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Abstract. A priori error estimates are given for the Finite Volume Scharfetter-Gummel (FVSG) discretization of the steady
convection diffusion equation by showing that the FVSG method gives the same discretization as the Edge Averaged Finite
Element method of Markowich and Zlámal [9] and Xu and Zikatanov [14]. The analysis also suggests a class of modifications
for triangulations containing obtuse angles. Numerical results comparing the FVSG method and a modified FVSG method to
other discretizations are included.
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1. Introduction. The classical Scharfetter-Gummel scheme for discretizing drift-diffusion and energy-
transport models has proven itself to be the workhorse for semiconductor device modeling codes. The
discretization is well defined in one spatial dimension [12], and various extensions to higher dimensions have
been proposed; for example, see [11] and the references contained therein as well as [9, 5, 4, 10]. One successful
extension, as partially demonstrated by the numerics in Section 7, which is used in several commercial
simulators is the Finite Volume Scharfetter-Gummel (FVSG) method described by Bank, Fichtner, and
Rose [3].

Here we consider the FVSG method applied to the following model convection-diffusion problem for u
on a polygonal domain Ω ⊂ <2 with boundary ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅ and outward normal n:

−∇·(a∇u+ βu) = 0 in Ω,(1.1)

u = u0 on Γ1,(1.2)

(a∇u+ βu) · n = 0 on Γ2.(1.3)

In the finite volume method, it is convenient to write the second order equation as a first order system. By
introducing a flux J, we rewrite (1.1) as a continuity equation

∇·J = 0 in Ω,(1.4)

and a constitutive relationship

J = −(a∇u+ βu) in Ω.(1.5)

We assume that a is a real valued function satisfying uniformly for x ∈ Ω

0 < amin ≤ a(x) ≤ amax.

Since our model problem is driven by the Dirichlet boundary condition, we also assume that the measure of
Γ1 is nonzero.

The remainder of this paper is organized as follows. In the next section, we introduce some notation.
In Section 3, we recall the FVSG method of [3]. Our main theoretical tool is developed in Section 4 in
which we exhibit an equivalence between the FVSG discretization and a certain piecewise linear Galerkin
discretization. In particular, it is shown that the FVSG is the same discretization as the edge based schemes
of Markowich and Zlámal [9] and the more recent work of Xu and Zikatanov [14]. Using this equivalence,
a priori error estimates for the FVSG scheme are inherited from [14]. These estimates are noteworthy
since they depend only on the smoothness of the flux. Writing the FVSG method as a bilinear form suggests
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Fig. 2.1. Parameters associated with triangle τ

modifications of the scheme that are appropriate when the triangulations include large obtuse angles. Several
authors have commented on the importance of local divergence conditions (e.g., [2]). In Section 5, we note
that such properties are relatively easy to impose on a general class of discretizations; hence, they do not
uniquely motivate and characterize “good” discretizations. Building on the analysis of Section 4, a particular
modified FVSG scheme is given in Section 6. We conclude with some numerical experiments comparing the
modified and unmodified FVSG schemes to several other advection schemes. The performance of the FVSG
schemes in these experiments motivated the rest of the study.

2. Preliminaries. We introduce some local notation for triangles. As pictured in Fig. 2.1, we label the
vertices vi, i = 1, 2, 3 in a counterclockwise order and understand the indexing to be cyclical, e.g. v4 = v1.
Let the edge opposite vi be denoted ei and oriented such that it connects vi+1 to vi−1. Let li denote its
length, and ti denote the unit tangent vector oriented in the same direction. Let θi = 6 vi−1vivi+1, the
angle opposite ei. Denote the unit outward normal perpendicular to edge ei by ni, and let hi denote the
perpendicular distance from vi to edge ei. Denote the segment from the midpoint of ei to the intersection of
the perpendicular edge bisectors by si. And let si denote its signed length where si is negative if the angle
opposite edge ei is obtuse. Let V(τ) denote the set of vertices of a triangle τ ; and more generally, for a set
of triangles T , let V(T ) =

⋃
τ∈T V(τ). Finally, let φi denote the linear function on τ that is one at vi and

zero at the other vertices. Each of these quantities should be subscripted by the triangle to which it belongs,
but to simplify notation we will drop this extra subscript.

