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Abstract. In this paper, the multilevel ILU (MLILU) decomposition is introduced. During an
incomplete Gaussian elimination process new matrix entries are generated such that a special ordering
strategy yields distinct levels. On these levels, some smoothing steps are computed. The MLILU
decomposition exists and the corresponding iterative scheme converges for all symmetric and positive
definite matrices. Convergence rates independent of the number of unknowns are shown numerically
for several examples. Many numerical experiments including unsymmetric and anisotropic problems,
problems with jumping coefficients as well as realistic problems are presented. They indicate a very
robust convergence behavior of the MLILU method.

Key words. Algebraic multi-grid, filter condition, ILU decomposition, iterative method, partial
differential equation, robustness, test vector.

AMS subject classifications. 65F10, 65N55.

1 Introduction

In this paper, we consider iterative algorithms

u(i+1) = u(i) +M−1(f −K u(i)) (1.1)

for the solution of linear systems of equations

K u = f.

Although standard multi-grid methods converge independently of the number of un-
knowns, they show a lack of robustness for certain important problems (see e.g. [11]).
To overcome this problem, several multi-grid methods with matrix dependent transfer
operators were developed (e.g. [1], [2], [3], [9], [15], [16], [17], [22], [27]). These meth-
ods still require a given grid hierarchy. The first truly algebraic multi-grid method
(AMG) was introduced by Ruge and Stüben [19]. However, most of these methods
are only robust with respect to some difficulties and they are generally based on a
similar classical (matrix weighted) interpolation idea.

Recently, Bank and Xu [5] and Bank and Smith [6] (see also [4] and [20]) introduced
the hierarchical basis ILU (HBILU) decomposition. The HBILU is actually a modified
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ILU decomposition in the spirit of Gustafsson [10] and Wittum [26] which allows some
additional fill-in edges. The additional edges produce coarse graphs which are not
consistent finite element triangulations, but play a role similar to the coarse grids in
a multi-grid method.

The multilevel ILU (MLILU) decomposition may be interpreted as a multi-grid ver-
sion of the HBILU decomposition. Nevertheless, the main approximation step of the
MLILU and the HBILU decomposition are different. Like the HBILU decomposition,
the MLILU decomposition uses only information from the system matrix and does
not require a given grid hierarchy. The MLILU decomposition represents an incom-
plete Gaussian elimination, where the fill-in is approximated by several additional
matrix entries such that a filter condition is fulfilled. In particular, the interpolation
argument which is typical for multi-grid methods is not applied.

In Sect. 2, the MLILU decomposition is defined, followed by a short theoretical inves-
tigation in Sect. 3. Sect. 4 introduces the ordering algorithm. Finally, in Sect. 5, we
present some numerical experiments.

2 The Decomposition

The MLILU decomposition is defined by a successive elimination of the columns of the
system matrix K. In each step, a special elimination technique is applied which limits
the fill-in resulting from standard Gaussian elimination. This technique is introduced
in Sect. 2.1. After that, a recursive partition of the unknowns yields the multilevel
structure of the MLILU decomposition.

2.1 The Approximation Scheme

In this section, we describe the elimination of the first column of the matrix K(i) ∈
Rn(i)×n(i)

K(i) =

(
di ri
li K̄(i)

)
, (2.1)

di ∈ R, di 6= 0, ri ∈ R1×(n(i)−1), li ∈ R(n(i)−1)×1, K̄(i) ∈ R(n(i)−1)×(n(i)−1).

Exact Gaussian elimination leads to the factorization

K(i) =

(
1 0

lid
−1
i In(i)−1

)(
1 0

0 K
(i)
S

)(
di ri
0 In(i)−1

)
(2.2)

with the (n(i) − 1)× (n(i) − 1) identity matrix In(i)−1 and the Schur-complement

K
(i)
S = K̄(i) − lid−1

i ri. (2.3)

In order to limit the fill-in, the Schur-complement is approximated by a matrix with
less non-zero entries. The pattern of the Schur-complement approximation is con-
trolled by a set of parent indices Pi containing usually two indices. The construction
of these sets is discussed in Sect. 4.

Definition 2.1. Let a test vector t(i) ∈ Rn(i)

and a set of parent indices Pi with∑
z∈Pi

t
(i)
z+1

2
> 0 (2.4)
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be given. Then, the Schur-complement K
(i)
S in (2.3) is approximated by

K(i+1) = K̄(i) − lid−1
i ai − bid−1

i ri + bid
−1
i ai, (2.5)

K(i+1) ∈ Rn(i+1)×n(i+1)

, ai ∈ R1×n(i+1)

, bi ∈ Rn(i+1)×1, n(i+1) = n(i) − 1. The vectors
ai and bi are defined by

(ai)j =



|(ri)j |
∑

z≤n(i+1)

(ri)zt
(i)
z+1∑

z∈Pi

|(ri)z| t(i)z+1

: j ∈ Pi ∧
∑
z∈Pi

|(ri)z| t(i)z+1 ≥ δ,

t
(i)
j+1

∑
z≤n(i+1)

(ri)zt
(i)
z+1∑

z∈Pi

t
(i)
z+1

2 : j ∈ Pi ∧
∑
z∈Pi

|(ri)z| t(i)z+1 < δ,

0 : j /∈ Pi,

(2.6)

(bi)j =



|(li)j |
∑

z≤n(i+1)

(li)zt
(i)
z+1∑

z∈Pi

|(li)z| t(i)z+1

: j ∈ Pi ∧
∑
z∈Pi

|(li)z| t(i)z+1 ≥ δ,

t
(i)
j+1

∑
z≤n(i+1)

(li)zt
(i)
z+1∑

z∈Pi

t
(i)
z+1

2 : j ∈ Pi ∧
∑
z∈Pi

|(li)z| t(i)z+1 < δ,

0 : j /∈ Pi.

(2.7)

δ > 0 is a small real number, e.g. δ = 10−10.

The standard choice for the test vector t(i) is

t(i) = (1, 1, ..., 1)T .

The construction scheme guarantees the filter conditions

(0, ai − ri) t(i) = 0, (0, (bi − li)T ) t(i) = 0.

Hence (see Proposition 3.1)(
0 0

0 K(i+1) −K(i)
S

)
t(i) =

(
0 0
0 (bi − li)d−1

i (ai − ri)

)
t(i) = 0
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and (
0 0

0 K(i+1) −K(i)
S

)T
t(i) = 0.

2.2 The Two-Level MLILU Decomposition

Definition 2.1 describes a sequence of matrices K(i) ∈ Rn(i)×n(i)

of decreasing size
n(i+1) = n(i) − 1. The matrix K(i+1) is obtained by approximating the Schur-
complement of K(i) with (2.5) after the elimination of the first column of K(i). The
corresponding sequences di, ri and li are defined by (2.1).

For the construction of the two-level MLILU decomposition, we assume a given par-
titioning of the vector of the unknowns u ∈ Rn into F- and C-unknowns, uF ∈ RnF ,
uC ∈ RnC , nF + nC = n, respectively. Ordering the F-unknowns first leads to
uT = (uTF , u

T
C). Then, the first nF columns of the system matrix K are eliminated

according to Definition 2.1. An algorithm for constructing the partition into F- and
C-unknowns is discussed in Sect. 4.

