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Abstract: This paper continues and further develops some of the ideas previ-
ously introduced in [5]. In particular, it is shown that the main parallel solution
technique developed in [5] may be generalized to allow the parallel solution of
an arbitrary sparse matrix. This generalization requires the matrix to be parti-
tioned into p blocks and then coarsened (preferably in parallel) so that each of
p different processors stores an entire submatrix plus a coarsening of the rest of
the matrix. The linear problems with these new matrices may then be solved
concurrently in order to obtain approximations to the solution of the full problem
which may then be combined together in an appropriate way to define a general
parallel preconditioner. As well as providing an overview of this new algorithm
the paper also addresses the issues associated with partitioning the sparse matrix
and coarsening certain blocks of its rows and columns. The paper concludes with
the presentation and discussion of some preliminary numerical results.

1 Introduction

In [5] a new parallel domain decomposition preconditioner is introduced for the
solution of the sparse linear systems that arise from the parallel adaptive finite
element discretization of a class of self-adjoint linear elliptic partial differential
equations (with extensions to nonlinear and non-self-adjoint problems also dis-
cussed (see, in addition, [6])). In this paper we consider further extensions of this
work for the solution of an arbitrary sparse positive-definite (PD) linear system
of the form

Ku = b . (1)

No assumptions will be made about the manner in which the matrix K has been
obtained (although for the numerical tests used in Section 5 only matrices which
correspond to finite element discretizations of second order elliptic operators are
considered), and so we will rely only on its sparsity for the development of our
preconditioning algorithm. In this sense the way in which the work presented here
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relates to that in the previous paper, [5], may be considered to be analogous to the
relationship between algebraic multigrid methods and conventional hierarchical
mesh multigrid algorithms (see for example [2, 3, 8, 10, 11, 13, 24]). Indeed, many
of the graph coarsening issues which must be addressed in algebraic multigrid
codes also arise in this work (and are considered in Section 4 below).

The rest of this paper is organized as follows. Section 2 provides a detailed
description of the development of the new preconditioner as a natural extension
of that appearing in [5]. This is then followed by brief discussions in Sections 3
and 4 of simple graph partitioning and graph coarsening algorithms respectively:
both of these being required by the proposed preconditioner. The paper is then
concluded in Section 5 with a presentation of some provisional results and a
discussion of this work.

2 Overview of Algorithm

In [5] it is demonstrated that a preconditioner, M say, for a sparse positive-
definite linear system of the form (1) may be developed in the following algebraic
manner. For i = 1, ..., p (p ≥ 2) define matrices Qi ∈ <mi×n and RT

i ∈ <n×mi ,
where mi < n (in fact mi should be only a little greater than n/p). Then define
Ki (i = 1, ..., p) by

Ki = QiKQ
T
i (2)

and the preconditioner, M , by

M−1 =
p∑
i=1

RT
i K

−1
i Qi . (3)

The precise definitions of Qi and RT
i in [5] are based upon the existence of

an underlying partial differential equation (PDE) with different finite element
meshes covering the problem domain, Ω, on each processor, i = 1, ..., p. There
appears to be no reason however why a preconditioner of the same form as
(2) and (3) cannot be developed based upon purely algebraic rules, for which no
assumptions concerning underlying differential equations or finite element meshes
are required. Such a development is undertaken in this section.

In order to generalize the preconditioner introduced in [5] we first consider
the special cases where p = 2 and the underlying PDE is constrained by Dirichlet
conditions on the whole of ∂Ω (both for simplicity). This allows the system (1)
to be written in block-matrix form as A1 B1 0

BT
1 As BT

2

0 B2 A2


 u1
us
u2

 =

 b1
bs
b2

 , (4)

where u1 and u2 correspond to the finite element unknowns inside subdomains
Ω1 and Ω2 respectively (which are non-overlapping), and us corresponds to the
finite element unknowns shared between Ω1 and Ω2 at the subdomain boundaries.
The zero blocks are present due to the local nature of the finite element basis
functions. Furthermore, recall from [5] that the global fine mesh, containing n
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vertices with unknown solution values, is defined to be the union of the locally
refined meshes on each processor. Let processor i (i = 1, 2) have a mesh with ρi
points in the interior of Ωi , σi points in ∂Ωi − ∂Ω and τi points in Ω−Ωi, then
u1 ∈ <ρ1 , u2 ∈ <ρ2 , us ∈ <σ (where σ = σ1 = σ2) and n = ρ1 + ρ2 + σ. Hence,
Ai ∈ <ρi×ρi , As ∈ <σ×σ and Bi ∈ <ρi×σ for i = 1, 2.