Recall that the following relationships hold on an arbitrary triangle τ (e.g., [2]):

|τ | = 1

2
hili,(2.1)

3∑
i=1

liti = 0,(2.2)

∇φi = −ni
hi
,(2.3)

liti · ∇φi = 0, li±1ti±1 · ∇φi = ±1,(2.4)

si = −|τ |li∇φi+1 · ∇φi−1.(2.5)

We will also need a difference operator along ei defined by

δi(ψ) = ψ(vi−1)− ψ(vi+1).

For a function ψ defined on τ , we have the trivial relationship

δi(ψ) = li∇(Iψ) · ti,(2.6)

where Iψ is the linear interpolant of ψ agreeing at the vertices.
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Fig. 3.1. The control volume bv

3. The Finite Volume Scharfetter-Gummel Method. Let {Th}h denote a quasi-uniform family of
triangulations of the domain Ω parameterized by h, the maximum mesh spacing (e.g., [6]). For each vertex
v ∈ V(Th), let bv denote the polygonal volume formed by the perpendicular bisectors of the triangle edges
that contain the vertex v as depicted in Fig. 3.1. For v ∈ ∂Ω, the control volumes are suitably modified.
Specifically, for v ∈ Γ1, bv is empty; for v ∈ Γ2, ∂bv contains a portion of Γ2 as depicted in Fig. 3.2.

Let P k denote the space of polynomials of degree at most k, and define

Uh = {φ ∈ C0(Ω) |φ|τ ∈ P 1 ∀τ ∈ Th}

and

Uh,g = {φ ∈ Uh |φ = g on the nodes on Γ1}.

Let Wh denote the space of piecewise constant functions on ∪v∈V(Th)∂bv that are constant on each segment

si of bv. Let t̂ be the piecewise constant vector field on ∪v∈V(Th)∂bv such that t̂ restricted to segment si of
triangle τ is ti.

Fig. 3.2. The modified control volume bv for v ∈ Γ2

The FVSG [3] approximation of (1.1)–(1.3) is a pair (jh, uh) ∈Wh × Uh,g such that∫
∂bv

jht̂ · nbv ds = 0 ∀v ∈ V(Th),(3.1)

and for each triangle τ ∈ Th

jh|si = − 1

li
âiδi(e

ψeiuh) i = 1, 2, 3,(3.2)
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where nbv is the unit outward normal to control volume bv,

âi =

(
1

li

∫
ei

a−1eψei · ti ds
)−1

,

and ψei is the function defined on ei such that its tangential derivative satisfies

dψei

dti
= a−1β · ti.(3.3)

The function ψei is defined up to a constant which is of no consequence to the definition of jh since any
constant added to ψei is canceled by the corresponding factor in âi.

When we have at our disposal a function ψτ defined on the triangle consistently satisfying (3.3), then
(3.2) may also be written as

jh|si = −âi∇I(eψτuh)|ei · ti,(3.4)

where I is the nodal interpolation operator into Uh. This is the case when∫
∂τ

a−1β · t ds = 0;

for instance, when β is globally given as ∇ψ as in the drift diffusion equations, or when β and a are
represented as piecewise constant functions as in some finite element codes.

Equations (3.1) and (3.2) are discretizations of the continuity equation and constitutive relationship,
respectively. The finite volume discretization of the (3.1) is formally derived by first integrating (1.4) over a
volume bv and applying the divergence theorem; namely,

0 =

∫
bv

∇·J dx =

∫
∂bv

J·nbv ds.(3.5)

Comparing the last integrand of (3.5) to (3.1), we see that jh is an approximation to J · t̂ on the boundary of
the control volumes. In practice the ancillary variable jh may be eliminated in (3.1) using (3.2). We include
it in the definition of the FVSG scheme since it is useful in Section 4.

