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Abstract. We make a theoretical analysis of the application of the generalized
hierarchical basis multigrid method to the convection-diffusion equation, discretized
using the Scharfetter-Gummel discretization. Our analysis is performed for two
levels of grid refinement in which we compare the effects of different interpolation
factors for the coarse grid basis functions on the method. In particular, we find the
asymptotic convergence rates for the Scharfetter-Gummel- and the ILU-factors. The
ILU-factors produce convergence rates independent of the convection directions but
dependent on the size of the convection vector. Numerical results illustrating these
rates are given.

1 Introduction

Hierarchical basis methods define a robust class of algorithms for solving el-
liptic partial differential equations, especially for large systems arising in con-
junction with adaptive local mesh refinement techniques. They are strongly
related to classical multigrid methods, except that only a subset of the un-
knowns is smoothed during the smoothing steps. As with typical multigrid
methods, classical hierarchical basis methods are usually defined in terms of
an underlying refinement structure of a sequence of nested meshes.

In recent years, the hierarchical bases have been generalized to completely
unstructured meshes, allowing the HBMG and related methods to be success-
fully applied [9,10,17,18,11,8]. This is done by recognizing the strong connec-
tion between the HBMG method and an Incomplete LU factorization of the
nodal basis stiffness matrix. Most of the work up to now has been for self
adjoint positive definite problems.

In the classical HBMG algorithm, coarse grid basis functions are formed
by certain linear combinations of fine grid basis functions. Here the combi-
nation coefficients are derived from the geometry of the mesh.
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In this paper we are concerned with the construction of generalized hi-
erarchical basis functions using expansion coefficients derived in a more al-
gebraic fashion. Different choices of expansion coefficients typically have no
effect on the supports of the basis functions but do have a profound effect
on the shape of the basis functions themselves, and hence on the numeri-
cal values appearing in the stiffness matrix with respect to the hierarchical
basis. One can even choose different coefficients for test and trial spaces, sim-
ilar to Petrov-Galerkin approximations. The HBMG iteration itself is just a
block Gauß-Seidel iteration applied to the stiffness matrix in the generalized
hierarchical basis representation.

We remark that computationally it is undesirable to assemble and solve
the set of equations given in the hierarchical basis since the matrix is less
sparse than the corresponding matrix in nodal basis representation. In prac-
tice, hierarchical basis methods are implemented using the standard nodal
basis, in combination with some recursive algorithms that are very similar
to the standard multigrid V-Cycle [5,16]. Here we are mainly concerned with
obtaining estimates for the rate of convergence for hierarchical basis methods.
The presentation is mainly restricted to the two level case. While most of our
results apply to general triangulations of shape regular elements, our analy-
sis in section 5 is restricted to the case of a uniform mesh of isosceles right
triangles, where the Scharfetter-Gummel discretization can be interpreted as
a five-point difference operator.
We will discuss several alternatives for choosing the interpolation coefficients
for the fine grid nodes: The ‘trivial’ Gauß-Seidel factors given by 0, the
Scharfetter-Gummel and the ILU-interpolation factors. We also suggest a
hybrid variant that combines the best properties of the Scharfetter-Gummel
and ILU coefficients.

Early work on multigrid methods for convection diffusion problems in-
cludes [15,20,12]. The application of classical HBMG to such problems was
considered in [21,2]. A study of two point boundary values problems which
motivated the present work is given in [6].