In order to define the restriction matrices Qi used in (2) and (3), the algorithm
of [5] requires these to be mappings from the global fine mesh to the mesh which
exists on processor i. Hence Qi ∈ <mi×n where mi = ρi + σi + τi for i = 1, 2.
Note also that these mappings are such that the blocks Ai, As, Bi and BT

i in
(4) are unaltered. (The block As is unaltered by each mapping Qi due to the
fact that in [5] the finite element meshes are such that there is always a full
layer of refinement immediately outside Ωi on each processor, so both processors
calculate identical (and correct) entries for As on their own meshes.) This means
that we may express the matrices Q1 and Q2 in block form as

Q1 =

 I 0 0
0 I 0
0 0 L1

 and Q2 =

 L2 0 0
0 I 0
0 0 I

 , (5)

where L1 ∈ <τ1×ρ2 and L2 ∈ <τ2×ρ1 . In general we expect that τ1 � ρ2 and
τ2 � ρ1.

Combining equations (5) with equations (1), (2) and (4) we see that

K1 =

 A1 B1 0
BT

1 As BT
2 L

T
1

0 L1B2 L1A2L
T
1

 and K2 =

 L2A1L
T
2 L2B1 0

BT
1 L

T
2 As BT

2

0 B2 A2

 . (6)

Hence, when the preconditioner (3) is used to solve the n× n system

Ms = r , (7)

the same partitioning of the vectors s and r as for u and b in equation (4) gives s1
ss
s2

 =
2∑
i=1

RT
i K

−1
i Qi

 r1
rs
r2

 . (8)

Therefore, by (5) and (6), we get s1
ss
s2

 = RT
1

 A1 B1 0
BT

1 As BT
2 L

T
1

0 L1B2 L1A2L
T
1


−1  r1

rs
L1r2



+RT
2

 L2A1L
T
2 L2B1 0

BT
1 L

T
2 As BT

2

0 B2 A2


−1  L2r1

rs
r2

 . (9)

Finally, we observe from [5] that the definition of the prolongation matrices
RT
i ∈ <n×mi (i = 1, ..., p) for the case where p = 2 reduces to

RT
1 =

 I 0 0
0 1

2
I 0

0 0 0

 and RT
2 =

 0 0 0
0 1

2
I 0

0 0 I

 . (10)
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In view of equations (7), (9) and (10) we may conclude that in order to gen-
eralize the preconditioner introduced in [5] so that it may be applied to arbitrary
sparse matrices, when p = 2 at least, two additional components are required.

1. A means of ordering the unknowns in problem (1) so that it may be written
in the block-matrix form of equation (4).

2. A means of obtaining the coarsening matrices Li that appear in (9).

It may be observed that the partitioning problem described by the first of these
requirements may be expressed in terms of the graph, Gn, of the symmetric
sparse matrix K. This graph has n vertices and an edge joining vertices i and
j whenever the i-jth entry in K in non-zero. It is therefore necessary to find a
small subgraph of Gn, (of size σ) which forms a separator for two other, larger,
subgraphs of approximately equal sizes, ρ1 and ρ2. If the unknowns in the system
(1) are ordered corresponding to each of the vertices of the first of the large
subgraphs, followed by each of the vertices of the small subgraph, followed by
each of the vertices of the other large subgraph, then the required structure of
(4) will be obtained. Fig. 1 illustrates a suitable choice of separator for a simple
example graph.

Figure 1: A possible separator set (white vertices) of the type required to give
the system (1) the structure shown in (4) for p = 2, where the graph represents
the sparsity pattern of a symmetric matrix.