Equation (3.2) is the discretization of the constitutive relationship using the idea of Scharfetter and
Gummel [12]. Specifically, on edge ei, we have

a−1J · ti = −(∇u+ a−1βu) · ti = −e−ψei
d(eψeiu)

dti
.

One arrives at (3.2) by assuming J · ti is constant and integrating

−a−1eψeiJ · ti =
d(eψeiu)

dti

over ei.

4. Finite Element Formulation. To facilitate making the connection between (3.1) and the standard
Galerkin discretization of (1.4), we introduce for τ ∈ Th (using notation local to τ) a linear map Jτ : <3 → <2

defined by

Jτ ({γi}3i=1) =
1

|τ |

3∑
i=1

γilisiti.(4.1)

Lemma 4.1. Jτ has the following properties:

Jτ ({J · ti}3i=1) = J ∀J ∈ <2,(4.2)

Jτ ({s−1
i }

3
i=1) = 0,(4.3) ∫

τ

Jτ ({γi}3i=1) · ∇φi dx = γi+1si+1 − γi−1si−1.(4.4)
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Proof. Equation (4.3) follows directly from (2.2). Equation (4.4) is verified by a direct calculation using
the definition of Jτ and (2.4).

Let

A =
1

|τ |

3∑
i=1

lisitit
t
i.

Equation (4.2) is equivalent to A being the 2×2 identity matrix which we denote by I2×2. Since the matrix A
is symmetric and the normals of a triangle are pair-wise independent, it is enough to check that for i = 1, 2, 3

∇φi±1 ·A∇φi = ∇φi±1 · ∇φi.

Using the definition of A, (2.4) and (2.5), we see that

∇φi±1 ·A∇φi =
1

|τ |

3∑
j=1

ljsj∇φi±1 · tj∇φi · tj

=
1

|τ |
li∓1si∓1(∇φi±1 · ti∓1)(∇φi · ti∓1) = − 1

|τ |
si∓1

li∓1
= ∇φi±1 · ∇φi.

Hence,

1

|τ |

3∑
i=1

lisitit
t
i = I2×2.(4.5)

In light of (4.2), one can think of Jτ as a operator that recovers a vector defined on τ given its tangential
components on each of the edges. Equation (4.3) characterizes the null space of this operation, a space we
note that is also annihilated by the left hand side of (3.1).

Recall that the standard finite element method applied to the continuity equation with piecewise linear
test functions seeks a flux Jh satisfying

−
∫

Ω

Jh · ∇φv dx = 0 ∀v ∈ V(Th),(4.6)

where φv is the piecewise linear function that is one at v and vanishes at all the other vertices of Th.
The following lemma exhibits an equivalence between the finite volume and Galerkin discretizations of the
continuity equation. This will allow us to analyze the finite volume discretization in the more standard finite
element framework.

Lemma 4.2. If jh satisfies (3.1), then Jh satisfies (4.6) with

Jh|τ = Jτ ({jh|si}3i=1).(4.7)

Conversely, if Jh satisfies (4.6), then jh defined on each segment si of the perpendicular edge bisectors of τ
by

jh|si =

(
1

|τ |

∫
τ

Jh dx

)
· ti

satisfies (3.1).
Proof. It is enough to show that the equivalence holds element by element. Since the support of φv

consists of exactly the same set of triangles with bv∩τ 6= ∅, we consider only those τ ∈ Th such that bv∩τ 6= ∅.
Using notation local to τ with v1 = v and using (4.1) and (4.4), we have

−
∫
τ

Jh · ∇φv1 dx = (jh)|s3s3 − (jh)|s2s2 =

∫
∂bv1∩τ

jht̂ · nbv1 ds.(4.8)
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The proof of the converse is essentially identical and uses (4.2) and the fact that ∇φv is constant on
triangles.

Using Lemma 4.2 and (2.6), we can write the FVSG scheme as a Galerkin scheme with piecewise linear
test and trial functions.