Definition 2.2. The operator [v]i returns the last i entries of the vector v.

The construction of each matrix K(i), i > 1 requires a test vector t(i) (see Definition
2.1). For the two-level MLILU decomposition, these test vectors t(i) are determined
by the scheme

t(i) = [t]n(i) ∈ Rn
(i)

, t ∈ Rn. (2.8)

Definition 2.3. (two-level MLILU) Let a matrix K, a test vector t ∈ Rn and
sets of parents indices Pi, i = 1, . . . , nF, satisfying (2.4) be given. Then, if di 6= 0,
i = 1, . . . , nF, the two-level MLILU decomposition MTL is defined by

MTL = L(1) · · ·L(nF)

(
InF

0
0 K(nF+1)

)
U (nF) · · ·U (1) (2.9)

with lower triangular matrices L(i) and upper triangular matrices U (i), i = 1, . . . , nF,

L(i) =

 Ii−1 0 0
0 1 0
0 li d

−1
i In−i

 , U (i) =

 Ii−1 0 0
0 di ri
0 0 In−i

 ,

where Ii denotes the i × i identity matrix. The sequences K(i), di, ri, li and t(i) are
determined by Definition 2.1, the partitioning (2.1) and (2.8) starting at K(1) = K.

The two-level MLILU decomposition represents a successive elimination of the first
nF columns of K, where all Schur-complements are approximated by (2.5). Matrices
which allow a well defined MLILU decomposition are analyzed in Sect. 3.

2.3 The `-Level MLILU Decomposition

Once the two-level decomposition is defined, the construction of the multilevel decom-
position is straightforward. The approximate Schur-complementK(nF+1) in Definition
2.3 is considered as a new matrix and the vector uC is considered as a new vector
u2 ∈ Rn2 with a new partition into m2 F- and n3 = n2 −m2 C-unknowns. Then, a
two-level MLILU decomposition of the matrix K2 can be calculated.
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The recursive ordering of the unknowns leads to a block vector

u = (x1, x2, . . . , x`)
T , xi ∈ Rmi , n =

∑
i≤`

mi

where ` is the number of levels. Thus, for each level i, ui

ui = (xi, . . . , x`)
T , ui ∈ Rni , ni =

∑
i≤j≤`

mj

represents all unknowns, while xi denotes the F-unknowns. Additionally, mi and
ni are the number of F-unknowns and the total number of unknowns on the level i
respectively. The numbers ni are supposed to decline by a factor between 1/2 and
1/4. This factor will not be constant, but nevertheless the number of levels ` will be
proportional to the logarithm of the number of unknowns n.

Definition 2.4. (MLILU) Let a matrix K ∈ Rn×n, a test vector t ∈ Rn and sets
of parents indices Pi, i = 1, . . . , n − n`, satisfying (2.4) be given. Mi denotes the
two-level MLILU decomposition

Mi = L
(1)
i · · ·L

(mi)
i

(
Imi 0
0 Ki+1

)
U

(mi)
i · · ·U (1)

i ,

of Ki with respect to the test vector ti = [t]ni
, where K1 = K (Ki,Mi, U

(j)
i , L

(j)
i ∈

Rni×ni) . Then, the `-level MLILU decomposition M of K is defined by

M = L1 · · · L`−1

(
In−n`

0
0 K`

)
U`−1 · · · U1, (2.10)

where

Li =

(
In−ni

0
0 Li

)
, Li = L

(1)
i · · ·L

(ni)
i ,

Ui =

(
In−ni 0

0 Ui

)
, Ui = U

(1)
i · · ·U

(ni)
i .

Note that the `-level MLILU decomposition and a two-level MLILU decomposition
with nC = nl and the same ordering are absolutely equivalent. However, in the
following section, we will add smoothing steps on these levels, which is of course not
possible without distinct levels.

2.4 The Algorithm

As explained in Sect. 3, the MLILU decomposition M approximates K well for vec-
tors which are in some sense close to the test vector t. On the other hand, the
approximation might be poor for other vectors. Therefore, the construction of a sec-
ond decomposition or the use of a second iterative scheme which takes care of these
vectors will be necessary. Hence, a reasonable strategy is to construct an MLILU
decomposition with respect to a smooth test vector which handles the smooth error
components, and to use smoothing steps, e.g. Gauß-Seidel method, on each level to
damp the high frequency error components.
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Algorithm 2.5. Assume the matrices Ui, Li and Ki have been computed by an `-level
MLILU decomposition and smoothers Si are defined. Then, the following function
MLILU(1, u, f) calculates one step of the corresponding MLILU method.

MLILU(i, ui, fi)
{

if(i == `) ui = K−1
i fi;

else
{

ui = Sν1i (ui, fi);
di = fi −Ki ui;
di = L−1

i di;
di+1 = [di]ni+1

;
vi+1 = 0;
for(j = 0; j < γ; j = j + 1) MLILU(i+ 1, vi+1, di+1);
[di]ni+1 = vi+1;

ui = ui + U−1
i di;

ui = Sν2i (ui, fi);
}

}

ui, di, fi, vi ∈ Rni .

We emphasize that the entire MLILU decomposition M , including the matrices Li
and Ui in Algorithm 2.5, can be stored as one (sparse) n×n matrix, as in the case of
standard LU decomposition and classical ILU decomposition. Only the matrices Ki,
and possibly decompositions for the smoothers Si, require additional storage. As we
will show in Sect. 5, Algorithm 2.5 works well with a simple Gauß-Seidel smoother,
so extra memory for a more sophisticated smoother does not seem to be justified at
this point.

3 Theoretical Results

In the first part of this section, we prove the existence of the MLILU decomposition
and the convergence of Algorithm 2.5 without smoothing steps for symmetric and
positive definite matrices. In the rest of the section, we discuss the filter property of
the MLILU decomposition and Algorithm 2.5.

3.1 The Error Matrix

The error matrix N = M − K is the difference between the system matrix K and
the MLILU decomposition M . As a first step, we investigate the error matrix after
one elimination step, essentially the difference between the Schur-complement and
the approximation introduced in Definition 2.1. Next, we show that the error matrix
of the entire MLILU decomposition is just the sum of the error matrices for each
individual elimination step.

Proposition 3.1. Let M (i) denote the factorization

M (i) =

(
1 0

lid
−1
i In(i)−1

)(
1 0
0 K(i+1)

)(
di ri
0 In(i)−1

)
(3.1)
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of K(i) in (2.1) as described in Definition 2.1. The comparison with the exact factor-
ization (2.2) yields

N (i) = M (i) −K(i)

=

(
1 0

lid
−1
i In(i)−1

)(
0 0

0 K(i+1) −K(i)
S

)(
di ri
0 In(i)−1

)
=

(
1 0

lid
−1
i In(i)−1

)(
0 0
0 (bi − li)d−1

i (ai − ri)

)(
di ri
0 In(i)−1

)
=

(
0 0
0 (bi − li)d−1

i (ai − ri)

)
. (3.2)

Lemma 3.2. The error matrix of the two-level MLILU decomposition is given by

NTL = MTL −K =
∑
i≤nF

(
0i−1 0

0 N (i)

)
, (3.3)

where 0i is an i× i matrix with (0i)r,s = 0 ∀r, s.
Proof. Note that (

0i 0
0 Z

)(
∗ ∗
0 Ij

)
=

(
0i 0
0 Z

)
holds for a (n− i)× (n− i) matrix Z and j ≥ n− i. Hence,

MTL = L(1) · · ·L(nF)

(
InF 0
0 K(nF+1)

)
U (nF) · · ·U (1)

= L(1) · · ·L(nF−1)

(
InF−1 0

0 M (nF)

)
U (nF−1) · · ·U (1)

= L(1) · · ·L(nF−1)

(
InF−1 0

0 K(nF) +N (nF)

)
U (nF−1) · · ·U (1)

= L(1) · · ·L(nF−1)

(
InF−1 0

0 K(nF)

)
U (nF−1) · · ·U (1) +

(
0nF−1 0

0 N (nF)

)
...