In fact, it may be argued that the above graph partitioning problem is rather
more complicated than is strictly necessary for our purposes. To illustrate this
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we now develop a modification of the proposed preconditioner which will allow
more standard graph partitioning heuristics to be used (see for example [14, 15,
16, 19, 21, 23]). For the purposes of this description we maintain the simplifying
assumption that p = 2 for the time-being.

Suppose that we are able to obtain a partition of the graph Gn into two
approximately equally-sized subgraphs which have a small number of edges con-
necting them. Then, by ordering the unknowns in the system (1) such that those
corresponding to vertices in the same subgraph are consecutive, this system may
be written in the following form:[

A1 BT

B A2

] [
u1
u2

]
=

[
b1
b2

]
. (11)

Here Ai ∈ <ρi×ρi , ui ∈ <ρi , bi ∈ <ρi and B ∈ <ρ2×ρ1 , where ρ1 and ρ2 are now
defined to be the sizes of the two subgraphs (hence ρ1 + ρ2 = n) and the matrix
blocks A1, A2 and B are all sparse. We may now define Qi ∈ <mi×n (where
mi = ρi + τi say) by

Q1 =

[
I 0
0 L1

]
and Q2 =

[
L2 0
0 I

]
, (12)

for appropriate choices of coarsening matrices L1 ∈ <τ1×ρ2 and L2 ∈ <τ2×ρ1 .
Following (2) and (3) this then allows us to define a new preconditioner for K of
the form

M−1 =
2∑
i=1

RT
i (QiKQ

T
i )−1Qi

= RT
1

[
A1 BTLT1
L1B L1A2L

T
1

]−1 [
I 0
0 L1

]

+RT
2

[
L2A1L

T
2 BTLT2

L2B A2

]−1 [
L2 0
0 I

]
. (13)

Hence, when this preconditioner is used to solve an n×n system of the form (7),
one gets[
s1
s2

]
= RT

1

[
A1 BTLT1
L1B L1A2L

T
1

]−1 [
r1
L1r2

]
+RT

2

[
L2A1L

T
2 BTLT2

L2B A2

]−1 [
L2r1
r2

]
(14)

(where s and r in (7) have been partitioned in the same manner as u and b in
(11)). Again following the philosophy behind the non-symmetric preconditioner
in [5] we now define

RT
1 =

[
I 0
0 0

]
and RT

2 =

[
0 0
0 I

]
, (15)

in order to obtain a parallel preconditioner when p = 2.
The generalization of the preconditioner (13) for an arbitrary number of pro-

cessors, p, is quite straightforward. First it is necessary to partition the graph,
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Gn of the n × n sparse matrix K into p approximately equally-sized subgraphs
(each with ρi vertices, for i = 1, ..., p, say). This partition should be such that
the number of edges which connect subgraph i to any of the other subgraphs
(for i = 1, ..., p) is as small as possible — so that as many of the non-zero entries
of K as possible will be in the diagonal blocks when the unknowns are ordered
according to this partition. On processor i (for any i ∈ {1, ..., p}) it is then
possible to express the system (1) in the block-matrix form[

Ai BT
i

Bi Ai

] [
ui
ui

]
=

[
bi
bi

]
, (16)

where Ai ∈ <ρi×ρi (and corresponds to the ith subgraph of Gn), Ai ∈ <(n−ρi)×(n−ρi)

and Bi ∈ <(n−ρi)×ρi . Now define Qi ∈ <mi×n (where mi = ρi + τi say) by

Qi =

[
I 0
0 Li

]
, (17)

for an appropriate choice of coarsening matrix Li ∈ <τi×(n−ρi) (where, typically,
we expect τi � n − ρi). Hence, the contribution to the preconditioner M from
processor i, when solving the n× n system (7), is given by[

si
si

]
= RT

i

[
Ai BT

i L
T
i

LiBi LiAiL
T
i

]−1 [
ri
Liri

]
, (18)

which requires the solution of an mi×mi linear system on processor i. If we now
choose

RT
i =

[
I 0
0 0

]
(19)

then the values of si ∈ <ρi in (18) for i = 1, ..., p (which may be computed
concurrently) define the vector s, the solution of the preconditioning system (7)
(note that n =

∑p
i=1 ρi).

