorithm for p = 2, 4, 8, 16 and 32. The parallel times are
then given, followed by the speedups achieved. The following two rows show the parallel speedup
and the optimal speedup respectively (as defined in the subsection above).

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

Sequential time 234.4 351.0 301.2 271.0 262.6 238.2
Parallel time — 191.0 83.1 42.9 20.6 10.7
Speedup — 1.2 2.8 5.5 11.4 21.9
Parallel speedup — 1.8 3.6 6.3 12.7 22.3
Optimal speedup — 1.4 2.8 5.7 11.4 21.9

Table 4: Solution times (in seconds) and speedups for the proposed algorithm on the uniform mesh
refinement example.

4.3 An example with local mesh refinement

For our second assessment of parallel performance we consider a fourth PDE of the form (2.1) which
has been selected because the accurate and efficient finite element solution requires the use of local
mesh refinement. This PDE takes the same form as Problem 1 from Subsection 3.1 however f(x) is
now chosen such that the exact solution is given by

u = (1− (2x1 − 1)100)(1− (2x2 − 1)100) ∀x ∈ Ω = (0, 1)× (0, 1) . (4.1)

This has a value of 1 in the interior of Ω but tends to 0 very rapidly in a thin layer near to the
boundary: allowing the Dirichlet condition u = 0 to be satisfied throughout ∂Ω.

Structured initial grid

Again a coarse mesh of 256 congruent triangular elements was used when solving this problem on
2, 4, 8, 16 and 32 processors. The final mesh for this problem is obtained via local refinement (up to
eight levels) based upon the interpolation error in the known solution and contains 760628 elements
(most of which are situated in the boundary layer). Figure 5 illustrates this mesh (with a maximum
of just three levels of refinement). The subdomains are created by partitioning the coarse mesh
in such a way that the final number of elements in each subdomain is similar, which means that
there are differing numbers of coarse elements in each subdomain for the cases p = 8, 16 or 32. The
partitions into 2 and 4 subdomains are easily achieved using the symmetries of the problem and the
mesh: again see Figure 5.

Table 5 shows the results of the same set of timings that were used for the previous test problem.
This includes both sequential and parallel solution times as well as a range of speedup metrics for
p = 2, 4, 8, 16 and 32.

Unstructured initial grid

We now compute solutions to the same problem based upon the local refinement of the unstructured
initial grid of 560 elements illustrated in Figure 6. Once more a maximum of eight levels of refinement
are permitted, yielding a final mesh containing 828430 elements. This is also partitioned so as to

17

Figure 5: The final fine mesh using at most three level of refinement (left) and the corresponding
mesh on one processor when p = 4 (right) for the first local mesh refinement example with a 256
element structured coarse mesh.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

Sequential time 73.4 99.5 92.8 84.7 88.9 91.1
Parallel time — 54.1 25.6 12.0 6.8 5.3
Speedup — 1.4 2.9 6.1 10.8 13.8
Parallel speedup — 1.8 3.6 7.1 13.1 17.2
Optimal speedup — 1.5 3.1 6.1 10.8 13.8

Table 5: Solution times (in seconds) and speedups for the proposed algorithm on the first local mesh
refinement example.

ensure that the final number of elements in each subdomain is similar: although this is a harder
problem than for the structured initial grid (see Figure 6 for an example when p = 4). Table 6 shows
the corresponding timings and speedups for this set of computations.

4.4 Discussion

The parallel results presented in this section are representative figures which provide evidence that
the proposed algorithm provides a simple and practical means of obtaining good speedup ratios on a
moderate number of parallel processors. Tables 4 to 6 clearly demonstrate that the sequential version
of this domain decomposition preconditioner is competitive with our best available sequential solver
and also that the parallel implementation can scale well to provide a useful parallel solver.

Closer inspection of this parallel solver reveals that the major contribution to the loss of efficiency
that does occur is through inexact load-balancing in the preconditioning step. This can arise for two
main reasons. The most obvious cause is any lack of equality in the size of the fine mesh on each
subdomain. Clearly if one subdomain has a mesh with many more elements than the others they
will spend a significant amount of idle time waiting for that processor at each synchronization point
(e.g. each inner product in the GMRES algorithm). Such a situation arises when partitioning the

18

Figure 6: The initial 560 element unstructured mesh (left) and the resulting final mesh on one
processor (with at most three levels of refinement) when p = 4 (right).