= L(1)

(
1 0
0 K(2)

)
U (1) +

∑
2≤i≤nF

(
0i−1 0

0 N (i)

)

= K(1) +N (1) +
∑

2≤i≤nF

(
0i−1 0

0 N (i)

)
.

Finally, K(1) = K proves (3.3).

The same technique as in Lemma 3.2 can be applied for the computation of the error
matrix of an `-level MLILU decomposition.

Lemma 3.3. Let Ni = Mi−Ki be the error matrix of a two-level MLILU decomposi-
tion of the matrix Ki. Then, the error matrix N of an `-level MLILU decomposition
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M of K is given by

N = M −K =
∑
i<`

(
0n−ni

0
0 Ni

)
. (3.4)

Proof. Similar to the proof of Lemma 3.2.

The next lemma shows that if the system matrix K is symmetric and positive def-
inite, all error matrices are symmetric and positive semi-definite. This proves the
existence of the MLILU decomposition and the convergence of the corresponding it-
erative method.

Lemma 3.4. Assume K is symmetric and positive definite (s.p.d.). Then, the ma-
trices K(i) and M (i) determined by Definition 2.1, equation (3.1) and K(1) = K
are s.p.d.. All error matrices N (i) = M (i) − K(i) are symmetric and positive semi-
definite.

Proof. Note that

li = rTi ⇒ bi = aTi

(Definition 2.1). Hence,

N (i) =

(
0 0
0 (bi − li)d−1

i (ai − ri)

)
=

(
0 0

bi − li 0

)(
d−1
i 0
0 0

)(
0 ai − ri
0 0

)
is obviously symmetric and positive semi-definite if di > 0.

Induction:
i = 1: Since K(1) = K is s.p.d., d1 > 0.
i→ i+ 1:

K(i+1) = K̄(i) − lid−1
i ai − bid−1

i ri + bid
−1
i ai

= K
(i)
S + (bi − li)d−1

i (ai − ri).

Because K(i) is s.p.d., the Schur-complement K
(i)
S is s.p.d. and di > 0. Therefore,

K(i+1) is s.p.d.. Hence, di+1 > 0.

Corollary 3.5. The MLILU decomposition M of a s.p.d. matrix K exists and is
s.p.d.. The error matrix N = M −K is symmetric and positive semi-definite.

Theorem 3.6. Let K be s.p.d.. Then, the energy norm of the iteration matrix
In −M−1K, where M is the MLILU decomposition of K, is smaller than one

‖In −M−1K‖K < 1.

Thus, the iterative method

u(i+1) = u(i) +M−1(f −K u(i))

converges monotonically with respect to the energy norm towards the solution of the
linear system K u = f .

Proof. The proof is based on the positive semi-definiteness of the error matrix. A
detailed proof can be found in [13] (Remark 4.8.3), [23] or [24].
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3.2 The Iteration Matrix

In this section, the iteration matrix of the MLILU algorithm (Algorithm 2.5) is ana-
lyzed.

Proposition 3.7. The iteration matrix Ti,TL of Algorithm 2.5 applied as a two-level
method on level i is given by

Ti,TL = Sν2i

{
Ini
− U−1

i

(
Imi

0
0 K−1

i+1

)
L−1
i Ki

}
Sν1i .

For the multilevel method, K−1
i+1 is approximated by γ steps of the same method on

the level i+ 1. In particular, the solution wi+1 of

Ki+1 wi+1 = di+1

is approximated by vi+1 = w
(γ)
i+1, where

wi+1 − vi+1 = wi+1 − w(γ)
i+1 = T γi+1(wi+1 − w(0)

i+1) = T γi+1wi+1,

because w
(0)
i+1 = 0. Ti+1 denotes the iteration matrix of Algorithm 2.5 starting on

level i+ 1. Therefore,

vi+1 = (Ini+1 − T
γ
i+1)wi+1 = (Ini+1 − T

γ
i+1)K−1

i+1 di+1.

This leads us to the following remark.

Remark 3.8. The iteration matrix Ti of Algorithm 2.5 applied on level i is given by

Ti = Sν2i

{
Ini
− U−1

i

(
Imi 0

0 M̃−1
i+1

)
L−1
i Ki

}
Sν1i ,

where

M̃−1
i+1 = (Ini+1

− T γi+1)K−1
i+1, i < `− 1,

M̃−1
` = K−1

` .

3.3 The Filter Property

A characteristic property of the MLILU decomposition is the filter property Mt = Kt,
where M is the MLILU decomposition, K the system matrix and t is the test vector.
We begin our proof with the following lemma.

Lemma 3.9. With the same notation as in Proposition 3.1 and Definition 2.1,

N (i) t(i) = 0, N (i)T t(i) = 0

holds.

Proof. Using Definition 2.1,

(0, ai − ri) t(i) = 0, (0, (bi − li)T ) t(i) = 0
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can be easily verified. Thus, (3.2) proves the lemma.

Lemma 3.10. The error matrices NTL (3.3) and N (3.4) satisfy

NTL t = 0, NT
TL t = 0,

N t = 0, NT t = 0,

where t represents the test vector in Definition 2.3 and Definition 2.4.

Proof. We prove the result for the two-level decomposition first.

NTL t =
∑
i≤nF

(
0i−1 0

0 N (i)

)
t =

(
~0i−1∑

i≤nF

N (i)[t]n(i)

)
=

(
~0i−1∑

i≤nF

N (i)t(i)

)
= 0,

where ~0i = (0, . . . , 0)T ∈ Ri. Hence,

NT
TL t =

 ~0i−1∑
i≤nF

N (i)T t(i)

 = 0.

Since Ni is the error matrix of a two-level MLILU decomposition with respect to the
test vector ti = [t]ni ,

N t =
∑
i<`

(
0n−ni

0
0 Ni

)
t =

(
~0n−ni∑

i<`

Ni[t]ni

)
=

(
~0n−ni∑
i<`

Ni ti

)
= 0

and

NT t =

(
~0n−ni∑

i<`

NT
i ti

)
= 0

holds.

Lemma 3.10 shows the filter property

M t = K t, (In −M−1K) t = 0

for the MLILU decomposition M . The following remark explains that Algorithm 2.5
with ν1 = 0, ν2 ≥ 0 and γ ≥ 1 preserves the filter property.

Remark 3.11. Let Ti and ti be defined by Remark 3.8 and Definition 2.4 respectively.
Then, if ν1 = 0, ν2 ≥ 0 and γ ≥ 1,

Ti ti = 0 ∀i < `.