To summarize the above discussion therefore, we have argued that the action
of a purely algebraic preconditioner for an arbitrary sparse PD system (1) may be
defined by (18) and (19) for i = 1, ..., p, provided the following two requirements
can be fulfilled.

1. We have a partition of the graph, Gn, of the matrix K into p subgraphs of
approximately equal size (ρi for i = 1, ..., p) with a small number of edges
of Gn connecting vertices belonging to different subgraphs.

2. We have p matrices Li ∈ <τi×(n−ρi) for some τi � n− ρi (i = 1, ..., p).

Furthermore, it is clear that each of the vectors si which make up the solution,
s, of the preconditioning problem (7) may be computed independently (and
therefore concurrently) on processors i = 1, ..., p once the above partition and
coarsening matrices have been defined.

It is important to emphasize that the above argument only provides a mech-
anism for obtaining a parallel algebraic preconditioner. It tells us nothing about
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the quality of such a preconditioner, which will depend upon the particular par-
tition of Gn that is chosen and the specific choices of Li that are made. For
example, when each τi = 0, M reduces to a simple block-diagonal preconditioner
on the particular partition that is being used. This is unlikely to be very effective
in general, unless each of the blocks Bi in (16) are much sparser than (or the
non-zero entries are much smaller in magnitude than for) the other blocks Ai
and Ai (in which case the original system, (1), is almost block diagonal).

When the system (1) is not close to being block diagonal then the choice of
coarsening matrices, Li, will be very important. In order to get a good precon-
ditioner these matrices should be chosen so that, where possible,

LTi (LiAiL
T
i )−1Li ≈ A

−1

i , (20)

for i = 1, ..., p. To see why this is the case observe that, from (16), we have(
Ai −BT

i A
−1

i Bi

)
ui = bi −BT

i A
−1

i b . (21)

Also note that the corresponding part of the solution of the preconditioning
system [

Ai BT
i L

T
i

LiBi LiAiL
T
i

] [
ui
ũi

]
=

[
bi

Libi ,

]
(22)

solved on processor i, satisfies(
Ai −BT

i

[
LTi

(
LiAiL

T
i

)−1
Li

]
Bi

)
ui = bi −BT

i

[
LTi

(
LiAiL

T
i

)−1
Li

]
b . (23)

Hence, if LTi (LiAiL
T
i )−1Li = A

−1
i for i = 1, ..., p, the preconditioner will corre-

spond to an exact solve. If (20) holds therefore, the preconditioner should prove
to be very effective.

Further details concerning the choice of the matrices Li are given in Section
4, which also provides a brief discussion of the general graph coarsening problem.
Before this however we consider, in the next section, the first of the two require-
ments enumerated above: which concerns obtaining a good p-way partition of
the graph Gn of the symmetric sparse matrix K.

3 Partitioning the Graph of the Sparse Matrix

As outlined in the previous section, an important component of the parallel
algebraic preconditioner that we propose involves obtaining a partition of the
graph, Gn, of the sparse PD matrix K into p subgraphs of approximately equal
size. Note that this is a different partitioning problem to that originally described
in Section 2 (and illustrated in Fig. 1) since it is no longer necessary to obtain a
separator set of vertices when partitioning Gn.

Fig. 2 illustrates how the same example graph used in Fig. 1 might now be
partitioned when p = 2. Note that an important feature of this partition is that
the number of edges which connect subgraph i with the rest of Gn is small (for
i = 1, ..., p). This ensures that the number of non-zero entries in the coupling
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matrices, Bi, in (16) is approximately minimized. Comparison of equations (21)
and (23) also shows that making the norms of these coupling matrices as small
as possible is likely to be beneficial for the performance of the preconditioner.
This suggests that it is appropriate to assign positive weights to the edges of Gn,
equal to the magnitude of the corresponding entries in the symmetric matrix K,
and then to attempt to minimize the total weight of the edges which connect
subgraph i with the rest of Gn (again, subject to the constraint that ρi ≈ n/p for
i = 1, ..., p). We will refer to this total weight as the cut-weight of subgraph i.