Theorem 4.3. The function (jh, uh) ∈Wh×Uh,u0
is a solution to the FVSG discretization (3.1)–(3.2)

if and only if uh ∈ Uh,u0 satisfies

∑
τ∈Th

3∑
i=1

âi
si
li
δi(e

ψeiuh)δi(vh) = 0.(4.9)

When
∫
∂τ

(a|τ )−1β|τ · t = 0 ∀τ, the equation for uh may also be written as∑
τ∈Th

∫
τ

Dτ∇I(eψτuh) · ∇φdx = 0 ∀φ ∈ Uh,0,(4.10)

with

D|τ =
1

|τ |

3∑
i=1

âilisitit
t
i.(4.11)

Writing the finite volume method in the form of (4.9) and (4.10) makes it clear that the FVSG method
is related to several finite element methods. In particular the “Inverse-average-type finite element discretiza-
tion” of Markowich and Zlámal [9, Sec. 7] is the FVSG method when a ≡ 1 and β = ∇ψ. For nontrivial a
or for β not given as the gradient of ψ, the FVSG method is the “Edge Average Finite Element” (EAFE)
method of Xu and Zikatanov [14]. The FVSG is also closely related to the “Exponential Fitting” method of
Brezzi, Marini and Pietra [5, Sec. 2]. Their scheme, defined for a ≡ 1 and β = ∇ψ, is precisely (4.10) with
equal weights on each edge, namely

â1 = â2 = â3 =

(
1

|τ |

∫
τ

eψ dx

)
.

As discussed in [4] and demonstrated in Section 7, the equal weighting on each edge causes some difficulty.
A modification is discussed in [4, Sec. 4] which makes the method essentially that of [9].

Since the FVSG is identical to the EAFE method of Xu and Zikatanov, we have the following results
from [14]. Let u and J be the solution to (1.2) – (1.5), and let Iu be the linear interpolant of u Let | · |1,p,Ω
denote the standard semi-norm in W 1,p(Ω) or (W 1,p(Ω))2 as appropriate.

Theorem 4.4 ([14]). If a and β are continuous, then the FVSG discretization gives rise to an M-
matrix if and only if the triangulation is a Delaunay triangulation. Moreover, if a and β are only piecewise
smooth with discontinuities aligning with the triangulations and the angles opposite the edges over which
discontinuities occur are non-obtuse, the FVSG discretization gives rise to an M-matrix.

Theorem 4.5 ([14]). If Th is a Delaunay triangulation and a and β are continuous, or if a and β are
piecewise smooth and h is sufficiently small, then the solution uh of (4.9) exists and for p > 2 there exists a
constant C depending on the shape regularity of the mesh, a, β and p such that following estimate holds

|Iu− uh|1,2,Ω < C(a, β, p)h|J|1,p,Ω.(4.12)

5. Local Divergence and Curl Conditions on the Flux. A number of methods based on piecewise
linear approximations impose local conditions on the divergence or curl of the flux J. A natural modification
is to insist that for each triangle τ ∈ Th the local divergence free condition hold

∇·(J|τ ) = 0.(5.1)

The divergence free upwinding scheme [2] enforces this property.
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Consider one such τ ∈ Th; set the origin of the coordinate system to the center of mass of τ . Let Uh
denote the space of piecewise linear functions on Th. For J = ∇u + βu + D∇u, u ∈ Uh, and β = ∇ψ with
ψ ∈ Uh,

∇·(J|τ ) = β · ∇u|τ +∇·(D∇u|τ ).

If we choose the entries of D = {dij} such that

∂d11

∂x
+
∂d21

∂y
= β1,

∂d12

∂x
+
∂d22

∂y
= β2,

J automatically satisfies equation (5.1). A particular choice is

D =

(
ψ0 − ψ 0

0 ψ0 − ψ

)
,

where ψ0 = ψ(0, 0). Since ∫
τ

x dx =

∫
τ

y dx = 0,

the contribution of D integrated over a cell is zero. Hence, there is no contribution at all to the stiffness
matrix for u!