Proof.
Induction:
i = `− 1:

T`−1 = Sν2`−1

(
In`−1

− U−1
`−1

(
Im`−1

0
0 K−1

`

)
L−1
`−1K`−1

)
= Sν2`−1

(
In`−1

−M−1
`−1K`−1

)
.
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Since M`−1 is the MLILU decomposition of K`−1 with respect to t`−1

T`−1 t`−1 = 0.

i+ 1→ i: Lemma 3.10 yields

M−1
i Ki ti = ti.

Hence,

U−1
i

(
Imi 0
0 K−1

i+1

)
L−1
i Ki ti = ti,(

Imi
0

0 K−1
i+1

)
L−1
i Ki ti = Ui ti,(

Imi 0
0 Ini+1 − T

γ
i+1

)(
Imi 0
0 K−1

i+1

)
L−1
i Ki ti =

(
Imi 0
0 Ini+1 − T

γ
i+1

)
Ui ti,(

Imi
0

0 M̃−1
i+1

)
L−1
i Ki ti =

(
Imi

0
0 Ini+1

− T γi+1

)
Ui ti.

Note that

Ui =

(
∗ ∗
0 Ini+1

)
and

Ti+1 ti+1 = 0.

Therefore, (
Imi

0
0 Ini+1

− T γi+1

)
Ui ti = Ui ti

and

U−1
i

(
Imi 0

0 M̃−1
i+1

)
L−1
i Ki ti = ti

which proves

Ti ti = 0.

4 The Labeling

For each level, i.e. for all systems Ki ui = fi, we must construct a partition into F-
unknowns and C-unknowns. Additionally, a set of parent indices Pi must be assigned
to each F-unknown. In order to simplify the notation, we omit the level index in
this section. The labeling and the parent node assignment is performed for all levels
by the same algorithm. This algorithm represents a compromise between a good
approximation of the vectors ri and li by ai and bi in Definition 2.1 and a small
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Fig. 1. New edges after the elimination of the node in the center.

amount of fill-in. The optimal approximation (ai = ri, bi = li, exact Gaussian
Elimination) produces too much fill-in. At the other extreme, the choice ai = bi = 0
avoids all fill-in but yields the slowly converging symmetric Gauß-Seidel method.

Since we want a robust algorithm, we label an unknown as an F-unknown only if an
appropriate set of parent indices can be assigned. Besides this condition, all other
elements of the algorithm are motivated only by the goal of minimizing the fill-in and
the number of C-unknowns.

4.1 The Graph

The labeling algorithm is based on the graph G(N,E) of the matrix K which consists
of a set of nodes N and a set of edges E. Each diagonal entry ki,i and therefore each
index i (and each unknown) corresponds to a node in N . Two nodes r, s ∈ N are
connected via an edge er,s ∈ E if either ki(r),i(s) 6= 0 or ki(s),i(r) 6= 0, where i(r), i(s)
are the indices corresponding to r, s. Since we are dealing in this section with the
graph, in some expressions we replace index with node. For instance, the set of parent
indices Pi is now called set of parent nodes. Since both sets are equivalent after the
introduction of an ordering, we denote both sets with Pi.

The following proposition summarizes the influence of the elimination procedure and
the approximation of the Schur-complement on the graph.

Proposition 4.1. Assume Bi is the set of neighbor nodes of the node i and Pi is the
set of parent nodes. In order to fit into the notation of Sect. 2, we assume without loss
of generality, that the node i corresponds to the first column in K. Then, all possible
new edges er,s produced by the approximation of the Schur-complement according to
Definition 2.1 satisfy

r ∈ Pi ∧ s ∈ Bi or s ∈ Pi ∧ r ∈ Bi or r ∈ Pi ∧ s ∈ Pi.

In other words, the approximation scheme (Definition 2.1) connects all neighbor nodes
of the eliminated node with all parent nodes. Fig. 1 shows the ten (2 · 5 !) new edges
after the elimination of the node marked by a circle. The filled dots indicate the
parents nodes.

The set of neighbor nodes is not yet defined. One obvious definition would be

Bi = {j ∈ N | ei,j exists}. (4.1)

Of course, the graph changes after each elimination of a column (node). The elimi-
nation of the nodes produces a sequence of graphs which we call virtual graphs. Each
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Fig. 2. All nodes are neighbors of the node i.

virtual graph arises from the previous virtual graph by adding all new edges produced
by the elimination process (Definition 2.1) of a node. The initial virtual graph is the
initial graph of the matrix K. Considering the current virtual graph, the labeling
algorithm minimizes the number of new edges in the next virtual graph.

However, we do not want to store or update the virtual graphs for several reasons.
First, we want to avoid the allocation of new memory during the labeling process.
Second, we want all parent nodes of an F-node to be neighbor nodes in the initial
graph.

Similar to the code, we use only the edges of the initial graph of the matrix K for the
description of the labeling algorithm. Therefore, we introduce a modified definition
of a neighbor node (Definition 4.3).

Definition 4.2. The graph G of the system matrix K is a set of nodes N and edges
E. An edge er,s between two nodes r, s ∈ N exists, if and only if

ki(r),i(s) 6= 0 or ki(s),i(r) 6= 0,

where i(r) returns the matrix index corresponding to the node r.

The set F ⊂ N contains all nodes labeled as F-node. The set C ⊂ N contains all
nodes labeled as C-node. For the partition in Sect. 2.2, the F-nodes are ordered in the
same order as they are added to the set F . The C-nodes are ordered in the reverse
order as they are added to the set C.

4.2 The Neighbors

Definition 4.3. (neighbor node) j ∈ N \ F is a neighbor node of i ∈ N \ F , if and
only if j 6= i and one of the following statements is true.

• ei,j exists.
• ei,r exists, r ∈ F and j ∈ Pr.
• ei,r exists, r ∈ F , i ∈ Pr and j is neighbor of r.

The set of neighbor nodes of i is denoted by Bi, the number of neighbor nodes by nbi.

The labeling algorithm insures that the recursive definition of a neighbor node does
not cause any problem, because a node in F cannot serve as a parent node. Therefore,
the depth of the recursion is never larger than one. In the example case shown in
Fig. 2, the node i ∈ Pr is a parent node of the node r ∈ F . Thus, according to
Definition 4.3, all nodes in Fig. 2 aside from the node r are neighbors of the node i.

Remark 4.4. The definition of a neighbor node according to Definition 4.3 is equiv-
alent to (4.1) if ei,j in (4.1) refers to an edge in the current virtual graph.
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The following lemma predicts the number of fill-in edges produced by the approxi-
mation scheme. This number is equivalent to the number of new edges in the next
virtual graph and to the number of new neighbors according to Definition 4.3.

Lemma 4.5. Let Pi ⊂ Bi,
npi = number of parent nodes of i,
ncn(i, j) = number of common neighbors of j and i,

ζ(r, s) =

{
0 : if er,s exists,
1 : otherwise.

Then, the maximal number ηi(Pi) of new edges in the next virtual graph is given by

ηi(Pi) = 2npi · (nbi − 1)− 2
∑
j∈Pi

ncn(i, j)− 2
∑
r,s∈Pi

ζ(r, s).