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

Sequential time 103.3 128.6 120.4 122.3 122.0 124.9
Parallel time — 69.0 32.8 17.4 11.3 8.0
Speedup — 1.5 3.1 5.9 9.1 13.0
Parallel speedup — 1.9 3.7 7.0 10.8 15.6
Optimal speedup — 1.6 3.1 5.9 9.1 13.0

Table 6: Solution times (in seconds) and speedups for the proposed algorithm on the second local
mesh refinement example.

coarse mesh for the two non-uniform local refinement examples described in the previous subsection.
Table 7 illustrates this by showing the maximum, minimum and average number of elements in the
meshes created by each processor in the cases where p = 2, 4, 8, 16 and 32. Note that the cases where
there is a large relative difference between the average and the maximum number of elements on
each processor (over 10% for example) clearly correspond to those calculations in Tables 5 and 6
which yield the poorest parallel efficiencies (i.e. parallel speedup divided by p).

The second reason for inexact load-balancing in the preconditioner stems from the fact that
the systems being solved on each processor (i.e. the systems in step 4.1 of Figure 3) are different,
even when they are of the same size. These differences can lead to significant variations in the
time required to solve the systems when a sparse iterative (or direct) solver is used. For example,
the iterative solver that we use requires a multilevel ILU decomposition to be computed and, for
a given drop tolerance, the size of this decomposition depends not only on the size and sparsity of
the original system, but also on the actual values of the non-zero entries of the sparse matrix. This
makes guaranteeing a well load-balanced preconditioner (especially on an unstructured or locally
refined grid) a very challenging task.

The final point that we mention in this section concerns a further cause of inefficiency in the
parallel solver. This relates to the differences between the best sequential solution times and the
sequential solution times when using the p-subdomain preconditioner. When these differences are

19

256 element structured coarse grid
p = 2 p = 4 p = 8 p = 16 p = 32

Maximum 381918 191826 98422 50344 28329
Minimum 381918 191826 94837 46789 22692
Average 381918 191826 96638.5 49031.75 25461.375

560 element unstructured coarse grid
p = 2 p = 4 p = 8 p = 16 p = 32

Maximum 422329 213948 111531 58043 29786
Minimum 406101 202107 94964 44675 19830
Average 414215 207107.5 103553.75 51776.875 25888.4375

Table 7: The maximum, minimum and average number of elements in the meshes created when
solving the two local mesh refinement examples from Subsection 4.3.

small good speedups are attainable but when they are large the efficiency of the parallel solver is
inevitably diminished. As has already been mentioned in Subsection 3.2 a major issue for domain
decomposition solvers such as the one considered here is subdomain shape. This issue has been
addressed by a number of authors (e.g. [19, 26]) and it is generally accepted that for isotropic
problems subdomains with good (i.e. small) aspect ratios are to be preferred. It is unlikely that
this will always be the case however, especially for highly directional problems (e.g. convection
dominated) and so further research needs to be undertaken in this area to understand the issues
more fully.

5 Conclusions

In this paper we have presented a new parallel domain decomposition implementation that allows
for efficient mesh refinement without a significant degradation in convergence rates as either the
mesh size is decreased or the number of processors is increased. The motivation for this technique
comes from the work of [5] and [30, 31] and requires a number of assumptions to be satisfied in
order to achieve its full potential. In particular, the approach of [5] provides a much simplified
load-balancing strategy based upon equidistributing an initial coarse-grid error however it may not
always be guaranteed that, for complex problems requiring significant local refinement, an ideal load
balance will be achieved on the final mesh. This will in turn have some detrimental effects on the
parallel performance of the proposed solver, as is observed for some of the computations using local
mesh refinement described in Subsection 4.3. For example, when sixteen processors are used with
a structured initial grid the largest mesh contains only 2.6% more elements than the average and a
parallel speedup of 13.1 is achieved. On the other hand, for the unstructured initial grid partitioned
into sixteen subdomains the largest mesh contains over 12.1% more elements than the average and
the parallel speedup is reduced to just 10.8.