Figure 2: A possible partition of the graph Gn of a sparse matrix which will allow
a system such as (1) to be written with the structure shown in (16) for i = 1, ..., p
(here p = 2).

The problem of finding a p-way partition of a weighted graph for which the
size of each subgraph is approximately equal, and the total cut-weight is min-
imized, is well-known. Although this problem belongs to the class NP there
are many heuristics which are known to provide reasonably good solutions for a
wide variety of graphs, Gn, in polynomial time. It is beyond the scope of this
short paper to discuss these numerous heuristics in any detail, however we do
note that in many cases there are efficient software implementations which are
generally available (see [14, 16, 19, 23] for example). In some cases there are also
parallel implementations (e.g. [17, 22]) however, for this application, the graph
partitioning may be viewed as a pre-processing step which can be undertaken
sequentially if necessary.

For the preliminary results presented in Section 5 a simple geometric parti-
tioning rule (similar to recursive coordinate bisection [21]) has been used. This
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is possible because each of the examples in this paper are derived from finite
element discretizations of second order elliptic PDEs. More general heuristics,
such as in [14, 16, 19, 23], could also be used and are likely to perform just as
well, if not better.

4 Graph Coarsening Algorithms

Having briefly discussed the graph partitioning aspect of the parallel algebraic
preconditioner suggested in Section 2, we now consider the other requirement
enumerated in that section. It is also necessary to produce matrices Li ∈
<τi×(n−ρi), where τi � n − ρi, for i = 1, ..., p, such that (20) holds. Throughout
Section 2 the Li’s are referred to as “coarsening matrices” since their role is to
allow the (n−ρi)×(n−ρi) matrices Ai to be approximated by the (much smaller)
τi × τi matrices LiAiL

T
i .

For the particular preconditioner used in [5] (Version 3) Li represents a re-
striction operator from a finite element space on a fine mesh to a smaller finite
element space on a coarser mesh. Conversely, LTi represents an interpolation
operator from the coarser mesh to the fine mesh. Since the meshes used in [5]
are generated by regular hierarchical refinement (as in [4, 18] for example), these
restrictions and interpolations are calculated, in practice, without the explicit
construction of the Li matrices: it is sufficient to make use of the parent-child
relations between nodes in the mesh hierarchy. When computing restrictions,
for example, this is achieved by starting with the nodes at the finest level of the
final fine mesh, which are not present in the computational mesh on processor
i, and adding half of their nodal value to each of their parents — which are the
two nodes at the ends of the edge which was bisected when creating the node
at the finer level. This process is repeated at coarser and coarser levels until
the only nodes remaining are the ones in the computational mesh on processor
i. The interpolation operation is essentially the opposite of this: starting at the
coarsest mesh each new node introduced at the next level up is given a value
which is the average of its two parents’ values.

Unlike in [5] however, in this work we do not wish to assume either that the
matrix K in (1) (which is also written in block form on processor i as (16)) is
derived from a discretization of a particular PDE, or that there is a hierarchy of
finite element spaces that can be used to coarsen the blocks of Ai in (16). In this
sense, the problem that we face, of constructing the matrices Li ∈ <τi×(n−ρi), is
quite similar to that encountered in algebraic multigrid (AMG) algorithms when
constructing suitable restriction and prolongation matrices. We would like to
simulate the coarsening process used in [5] but only making use of the entries of
the matrix blocks Ai (just as AMG algorithms seek to simulate the restriction
and prolongation behaviour of regular multigrid algorithms by only using the
sparse matrix entries). It is instructional therefore to briefly consider some of
the ideas that have been successfully used in algebraic multigrid algorithms in
recent years.