Proof.
2npi · (nbi − 1) describes the number of possible new edges in the next virtual graph
analyzed by Proposition 4.1. 2

∑
j∈Pi

ncn(i, j) is the number of already existing edges.
If r and s are not connected parent indices, the first term counts the new edges twice.
This is compensated by the third term.

Proposition 4.6. Assume all possible fill-in edges are in fact stored. Then, once
the F-, C-unknowns and the parent indices are selected, the pattern (the graph) of the
approximated Schur-complement K(nF+1) after the elimination of the first nF columns
of K does not depend on the ordering of the F-unknowns.

4.3 The Algorithm

The first step of the labeling algorithm is the construction of the graph G. Each edge
gets a weight depending on the value of the corresponding matrix entry. This is done
by the following function.

Init Graph
{

for((r, s) ∈ N ×N)
{

create er,s and es,r if ki(r),i(s) 6= 0 or ki(s),i(r) 6= 0;

er,s =

{
1 : ki(r),i(s) ≥ σ max

j
(ki(r),j);

0 : otherwise;

}
}
The parameter σ is the only parameter in the labeling and parent assignment algo-
rithm. In this paper, only two values σ = 1/2 and σ = 1/4 are used.

The main idea of the labeling algorithm is to mark for each node those nodes which
would be the optimal parent nodes. The optimal parent nodes of a node i are strongly
connected nodes j, i.e. ei,j > 0, which minimize the number of new matrix entries
(the number of new edges in the next virtual graph). Then, we label the node which
is an optimal parent for the largest number of nodes as C-node. After that, we update
the optimal parent marks and select the next C-node which has to satisfy the same
condition. A node is labeled as F-node as soon as it has two strong neighbors which
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are labeled as C-node. Those nodes are the parent nodes. The following functions
describe this process in detail.

The core of the algorithm and the only complex part is the selection of the optimal
parent nodes. Since we want to minimize the number of new edges in the next virtual
graph, we need to compute the number of new edges ηi(p1, p2) for each possible pair of
parent nodes. This is done by Lemma 4.5. Note that ηi(p1, p2) can be evaluated fast,
using flags for the neighbors of the node i. Essentially, only the number of common
neighbors ncn(i, j) has to be computed for each possible parent node.

Mark Optimal Parents(i)
{

Wi = {j ∈ N \ F | ei,j > 0};

/* reset marks */
for(j ∈Wi) ei,j = 1 ;

/* minimize new edges */
Qi = {(r, s) ∈Wi ×Wi | ηi(r, s) = min

(l,j)∈Wi×Wi

(ηi(l, j)) };

/* weakest connection */
Pi = {(r, s) ∈ Qi | ξi(r, s) = min

j with (r,j)∈Qi

(ξi(r, j)) };

/* mark edges */
if((r, s) ∈ Pi exists with r ∈ C ∨ s ∈ C)
{

for((r, s) ∈ Pi)
{

if(r ∈ C ∨ s ∈ C) ei,s = ei,r = 250 + 2nbi − ηi(r, s);
}

}
else
{

for((r, s) ∈ Pi) ei,s = ei,r = 100 + 2nbi − ηi(r, s);
}

}

In most cases, the pair of parent nodes minimizing the number of additional edges
is not unique. One node can even minimize the number of additional edges with
different second parent nodes. In order to reduce the number of of possible parent
pairs, we consider in Mark Optimal Parents only those nodes as second node which
have the weakest connection to the first node. The connection is measured by ξi(l, j).

ξi(l, j)
{

ξi(l, j) = 0;
if(el,j > 0) ξi(l, j) = ξi(l, j) + 16;
if(el,j = 0) ξi(l, j) = ξi(l, j) + 4;
for(s ∈ Bl)
{

if(el,s > 0 ∧ ej,s > 0) ξi(l, j) = ξi(l, j) + 4;
if(el,s = 0 ∧ ej,s > 0) ξi(l, j) = ξi(l, j) + 2;
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if(el,s > 0 ∧ ej,s = 0) ξi(l, j) = ξi(l, j) + 2;
if(el,s = 0 ∧ ej,s = 0) ξi(l, j) = ξi(l, j) + 1;

}
}
A modification of the parameters involved in the computation of ξ changes the results
only slightly.

In Mark Optimal Parents, we mark the edges to possible parent edges with a large
number (100 + 2nbi − ηi(r, s) or 250 + 2nbi − ηi(r, s)) in order to distinguish them
from the (only) strong edges. The actual value is not important, it just has to be
much larger than 1. If one of the optimal parent nodes is already a C-node, we
mark only these edges and increase the weight by a factor 2.5, because if this node is
selected we get an F-node with an optimal pair of parent nodes. Of course, the factor
2.5 is heuristic. As long as this factor is larger than two the results do not change
dramatically. The difference between the ”eliminated” edges 2nbi and the new edges
ηi in the next virtual graph is added in order to break ties.

Once the optimal parent nodes are marked, we can select the node which the most
unlabeled nodes want to use as a parent node. This node is chosen by the following
function.

Next Node
{

Y = N \ (F ∪ C);
if (Y = {}) return(0);

choose n ∈ Y with λn = max
j∈Y

λj ;

return(n);
}
λi is defined by λi =

∑
j∈Y ej,i, Y = N \ (F ∪ C).

If more than one node with the maximal λn exists, the returned node depends on the
implementation. Since we expect only a limited number of values for λi, which is in
particular independent of the number of nodes, the search can be implemented fast,
for instance using a couple of lists.

Finally, we need a function which decides if a node is labeled as F-node and which
assigns the parent nodes.

Check if F-node(i)
{

np = ne = 0;
for(j with ei,j > 0)
{

ne = ne+ 1;
if(j ∈ C) np = np+ 1;

}
if(np > 1 ∨ (ne = 1 ∧ np = 1))
{

F = F ∪ i;
Pi = {j ∈ C | ei,j > 0};

}
}
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A node is selected as F-node, if at least two neighbors with ei,j > 0 can be assigned
as parent nodes. If the node i has only one neighbor satisfying ei,j > 0, this neighbor
node is sufficient as parent node. Note that only nodes which are neighbor nodes in
the original graph — in contrast to the current virtual graph — can serve as neighbor
nodes.

The last nodes returned by the function Next Node might have λn = 0. Hence, this
node cannot be a parent node. On the other hand, this node could not be eliminated
so far. In order to get a faster coarsening, we try to eliminate this node by imposing
weaker F-node conditions for the nodes with λn = 0. If an appropriate pair of parent
nodes cannot be found, the node is labeled as C-node.

Check if F- or C-Node(i)
{

if(Pi = Bi does not cause additional edges in the next virtual graph)
{

F = F ∪ i;
Pi = Bi;
return;

}
np = 0;
for(j ∈ C with ei,j ≥ 0)
{

if (ei,j > 0) np = np+ 1;
if ((j ∈ Ps ∧ ei,s > 0) for at least 2 different s)
{

np = np+ 1;
ei,j = 1;

}
}
if (np > 1)
{

Mark Optimal Parents(i);
F = F ∪ i;
for(j ∈ C with ei,j > 0)

if (j is an optimal parent) Pi = Pi ∪ j;
}
else C = C ∪ i;
return;

}
For nodes i with λi = 0, a weak edge (ei,j) becomes a strong edge (ei,j = 1), if the
node j is a parent node of two strong neighbor nodes already marked as F-node. This
reflects that the absolute value of the matrix entry to a node j which is a parent node
of a strong neighbor F-node increases after the elimination of the F-node.