In situations where the load balance on the final mesh becomes too poor there will clearly be
some benefit from introducing an additional communication phase to the solution process in which
the problem is repartitioned using a dynamic load-balancing algorithm (e.g. [25]). The assessment
of precisely how poor the load balance must become before this repartitioning step becomes cost-
effective is still an open question however. Further local communication between processors will also
be required if the final fine mesh obtaineded by combining the refined meshes produced on each

20

processor turns out to be non-conforming. In this work however, because of the additional layer of
local refinement that is undertaken on each processor immediately beyond the boundary of its own
subdomain, this situation did not arise in any of the examples described.

Finally, we note that there are a number of possible extensions of the work considered here.
These include implementation of the technique in three dimensions and its application to nonlinear
problems, both of which are currently being undertaken with encouraging initial results. A more
ambitious extension is to use the approach described to parallelize arbitrary sequential codes without
actually altering those codes in any way: they would merely be used as sequential solvers (on each
processor) for the systems that correspond to that shown at step 4.1 of Figure 3.

Acknowledgements

The work of REB was supported by the National Science Foundation under contract DMS-9706090
and the work of PKJ, whilst visiting UCSD, was supported by a Research Grant from the Leverhulme
Trust.

References

[1] M. Ainsworth, A Preconditioner Based on Domain Decomposition for h-p Finite Element Ap-
proximation on Quasi-Uniform Meshes, SIAM J. Numer. Anal., 33, 1358–1376, 1996.

[2] M. Ainsworth, A Hierarchical Domain Decomposition Preconditioner for h-p Finite Element
Approximation on Locally Refined Meshes, SIAM J. on Sci. Comp., 17, 1395–1413, 1996.

[3] S.F. Ashby, T.A. Manteuffel and P.E. Taylor, A Taxonomy for Conjugate Gradient Methods,
SIAM J. Numer. Anal., 27, 1542–1568, 1990.

[4] R.E. Bank, PLTMG Users’ Guide 8.0, Society for Industrial and Applied Mathematics, 1998.

[5] R.E. Bank and M. Holst, A New Paradigm for Parallel Adaptive Meshing Algorithms, to appear
in SIAM J. on Sci. Comp, 1999.

[6] R.E. Bank, P.K. Jimack and S.V. Nepomnyaschikh, A Weakly Overlapping Domain Decomposi-
tion for the Adaptive Finite Element Solution of Elliptic Partial Differential Equations, School
of Computing Research Report 99.17, University of Leeds, 1999.

[7] R.E. Bank and R.K. Smith, General Sparse Elimination Requires no Permanent Integer Storage,
SIAM J. Sci. Stat. Comp, 8, 574–585, 1987.

[8] R.E. Bank and R.K. Smith, The Incomplete Factorization Multigraph Algorithm, SIAM J. on
Sci. Comp., 20, 1349–1364, 1999.

[9] R.E. Bank and C. Wagner, Multilevel ILU Decomposition, Numerische Mathematik, 82, 543–576,
1999.

[10] R. Biswas and R.C. Strawn, A New Procedure for Dynamic Adaption of Three-Dimensional
Unstructured Grids, Appl. Numer. Math., 13, 437–452, 1994.

[11] J. Bramble, J. Pasciak and A.H. Schatz, The Construction of Preconditioners for Elliptic Prob-
lems by Substructuring, I, Mathematics of Computation, 47, 103–134, 1986.

21

[12] J. Bramble, J. Pasciak and A.H. Schatz, The Construction of Preconditioners for Elliptic Prob-
lems by Substructuring, II, Mathematics of Computation, 49, 1–16, 1987.

[13] J. Bramble, J. Pasciak and A.H. Schatz, The Construction of Preconditioners for Elliptic Prob-
lems by Substructuring, III, Mathematics of Computation, 51, 415–430, 1988.

[14] J. Bramble, J. Pasciak and A.H. Schatz, The Construction of Preconditioners for Elliptic Prob-
lems by Substructuring, IV, Mathematics of Computation, 53, 1–24, 1989.

[15] J. Bramble, J. Pasciak and J. Xu, Parallel Multilevel Preconditioners, Mathematics of Compu-
tation, 55, 1–21, 1990.