The above argument implies that we can make a perturbation of J in the space of discontinuous piecewise
linear functions in such a way that equation (5.1) is satisfied. Moreover, we can define a new scheme with
a modified upwinding matrix D whose solution is the element-wise divergence-free J and the original u. A
similar argument can be made regarding ∇× (J|τ ).

Hence, local conditions like equation (5.1) may be important. However, they are binding only in so
much as the finite element space associated with J is restricted. To say this another way, suppose we only
constrain the finite element space associated with J to be piecewise linear functions on Th; in that case, the
J can be modified to satisfy divergence conditions without changing the scalar part of the solution u.

6. Modified FVSG. Theorem 4.4 provides sufficient conditions for the discretization to yield an M-
matrix which leads immediately to some stability properties. When Th is not a Delaunay triangulation, we
now suggest some small modifications to equation (4.11) to preserve stability. Let τ be a triangle containing
an obtuse angle opposite side ei. The modified FVSG replaces âi in (4.9) with ãi < âi in order that the
element matrix remain positive semidefinite. One obvious choice would be to set ãi = minj=1,2,3 âj . Our
choice is less severe; we set ãi = γâi, where 0 < γ ≤ 1 is chosen to be the largest value such that both
the element matrix and the element matrix obtained by replacing β with −β (or equivalently, rotating the
element by π) are positive semidefinite. A straightforward but tedious calculation shows

ãi = min{1, γ+, γ−}âi

where

Lk = sk/lk

γ− =
−Li+1Li−1

LiLi+1eψ̂i+1−ψ̂i + LiLi−1eψ̂i−1−ψ̂i

γ+ =
−Li+1Li−1

LiLi+1eψ̂i−ψ̂i+1 + LiLi−1eψ̂i−ψ̂i−1

(note Li < 0, while Li±1 > 0).
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The modified scheme shares the same a priori error estimate given in Theorem 4.5. In fact, for h (or
more properly ha−1|β|) sufficiently small, it is easy to see that min{1, γ+, γ−} = 1, and the modified scheme
reverts to the standard FVSG discretization. To see this, note that

−Li+1Li−1

LiLi+1 + LiLi−1
=

cos θi+1 cos θi−1

− cos θi

=
cos θi+1 cos θi−1

cos θi+1 cos θi−1 − sin θi+1 sin θi−1

> 1

where we have used θi + θi+1 + θi−1 = π and θi > π/2.

7. Numerical Experiments and Implementation. In this section we compare the performance of
the FVSG scheme and the modified FVSG scheme to several other methods for solving convection diffusion
problems. The test problem is the “JCN” test problem in PLTMG [1, Chap. 7]. It is an idealization of an
electron continuity equation in a semiconductor device model.

Fig. 7.1. JCN Test Problem Geometry

Since a version of this problem has been readily available for some time in the software package
PLTMG [1], we will describe the problem in the form that is implemented in [1] instead of making a natural
change of variables to transform the problem to a unit square. The test problem geometry is depicted in
Fig. 7.1. The domain is Ω = (0, 0.03) × (0, 0.03). In the polygonal approximation to the annular region, β
is directed approximately radially (perpendicular to the inner and outer faces of the annular region). The
magnitude of the advection in the annular region is 40 + 15 ∗ log(10); outside the annular region β = 0. We
refer to the case that β is primarily flowing from upper left to lower right as the “forward biased” problem
and we refer to the case that β is in the opposite direction as the “reversed biased” problem.