After the labeling of all nodes, it might be possible to add parent nodes to some
F-nodes without changing the virtual graph after the elimination of all F-nodes. This
is done by the next function.

Free Parents
{

for(i ∈ F )
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{
for(j ∈ Bi \ Pi)
{

if (j ∈ Pi does not cause additional edges in the virtual graph
after the elimination of all F-nodes)

Pi = Pi ∪ j;
}

}
}

Finally, we combine these functions to the labeling and parent node assignment algo-
rithm.

Algorithm 4.7. The following function labels all nodes of the graph G of the system
matrix K either as F-node or as C-node and assigns the parent nodes. The F-nodes
are the nodes in the set F , the C-nodes are the nodes in the set C. For the partition
in Sect. 2.2 the nodes are ordered as explained in Definition 4.2. The sets of parent
indices Pi are obtained by replacing the parent nodes with the corresponding indices.

Mark Nodes
{

F = C = {};
Init Graph;
for(i ∈ N) Mark Optimal Parents(i);
k = Next Node;
while(k 6= 0)
{

if(λk > 0)
{

C = C ∪ k;
for( j with ej,k > 0 and j /∈ (F ∪ C)) Check if F-node(j);
for( j /∈ (F ∪ C) and optimal parents might have changed)

Mark Optimal Parents(j);
}
else Check if F -or C-node(k);
k = Next Node;

}
Free Parents;

}

The optimal parents might change for a node when one of the neighbor nodes is labeled
as F- or C-node.

4.4 The Complexity

The most expensive procedure inside the while-loop of the Mark Nodes function
(Algorithm 4.7) is Mark Optimal Parents(j). Mark Optimal Parents(j) can be im-
plemented with a complexity proportional to nsbj · nb, where nsbj describes the
number of strong neighbors (ej,i > 0) and nb the average number of neighbors.
Mark Optimal Parents(j) is called inside the while-loop for all neighbors of a new
F- or C-node. Since O(nl) nodes are marked during the while-loop, the complexity
of the while-loop is proportional to nl · nb2 · nsbj , where nl denotes the number of



Multilevel ILU Decomposition 19

nodes in the graph on level l. The complexity of Init Graph is O(nl nb), the complex-
ity of Free Parents is O(nl nb

2). The overall complexity of Mark Nodes is therefore
O(nl nb

2 nsb) with the average number of strong neighbors nsb.

On each level, new matrix entries are produced during the elimination process. Since
new matrix entries are only generated between the neighbors of an F-node and the
corresponding parent nodes the number of entries in Ll and Ul (see Definition 2.4) is
proportional to nl · nb + nl+1 · nb2, where nl+1 · nb2 describes the additional edges.
Nevertheless, the average stencil size (nb+ 1) of the matrix Kl+1 and the matrix Kl

are supposed to be similar. If we assume nl+1 < %nl, % < 1, the complexity of one
MLILU V-cycle (γ = 1) iteration step is O(n1 nb

2). We cannot prove that the number
of iteration steps for a fixed reduction of the residual is independent of the number
of unknowns. However, the numerical experiments in Sect. 5 show convergence rates
independent of the number of unknowns. In those cases, the total complexity of
the MLILU scheme is proportional to the number of unknowns. According to our
numerical experiments, the labeling and the construction of the MLILU decomposition
is approximately as expensive as ten iteration steps.

5 Numerical Experiments

In this section, the performance of the MLILU algorithm (Algorithm 2.5) is demon-
strated. For all experiments, only one post-smoothing Gauß-Seidel step is applied
(ν1 = 0, ν2 = 1). If the value of γ is not specifically indicated, we set γ = 1. As
test vector, t = (1, 1, . . . , 1)T is used. All differential equations are discretized with
the finite volume method (see [12]) using either piecewise linear or piecewise bilinear
basis functions.

We report the average convergence rate of the first n steps

kn =

(
‖f −K u(n)‖
‖f −K u(0)‖

)1/n

, knn < 10−10,

necessary for a ten orders of magnitude reduction of the residual. The computing
times are measured on a Sun Sparc 20 workstation and include the time for the
labeling, the construction of the MLILU decomposition and the solution process.

The implementation of the standard multi-grid method (one pre- and one post-
smoothing step with Gauß-Seidel) in an old ug [8] version needs 15 s or 20 s to solve
the linear systems in Experiment 5.1 on the finest grid (h = 1/128) discretized with
piecewise bilinear or linear basis functions respectively. This does not include the
time for the computation of the coarse grid matrices.

Aside from Experiments 5.1, 5.2 and 5.7, the performance of the standard multi-
grid method is poor. However, using special smoothers, special ordering strategies or
conjugate gradient acceleration might improve the convergence.

5.1 Poisson Equation

The first experiment analyzes how the convergence rates depend on the number of
unknowns.

Experiment 5.1.

∆u = 4 in Ω = (0, 1)× (0, 1), (5.1)
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u(x, 0) =
1.001

x+ 0.001
, u(x, 1) = 1,

u(0, y) =
1.001

y + 0.001
, u(1, y) = 1.

Table 1 shows average convergence rates and computing times for uniform grids with
different mesh sizes h. We used in all cases σ = 1/4.

h bilinear basis bilinear basis linear basis linear basis

1/32 k8 = 0.047 t = 0.93 s k10 = 0.094 t = 0.8 s

1/64 k8 = 0.046 t = 4.5 s k10 = 0.098 t = 3.7 s

1/128 k8 = 0.051 t = 18.0 s k10 = 0.095 t = 15.2 s

Table 1. Average convergence rates for Experiment 5.1

Experiment 5.1 indicates that the MLILU algorithm converges independently of the
number of unknowns. The computing times show that the total complexity is propor-
tional to the number of unknowns. The “coarse graphs” on the first levels are very
similar to the coarse grids in a standard multi-grid method. This can be verified in
Table 2, which shows the number of unknowns and the average stencil size for the
MLILU graphs.

level unknowns (bilin.) avg. stencil (bilin.) unknowns (lin.) avg. stencil (lin.)

0 16129 8.9 16129 6.9

1 3973 8.8 4190 6.9

2 965 8.6 1135 6.9

3 229 8.1 326 6.7

4 53 7.3 124 7.0

5 13 5.9 39 7.5

6 4 4.0 15 6.6

7 2 2.0 4 4.0

8 2 2.0

Table 2. Number of nodes and average stencil size for Experiment 5.1, h = 1/128.

The purpose of the MLILU decomposition is not to solve simple model problems on
uniform grids. The next experiment investigates the performance of the algorithm on
strongly locally refined grids.

Experiment 5.2. After two levels of uniform refinement, equation (5.1) is discretized
on grids which are adaptively refined with an a posteriori error indicator. The grids
are strongly refined in the lower left corner. Table 3 shows the results for several levels
of refinement. Table 4 presents average stencil sizes for the MLILU levels (σ = 1/4).