[16] P.J. Capon and P.K. Jimack, An Adaptive Finite Element Method for the Compressible Navier-
Stokes Equations, in Numerical Methods for Fluid Dynamics 5 (M.J. Baines and K.W. Morton,
eds.), OUP, 1995.

[17] M. Dryja, An Additive Schwartz Algorithm for Two- and Three-Dimensional Finite Element
Elliptic Problems, in Second International Symposium on Domain Decomposition Methods (T.
Chan et al, eds.), Society for Industrial and Applied Mathematics, 1989.

[18] M. Dryja and O.B. Widlund, Some Domain Decomposition Algorithms for Elliptic Problems,
in Iterative Methods for Large Linear Systems, Academic Press, 1990.

[19] C. Farhat, M. Maman and G.W. Brown, Mesh Partitioning for Implicit Computations via
Iterative Domain Decomposition: Impact and Optimization of Subdomain Aspect Ratio, Int. J.
for Numer. Meth. in Eng., 28, 989–1000, 1995.

[20] C. Farhat, J. Mandel and F.X. Roux, Optimal Convergence Properties of the FETI Domain
Decomposition Method, Computer Methods for Applied Mechanics and Engineering, 115, 365–
385, 1994.

[21] G.H. Golub and C.F. Van Loan, Matrix Computations, John Hopkins Press, 3rd edition, 1996.

[22] M. Griebel and P. Oswald, On Additive Schwartz Preconditioners for Sparse Grid Discretiza-
tions, Numerische Mathematik, 66, 449–463, 1994.

[23] B. Heise and M. Jung, Parallel Solvers for Nonlinear Elliptic Problems Based Upon Domain
Decomposition Ideas, Parallel Computing, 22, 1527–1544, 1997.

[24] D.C. Hodgson and P.K. Jimack, A Domain Decomposition Preconditioner for a Parallel Finite
Element Solver on Distributed Unstructured Grids, Parallel Computing, 23, 1157–1181, 1997.

[25] G. Karypis and V. Kumar, Parallel Multilevel k-Way Partitioning Scheme for Irregular Graphs,
SIAM Review, 41, 278–300, 1999.

[26] D.E. Keyes, D.K. Kaushik and B.F. Smith, Prospects for CFD on Petaflops Systems, in CFD
Review 1998 (M. Hafez and K. Oshima, eds.), World Scientific, 1998.

[27] C.-H. Lai, P.E. Bjorstad, M. Cross and O.B. Widlund (eds.), The Eleventh International Con-
ference on Domain Decomposition Methods: Domain Decomposition Methods in Sciences and
Engineering, Domain Decomposition Press, 1999.

22

[28] R. Lohner, An Adaptive Finite Element Scheme for Transient Problems in CFD, Comp. Meth.
in Appl. Mech. and Eng., 61, 323–338, 1987.

[29] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, International
Journal of Supercomputer Applications, 8, No. 3/4, 1994.

[30] W.F. Mitchell, The Full Domain Partition Approach to Distributing Adaptive Grids Appl. Nu-
mer. Math., 26, 265–275, 1998.

[31] W.F. Mitchell, A Parallel Multigrid Method Using the Full Domain Partition, Electronic Trans-
actions on Numerical Analysis, 6, 224–233, 1998.

[32] Y. Saad and M. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Non-
symmetric Linear Systems, SIAM J. on Scientific Computing, 7, 856–869, 1986.

[33] B.F. Smith, A Parallel Implementation of an Iterative Substructuring Algorithm for Problems
in Three Dimensions, SIAM J. on Scientific Computing, 14, 406–423, 1993.

[34] W. Speares and M. Berzins, A 3-D Unstructured Mesh Adaptation Algorithm for Time-
Dependent Shock Dominated Problems, Int. J. for Numer. Meth. in Fluids, 25, 81–104, 1997.

[35] O.B. Widlund, Some Schwartz Methods for Symmetric and Nonsymmetric Elliptic Problems,
in Fifth International Symposium on Domain Decomposition Methods (D.E. Keyes et al, eds.),
Society for Industrial and Applied Mathematics, 1992.

[36] J. Xu, Iterative Methods by Space Decomposition and Subspace Correction, SIAM Review, 34,
581–613, 1992.

[37] X. Zhang, Multilevel Schwartz Methods, Numerische Mathematik, 63, 521–539, 1992.

23