Typically, early AMG algorithms, such as in [11] for example, still make
assumptions concerning the relationship between the sparse matrix and an un-
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derlying PDE. In particular, in [11] it is assumed that the matrix problem arises
from the discretization of a particular class of PDEs on a structured rectangular
mesh. By developing coarsening algorithms for this structured mesh a grid hier-
archy may be defined and then standard multigrid techniques applied. In [9] this
mesh coarsening idea is generalized significantly to allow sequences of coarsened
meshes to be conveniently defined from an initial unstructured mesh in 2-d. In
the context of this work, once such a sequence is obtained on each processor,
i = 1, ..., p, it is possible to apply essentially the same technique for defining the
matrices Li as is used in [5] (and outlined above).

Although the mesh coarsening approach doesn’t rely on the existence of a
mesh hierarchy a priori it does require that the matrix system results from a
(known) discretization of some differential equation. More recent AMG algo-
rithms, such as in [10] for example, attempt to drop such assumptions completely.
In [10], Braess works with the graph of the sparse symmetric matrix for the linear
system to be solved. He uses the same definition for this graph as given above
but prefers to use a relative, rather than an absolute, weight for each edge: the
weight of the edge joining vertices i and j being given by K2

ij/|Kii||Kjj|. Now,
instead of coarsening an underlying mesh, the algorithm in [10] coarsens this
graph directly: taking into account both the graph’s topology and the strengths
of the couplings between the different rows and columns of the matrix (i.e. the
relative edge weights defined above).

Another algebraic multilevel approach is described in [7]. This too makes use
of the graph of the sparse matrix in order to develop an appropriate coarsening
strategy. The implementation of this strategy takes the form of a reordering plus
the assignment of zero or more parents to each vertex. One level of coarsening
is accomplished by first computing a quality function for each vertex (the higher
the value the more suitable it is for elimination from the graph at this level). The
vertex with the highest value then has a set of (one or more) parents assigned to
it and is eliminated. The parents are each assigned a new quality value of zero,
and the process is repeated for the vertex which now has the highest quality.
Termination occurs when all of the remaining vertices have a quality value of
zero: these are the vertices that are carried forward to the next level. The
process may be repeated for a number of levels, and the final ordering of the
vertices is defined by the order in which they were eliminated. The process that
we use for coarsening the graphs of the blocks Ai is very similar to one level
of this algorithm, however it is much simplified and also attempts to reflect the
definitions of the Li matrices in [5] as much as possible.

In [5] the mesh on processor i which covers the subregion Ω−Ωi is defined to
be very fine in a small neighbourhood of ∂Ωi and becomes gradually coarser as
it gets further from ∂Ωi. We attempt to simulate this in our algebraic approach
in the following manner. Let Gi and Gi be the graphs of the matrices Ai and
Ai on processor i respectively. By considering these as subgraphs of Gn, it is
possible to define the distance of each vertex within Gi from Gi to be the number
of edges in the shortest path from that vertex to any vertex of Gi. One may now
define a coarsening of Gi in which all of the vertices at a distance of 1 from Gi
are kept, half of the vertices at a distance 2 from Gi are kept, a quarter of the
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vertices at distance 3 are kept, etc. In this coarsening we choose, for simplicity,
that each eliminated vertex has just one parent, and that this is always at the
same distance from Gi as its child (or children). The action of the coarsening
matrix, Li, on a vector, ri say, is then defined by adding each entry of ri which
corresponds to an eliminated vertex of Gi to the entry that corresponds to its
parent. Similarly, LiBi (BT

i L
T
i ) may be obtained by adding the eliminated rows

(columns) of Bi (BT
i ) to the row (column) of their parent, and the construction

of LiAiL
T
i follows in the same manner.

In deciding which of the vertices of Gi at a given distance from Gi should be
eliminated and which should be their parents it seems likely that it would be best
to make use of both the connectivity of Gi and the magnitudes of the non-zero
entries of Ai. In the computational experiments undertaken for the next section
however we apply the following, simpler, algorithm which only uses the topology
of Gi. Its advantages and disadvantages, along with some possible alternatives,
are discussed in Section 5.

1. Order the vertices of Gi (j = 1, ..., n− ρi) by distance, d(j) say, from Gi.

2. Set ν(δ) := the number of vertices of Gi at a distance ≤ δ from Gi.

3. Choose dmax > 1.

4. For j from ν(dmax + 1) to n− ρi:

(a) Set d(j) := dmax.