Apart of some fluctuations in the convergence rates for the coarse grids, the computing
time is almost proportional to the number of unknowns

5.2 Anisotropic Problems
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refinement level unknowns convergence time

2 49 k8 = 0.046 t = 0.05 s

3 206 k8 = 0.052 t = 0.18 s

4 372 k12 = 0.14 t = 0.38 s

5 526 k11 = 0.12 t = 0.56 s

6 658 k11 = 0.11 t = 0.72 s

7 779 k12 = 0.13 t = 0.91 s

8 880 k12 = 0.13 t = 1.10 s

9 973 k12 = 0.13 t = 1.25 s

10 1041 k12 = 0.13 t = 1.35 s

Table 3. Results for Experiment 5.2.

unknowns 1041 297 91 29 10 4 2

avg. stencil 8.4 8.8 9.2 8.0 5.4 3.5 2.0

Table 4. MLILU level characteristics for Experiment 5.2.

Experiment 5.3. The results for the anisotropic differential equation

εx
∂2u
∂x2 + εy

∂2u
∂y2 = 0 in Ω = (0, 1)× (0, 1),

u(x, y) = x+y
2 on ∂Ω,

where

εx = ε, εy = 1, x < 1/2, y < 1/2,

εx = 1, εy = ε, x ≥ 1/2, y < 1/2,

εx = 1, εy = ε, x < 1/2, y ≥ 1/2,

εx = ε, εy = 1, x ≥ 1/2, y ≥ 1/2,

which is discretized with linear basis functions on an uniform grid (h = 1/128, σ =
1/2) are presented in Table 5.

ε convergence time

1 k11 = 0.109 t = 16 s

10−2 k15 = 0.207 t = 25 s

10−4 k19 = 0.288 t = 29 s

10−6 k19 = 0.288 t = 29 s

Table 5. Results for Experiment 5.3.

For Experiment 5.3, the labeling algorithm follows a sort of a semi-coarsening strategy
(coarsening in only one direction) which can be seen from Table 6 and Fig. 3.

As an example of an unstructured grid, we compute the electrostatic potential in a
drift chamber. In order to resolve small details (the anodes), the coarsest triangulation
consists of 112 elements, some with very small angles. Even though the equation is
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unknowns 16129 8065 4033 2016 1012 557 260 37 15 6 2

avg. stencil 6.9 8.8 8.9 9.6 9.4 9.3 8.7 6.1 3.8 2.6 2.0

Table 6. MLILU level characteristics for Experiment 5.3.

only a Poisson equation, the problem is difficult to solve for standard multi-grid
methods because triangles with very small angles yield anisotropic stencils.

Experiment 5.4.

∆φ = 0 in D,

where D is a complex domain (drift chamber). The boundary conditions are of Neu-
mann and Dirichlet type. A detailed description of this problem can be found in [7]
and [23]. The coarsest triangulation consists of 112 triangles, some with very small
angles. Table 7 shows convergence rates for several grids, which are obtained from the
regular refinement of the coarsest triangulation (σ = 1/2).

unknowns convergence time

890 k15 = 0.210 t = 1.0 s

3578 k21 = 0.322 t = 5.6 s

14330 k23 = 0.360 t = 27 s

14330 (γ = 2) k11 = 0.114 t = 29 s

Table 7. Results for Experiment 5.4.

A similar, small dependence of the convergence rates on the number of unknown
for the fine grids can be observed for the standard multi-grid method, although the
convergence rates are much worse for standard multi-grid.

The stencil sizes and the number of unknowns are presented for the MLILU levels in
Table 8.

unknowns 14330 5773 2418 1092 486 214 92 40 15 6

avg. stencil 6.8 8.1 9.0 10.4 12.0 13.3 14.0 11.8 9.2 6.0

Table 8. MLILU level characteristics for Experiment 5.4.

5.3 Jumping Coefficients

The first experiment in this section represents a standard model problem for interface
problems.

Experiment 5.5.

∇ · (D ∇u) = 0 in Ω = (0, 1)× (0, 1),

D =

{
1 : δ < y < 1− δ ∧ δ < x < 1− δ,
ε : otherwise,

u(x, y) =
x+ y

2
on ∂Ω.
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The convergence results for several values of ε and δ can be found in Table 9. The
differential equation was discretized with bilinear basis functions on an uniform grid
(h = 1/128, σ = 1/4). Since the MLILU graphs are similar to the graphs in Experi-
ment 5.1 except for a perturbation at the interface , we skip these information for this
experiment.

ε conv. rate, δ = 1/4 time, δ = 1/4 conv. rate, δ = 33/128 time, δ = 33/128

106 k9 = 0.072 t = 20 s k16 = 0.24 t = 25 s

104 k9 = 0.072 t = 20 s k16 = 0.24 t = 25 s

102 k9 = 0.072 t = 20 s k16 = 0.24 t = 25 s

100 k8 = 0.051 t = 18 s k8 = 0.051 t = 18 s

10−2 k10 = 0.095 t = 20.5 s k18 = 0.27 t = 27 s

10−4 k10 = 0.097 t = 20.5 s k18 = 0.27 t = 27 s

10−6 k10 = 0.099 t = 20.5 s k18 = 0.27 t = 27 s

Table 9. Results for Experiment 5.5.

The convergence behavior of the MLILU method is very robust for Experiment 5.5.
Some multi-grid methods have difficulties to solve the linear systems especially if ε is
very small.

A realistic problem is investigated in the next example. In soil physics, the exact
distribution of the conductivity in the soil is rarely known. Therefore, special random
generators are often used to produce a conductivity distribution with certain proper-
ties. Typical properties are the mean log kf and the standard deviation σlog kf of the
log-normal distribution as well as the correlation length λ. For a detailed description,
we refer to [22]. We compare results of the MLILU algorithm for a short (λ = 0.05)
and a mid range (λ = 0.2) correlation length. The standard deviation σlog kf controls
the height of the conductivity jumps. Results for σ2

log kf
= 0.8 and σ2

log kf
= 0.4 are

considered corresponding to jumps of about 6 and 4.5 orders of magnitude respec-
tively. For the standard multi-grid method, the most difficult case is the case of a
large standard deviation and a short correlation length. The convergence rates even
with Galerkin approximation for the coarse grid matrices are around 0.9. For the
other problems, the convergence rates are slightly better.

Experiment 5.6. The hydraulic conductivity kf in Darcy’s equation for the piezo-
metric head Φ (potential)

∇ · (kf ∇Φ) = 0 in Ω = (0, 1)× (0, 1),

Φ(0, y) = 0.001, Φ(1, y) = 0,
∂Φ(x,0)
∂y = 0, ∂Φ(x,1)

∂y = 0

is determined by the random generator fgen92 (see [18] and [21]). For the discretiza-
tion, bilinear basis function on an uniform mesh (h = 1/128) are used. The results are
shown in Table 10. Note that σ denotes the parameter of the labeling algorithm, while
σlog kf describes the standard deviation of the conductivity distribution. All results in
Table 10 represent the mean of ten different distributions with the same parameters.