The discretizations considered are:
• The FVSG method defined by (4.10), (equivalently, (3.1)-(3.2));
• The Modified FVSG method of Section 6;
• A one-point upwinded finite volume method (3.1) with

jh|si = (∇uh + βu+
h ) · ti,(7.1)

where

u+
h =

{
uh(vi+1) if β · ti > 0
uh(vi−1) if β · ti ≤ 0

;
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• A streamline diffusion finite element method (e.g., [8]) for uh ∈ Uh,u0 satisfying∫
Ω

((I + C
ββt

|β|2
)∇uh + βuh) · φdx = 0 ∀φ ∈ Uh,0,(7.2)

with

C|τ =
|τ ||β|

(1 + |τ ||β|)1/2
;

• The hybrid finite element scheme of [5, Eqn. (2.12)] which is (4.10) with

D|τ =

(
1

|τ |

∫
τ

eψ dx

)
I,

without the modifications in [4].
The methods have been implemented in PLTMG by editing the routines that calculate the element

stiffness matrix. For the FVSG and other schemes involving exponentials, extreme care was taken to order
that calculations in a way that maintains high precision. The calculations were carried out in double precision
and the sparse direct solver in PLTMG was used with iterative improvement to essentially remove questions
related to convergence of the linear algebra.

Three finite element meshes are used in the experiments and are depicted in Fig. 7.2. The meshes
with many obtuse angles are used primarily to test the robustness of the methods, and we do not seriously
advocate their use in practice. However, in practice the discretization scheme may not be tightly coupled to
the mesh generation and refinement strategy, and the assumption that the mesh is always Delaunay may not
be satisfied. Thus, robustness is desirable. The “comparison solutions” depicted in Fig. 7.3 were computed
on a mesh with edges 16 times finer than the good mesh in Fig. 7 using the FVSG method. The other
schemes gave very similar results on this highly refined mesh. The results for the forward biased problems
are in depicted in Fig. 7.4–Fig. 7.7. The reversed biased solutions are in Fig. 7.8–Fig. 7.11.

While this limited set of test problems is too small to draw any conclusions, we can make a few ob-
servations. We note that with the exception of the unmodified scheme from [5], all the schemes perform
well on the good mesh (Fig. 7.4 and Fig. 7.8). The monotonicity of the FVSG method is apparent and the
magnitude of the artificial diffusion in the streamline diffusion method seems appropriate. On the meshes
with more obtuse angles (Fig. 7.5 and Fig. 7.9), the instability of all but the FVSG becomes apparent.

Perhaps the most striking result from this experiment is that the unmodified FVSG method performs
surprisingly well, even on the meshes with obtuse angles. This provides some indication why it is used in
practice and warrants further study. Note that the modified FVSG scheme performs essentially equally well
and significantly better in Fig. 7.11.
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(a) Forward Biased

(b) Reverse Biased

Fig. 7.3. Comparison Solutions

11



(a) FVSG (b) One Point Upwinded Box

(c) Element Averaged Weight (d) Streamline Diffusion

Fig. 7.4. Forward Biased Test Problem on Mesh 1
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(a) FVSG (b) One Point Upwinded Box

(c) Element Averaged Weight (d) Streamline Diffusion

Fig. 7.5. Forward Biased Test Problem on Mesh 2
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(a) FVSG (b) One Point Upwinded Box

(c) Element Averaged Weight (d) Streamline Diffusion

Fig. 7.6. Forward Biased Test Problem on Mesh 3
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(a) Modified FVSG on Mesh 1

(b) Modified FVSG on Mesh 2 (c) Modified FVSG on Mesh 3

Fig. 7.7. Modified FVSG Method for the Forward Biased Test Problem
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(a) FVSG (b) One Point Upwinded Box

(c) Element Averaged Weight (d) Streamline Diffusion

Fig. 7.8. Reversed Biased Test Problem on Mesh 1

16



(a) FVSG (b) One Point Upwinded Box

(c) Element Averaged Weight (d) Streamline Diffusion

Fig. 7.9. Reversed Biased Test Problem on Mesh 2
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(a) FVSG (b) One Point Upwinded Box

(c) Element Averaged Weight (d) Streamline Diffusion

Fig. 7.10. Reverse Biased Test Problem on Mesh 3
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(a) Modified FVSG on Mesh 1

(b) Modified FVSG on Mesh 2 (c) Modified FVSG on Mesh 3

Fig. 7.11. Modified FVSG Method for the Reverse Biased Test Problem
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