5. Set ν(dmax) := n− ρi.

6. For ` from 2 to dmax:

(a) Set f := 2(`−1).

(b) For j from ν(`− 1) + 1 to ν(`):

i. Set k := j − ν(`− 1).

ii. If (k mod f = 1) then
Set d(j) := 1;
Update ordering of vertices by d(j);
Set parent(j) := 0;
Set π := j

Else
Set parent(j) := π.

Note that in the above algorithm all of the vertices of Gi that are a distance
of greater than dmax from Gi are assigned a modified distance value of dmax.
This done to ensure that a minimum percentage of the nodes of Gi that are far
from Gi are retained. Hence, increasing the value of dmax has a similar effect
to reducing the size of the underlying coarse mesh for the algorithm in [5]. For
example, the choice of dmax = 8 (that is used in the following section), ensures
that approximately 1% of the vertices which are far from Gi are retained.
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5 Provisional Results and Discussion

In order to assess the quality and potential of the family of algebraic precon-
ditioners that we have proposed, it is necessary to select a test set of sparse
matrices. Ideally, these matrices should have a wide variety of sparsity patterns
and spectral properties, and should come from a number of different sources.
However, in this section we present some provisional numerical results using just
two different classes of matrix: these are the matrices generated when piecewise
linear finite elements are used to discretize the following two partial differential
equations.

Problem 1

−∇ · (∇u) = f ∀x ∈ Ω ≡ (0, 1)× (0, 1) ,
u = g ∀x ∈ ∂Ω .

Problem 2

−∇ ·
((

102 0
0 1

)
∇u

)
= f ∀x ∈ Ω ≡ (0, 1)× (0, 1) ,

u = g ∀x ∈ ∂Ω .

Note that these are the same test problems that are used in [5] (with the same
choices of f and g), and we make use of the same sequences of meshes as in [5]
also. For example, a mesh with 4096 elements yields a 1985×1985 sparse matrix,
and when there are 262144 elements, n = 130561.

Table 1 shows the number of iterations required by our algorithm to reduce
the 2-norm of the residual by a factor of 106 when solving these two sequences
of problems. Since the original matrix, K, is always symmetric and positive-
definite, the “no preconditioning” column shows the number of iterations re-
quired by a conjugate gradient solver for each problem. The iteration counts in
the other columns are obtained using GMRES with the preconditioner outlined
over the previous sections. (See, for example, [1, 12, 20] for a description of
conjugate gradients, GMRES and similar iterative methods.)

Note that without preconditioning the number of iterations doubles when-
ever n is quadrupled — implying that the condition numbers for these two se-
quences of matrices are approximately proportional to n (as expected since, here,
n = O(h−2)). In contrast to this, the number of iterations required by the pre-
conditioned GMRES algorithm appears to be increasing by an approximately
constant amount each time n is quadrupled. This suggests that the condition
number of the preconditioned problems may be increasing only logarithmically
with n — a significant improvement.

Despite the encouragement of seeing only slow growth in the condition num-
ber for these two problems as n is increased, comparison with the corresponding
results in [5] shows that this algebraic approach is still some way behind the, less
general, mesh-based algorithm. Some significant improvements in performance
may easily be obtained however. Table 2 shows equivalent results to those in Ta-
ble 1 but using a slightly different (less aggressive) coarsening algorithm. Here,
step 6(a) has been modified to

Set f := 2((`−1)/2)
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Problem 1
n No precon. p = 2 p = 4 p = 8 p = 16

1985 73 12 12 16 17
8065 143 15 15 20 21
32513 282 18 18 24 26
130561 549 22 23 29 34

Problem 2
n No precon. p = 2 p = 4 p = 8 p = 16

1985 223 15 17 25 26
8065 435 19 21 31 34
32513 818 23 26 40 44
130561 1512 29 31 50 54

Table 1: Iteration counts, using the proposed algebraic preconditioner, for the
sequences of matrices obtained from piecewise linear discretizations of Problems
1 and 2.