Although the convergence rates are much better, due to the higher computational
cost, the W-cycle (γ = 2) in line 2 is only slightly faster than the V-cycle for the
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same problems (line 1). Note that, the convergence rates are almost independent of
σ2

log kf
(for σ2

log kf
large enough). The number of iterations decreases for increasing

correlation lenght which means slower spatial variation of the conductivity.

method λ σ2
log kf

avg. # iterations time

γ = 1, σ = 1/4 λ = 0.05 σ2
log kf

= 0.8 25 t = 38 s

γ = 2, σ = 1/4 λ = 0.05 σ2
log kf

= 0.8 13 t = 34 s

γ = 1, σ = 1/2 λ = 0.05 σ2
log kf

= 0.8 22.7 t = 38 s

γ = 1, σ = 1/4 λ = 0.05 σ2
log kf

= 0.4 24.2 t = 38 s

γ = 1, σ = 1/2 λ = 0.05 σ2
log kf

= 0.4 22.2 t = 34.6 s

γ = 1, σ = 1/4 λ = 0.2 σ2
log kf

= 0.8 16.4 t = 26.5 s

γ = 1, σ = 1/2 λ = 0.2 σ2
log kf

= 0.8 16.7 t = 27.4 s

Table 10. Results for Experiment 5.6.

The characteristics of the MLILU levels for σ = 1/4 and σ = 1/2 are compared in
Table 11 for λ = 0.05 and σ2

log kf
= 0.8. In general, a smaller σ produces “coarse”

graphs which are more similar to the graph of the system matrix. This trend can be
seen in Table 11.

unkn., σ = 1/4 16383 4255 1314 463 163 63 26 11 3

stencil, σ = 1/4 8.9 9.4 11.2 13.3 14.3 13.3 14.6 9.1 3.0

unkn., σ = 1/2 16383 5575 2523 1241 514 194 58 23 7

stencil, σ = 1/2 8.9 9.9 11.7 13.4 14.8 12.9 15.1 11.4 7.0

Table 11. MLILU level characteristics for Experiment 5.6.

5.4 Unsymmetric Problems

The first experiment is a convection-diffusion equation. The direction of the convec-
tion is uniform but the absolute value of the convection changes within the domain.

Experiment 5.7.

ε∆u+ c4 cos(πα)∂u∂x + c4 sin(πα)∂u∂y = 0 in Ω = (0, 1)× (0, 1),

c = 1− sin(π α) [2 (x+ 1/4)− 1] + 2 cos(π α)(y − 1/4),

u(x, 0) =

{
1 : 0.4 < x < 0.6,
0 : otherwise,

u(x, 1) = 1, u(1, y) = 0, u(0, y) = 0.

Table 12 presents convergence rates for a discretization with linear basis functions on
an uniform grid (h = 1/128) for ε = 10−5 and σ = 1/2.

Due to the discretization, the linear system does not reflect the alignment with the
grid lines in the case α = 1/2. Table 13 contains the information about the graphs
on coarser levels. (We skip the last level which contains five unknowns.

In the next experiment, the direction of the convection changes within the domain.
The rotating structure of the convection requires sophisticated ordering strategies for
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α convergence time

1/6 k12 = 0.125 t = 31 s

2/6 k14 = 0.171 t = 33 s

3/6 k15 = 0.214 t = 33 s

4/6 k12 = 0.130 t = 30 s

5/6 k10 = 0.090 t = 26 s

Table 12. Results for Experiment 5.7.

unkn. 16129 8217 4544 2516 1403 787 411 196 99 46 16

stencil 6.9 9.5 11.9 13.3 14.5 15.6 18.0 17.9 17.5 14.5 13.1

Table 13. MLILU level characteristics for Experiment 5.7, α = 1/2.

many solvers. For the MLILU decomposition, the same labeling algorithm (Algorithm
4.7) can be applied.

Experiment 5.8. The convection term in the differential equation

ε∆u− sin(π x) cos(πy)∂u∂x + sin(π y) cos(πx)∂u∂y = 0 in Ω = (0, 1)× (0, 1),

u(x, y) = sin(πx) + sin(13πx) + sin(πy) + sin(13πy) on ∂Ω

simulates a rotating flow. Convergence rates are shown in Table 14. (uniform grid,
bilinear basis functions, h = 1/128, σ = 1/2).

ε convergence time

1 k9 = 0.066 t = 20 s

10−2 k18 = 0.275 t = 33 s

10−4 k22 = 0.342 t = 39 s

10−6 k21 = 0.333 t = 38 s

Table 14. Results for Experiment 5.8.

Table 15 presents the number of unknowns and the average stencil size for the MLILU
levels (see Fig. 4. (We skip the last two levels which contain ten and three unknowns
respectively.)

The increasing amount of fill-in for the unsymmetric problems on coarser graphs,
could be reduced by lumping (adding) some small off-diagonal matrix entries into the
diagonal. This can be done such that the filter property is preserved. However, the
investigation of special modifications of the MLILU algorithm is not the purpose of
this paper.

5.5 Graphs

Fig. 3 and Fig. 4 show the graph of the forth level (K4) for Experiment 5.3 and
Experiment 5.8 respectively (ε = 10−6 for both Experiments). For a better visibility,
we applied the MLILU decomposition to a smaller initial linear system (h = 1/32).
The graphs for the corresponding larger linear systems look similar. The bold lines
indicate the connections to parents nodes. The filled dots are the unknowns labeled
as C-unknown. The circles mark the F-unknowns.
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unkn. 16129 8391 4706 2713 1548 838 455 235 123 62 23

stencil 8.9 9.0 9.8 11.4 12.8 14.0 15.2 16.4 17.1 16.4 18.3

Table 15. MLILU level characteristics for Experiment 5.8, ε = 10−4.

Fig. 3. Graph on level four for Experiment 5.3 (h = 1/32).

5.6 The Adaptive Test Vector

For the numerical experiments, we used only the test vector t = (1, . . . , 1)T . Actually,
the MLILU decomposition was developed for the application of different test vectors.
In this section, we consider a simple example for the construction of more sophisticated
test vectors. For a detailed description of the background and the idea behind this
adaptive test vector scheme, we refer to [25].

As an example case, we consider the problem which yields the worst convergence
of all experiments in the paper for the MLILU decomposition (see Experiment 5.6).
Twelve iteration steps with the MLILU decomposition with respect to the test vector
t = (1, . . . , 1)T are computed. After that, we construct a new MLILU decomposition
with respect to a new test vector tad which is the correction we added in the last
iteration step to the approximate solution

tad = u(i) − u(i−1)

(see (1.1)). Then, one iteration step with the new MLILU decomposition is calculated
(Algorithm 2.5 without smoothing steps, γ = 1). Finally, iteration steps with the
initial MLILU decomposition are executed until the desired accuracy is reached.

Experiment 5.9. We consider the conductivity distribution in Experiment 5.6 which
yields the worst convergence rates for the MLILU decomposition (γ = 1, σ = 1/4,
λ = 0.5, σ2

log kf
= 0.8). The convergence behavior is presented in Figure 5. The

results for the adaptive test vector scheme are indicated by the dashed line.

In Experiment 5.9, the adaptive test vector scheme needs 9 iterations less than the
standard MLILU method. Since we have to construct and to store a second decompo-
sition, the adaptive test vector scheme does not pay off for this example. However, we
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Fig. 4. Graph on level four for Experiment 5.8 (h = 1/32).

Fig. 5. Convergence behavior for Experiment 5.9.

believe that a more sophisticated choice of the test vector might improve the MLILU
decomposition for more complex problems like 3D-problems and systems of differential
equations. The MLILU decomposition for those problems is still under investigation.
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