(where integer division is used in the exponent) and dmax has been doubled
(to 16). This has the effect of creating a wider transition layer between the
immediate neighbourhood of Gi, where all vertices of Gi are retained, and the
part of Gi that is far from Gi, where less than 1% of the vertices are retained. It
is still the case that τi � n− ρi however.

Problem 1
n No precon. p = 2 p = 4 p = 8 p = 16

1985 73 9 10 13 14
8065 143 12 13 16 17
32513 282 14 16 20 23
130561 549 17 20 24 29

Problem 2
n No precon. p = 2 p = 4 p = 8 p = 16

1985 223 12 13 19 20
8065 435 15 17 24 27
32513 818 19 21 31 34
130561 1512 23 25 38 43

Table 2: Iteration counts, using the modified algebraic preconditioner, for the
sequences of matrices obtained from piecewise linear discretizations of Problems
1 and 2.

Other straightforward improvements to the coarsening algorithm could also
be made, and need to be investigated. In particular, the current version uses
an essentially arbitrary choice of parent for each deleted vertex (based upon the
numbering of the unknowns in (16)). A better approach would be to use the
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connectivity of Gi when making this choice. Better still, the actual entries of
the sub-matrices Ai should be used in the coarsening algorithm, as they are in
[7, 8, 10] for example.

Slightly more elaborate improvements to the coarsening algorithm should also
be considered. For example, by keeping dmax and f quite small not too many
vertices will be eliminated from each Gi — however the coarsening algorithm
could then be applied on the remaining graph in a recursive manner. This would
still yield final values of τi as small as those obtained at present, but with a more
sophisticated multilevel coarsening. Further enhancements could be achieved by
allowing eliminated vertices to have more than one parent and weighting each of
these parents with a value in [0, 1]. These weights would appear in the matrices
Li, which would no longer have entries of just zero and one.

Finally, we remark on some aspects of the practical implementation of the
algorithm outlined in the previous section. The first of these concerns the or-
dering of the vertices of Gi by their distance from Gi (step 1). This ordering
may be achieved at the same time as the distance values, d(j), are calculated
by making a breadth-first traversal of Gi. Provided the matrices, K, are such
that the maximum number of non-zero entries per row is independent of n this
is an O(n) algorithm. It may even be possible to improve the efficiency of this
step by only traversing Gi to a depth of dmax from Gi, however we have yet to
experiment with such an approach.

The most serious challenge that must be overcome in order to obtain a truly
scalable parallel implementation of the overall algorithm considered in this paper
concerns a different aspect of the coarsening process. So far it has been implicitly
assumed that it will be possible for each processor, i = 1, ..., p, to store the
whole of the matrix K and then to coarsen the entire submatrix Ai of dimension
n−ρi ≈ (p−1)n/p. Clearly, as the problem size grows, even if p grows at the same
rate as n, the size of Ai will still be O(n) on each processor. This is extremely
undesirable, both in terms of the memory requirement (for distributed rather
than shared memory computing) and the computational overhead. A better
approach, for parallel scalability at least, would be to emulate [5] once more by
allowing each processor to coarsen its own subgraph, Gi, in some way, and then
to communicate the result of this coarsening to the other processors for use in the
construction of their Li matrices. This is an issue requiring further investigation.

6 Conclusions

In this paper we have introduced an algebraic preconditioner which generalizes
the new domain decomposition approach described in [5]. The key requirements
for this preconditioner to perform well are a good p-way partition of the graph,
Gn, of the sparse matrix, K, in (1), and the construction on each processor,
i = 1, ..., p, of coarsening matrices Li which satisfy (20) (given the block-matrix
form (16)). The partitioning problem is quite standard and numerous heuristics
are known to perform well. The coarsening problem, whilst less standard, is also
shown to occur in other applications, such as algebraic multigrid for example.
(It is also interesting to note that many graph partitioning algorithms, such as
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[16, 23] for example, also make significant use of graph reduction (i.e. coarsening)
techniques.) A very simple algorithm for graph coarsening, based upon the
experience of [5], has been used with some success in the examples presented
in Section 5. In these preliminary results, for problems in which the condition
number is known to be proportional to n, it appears that the preconditioned
systems have condition numbers which grow much more slowly.
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