The rest of the paper is organized as follows: In section 2, we give a brief
description of the model problem, finite element spaces and the construction
of the generalized hierarchical basis functions. In section 3 we will derive the
Scharfetter-Gummel and the ILU interpolation coefficients. Some auxiliary
results are stated in section 4. In section 5 we will analyse the element stiffness
matrix represented in the hierarchical basis on a reference triangle. We will
introduce the hierarchical basis two-level method in section 6, and we will
use the results of the previous sections to derive asymptotic convergence rates
for the resulting methods. Numerical experiments and some comments on the
generalization of the method to the multilevel case are reported in section 7.
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2 The model problem

We consider the two dimensional convection-diffusion equation

−∇(∇u+ βu) = f in Ω (1)

with boundary conditions
u = 0 on ∂Ω (2)

where Ω is a polygonal domain and β is constant. Let H1(Ω) be the standard
Sobolev space consisting of square integrable functions with square integrable
derivatives of first order and let H1

0 (Ω) be a subspace of H1(Ω) consisting of
functions that vanish on ∂Ω. It is well known that u ∈ H1

0 (Ω) is the solution
of

a(u, v) = f(v) ∀v ∈ H1
0 (Ω)

where f(v) =
∫
Ω
fv dx and a(u, v) =

∫
Ω
∇v(∇u+ βu) dx.

We discretize (1),(2) with the Scharfetter-Gummel quasi-uniform triangu-
lation T of Ω, consisting of shape-regular triangles characterized by a small
parameter h. For simplicity we assume that the triangulation has no obtuse
angles, although this is mainly for convenience (see [7]). Corresponding to the
triangulation T , let V ⊂ H1

0 (Ω) be the finite element trial space consisting
of continuous piecewise linear functions vanishing on the boundary. For each
vertex vi, we can associate a box bi, generated by the perpendicular bisec-
tors of the triangle edges incident on that vertex. Let W be the test space
of (discontinuous) piecewise constant functions with respect to the boxmesh,
vanishing inside those boxes that are associated to boundary vertices. We
now integrate equation (1) over the box bi, and then apply the divergence
theorem to get

−
∫
∂bi

(∇u+ βu) · n ds = 0

where n is the (edgewise) outward normal for the box bi. Let φ be defined
such that β = ∇φ holds. Along the box boundary segment between vertices
v1 and v2, the flux term

−(∇u+ βu) · n = −e−φ∇(eφu) · n

is approximated by

e−φ̃3(
eφ1u1 − eφ2u2

l3
)

where φi = φ(vi), ui = u(vi) and l3 = |v1 − v2|. The value of φ̃3 is given by

e−φ̃3 =
φ1 − φ2
eφ1 − eφ2

.

Since φ is linear, we have φ1 − φ2 = 〈β, v1 − v2〉. These equations define
the Scharfetter-Gummel discretization of (1). Following [3], we can form an
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element stiffness matrix for the Scharfetter-Gummel discretization, which is
given by

A = AsD

=

B21L3 + B31L2 −B12L3 −B13L2

−B21L3 B12L3 + B32L1 −B23L1

−B31L2 −B32L1 B13L2 + B23L1

 (3)

where

As =

 e−φ̃3L3 + e−φ̃2L2 −e−φ̃3L3 −e−φ̃2L2

−e−φ̃3L3 e−φ̃3L3 + e−φ̃1L1 −e−φ̃1L1

−e−φ̃2L2 −e−φ̃1L1 e−φ̃1L1 + e−φ̃2L2

 ,

D =

 eφ1 0 0
0 eφ2 0
0 0 eφ3

 .

Here Bij ≡ B(φi − φj) = B(〈β, vi − vj〉), where B(x) = x/(ex − 1) is the
Bernoulli function, and Li are the matrix elements arising in the correspond-
ing element stiffness matrix for the Poisson equation (β = 0) for the case of
piecewise linear finite elements using the standard nodal basis. A more de-
tailed description is given in [3]. We denote the (global) bilinear form for the
Scharfetter-Gummel discretization by aSG(·, ·) which is defined on V ×W.

The spaces V and W have natural nodal bases {φi}ni=1 and {ψi}ni=1 that
satisfy

φi(vj) = δij ∀i, j = 1, · · · , n,
ψi(vj) = δij ∀i, j = 1, · · · , n,

where {vi, i = 1, · · ·n} is the set of all interior vertices of the triangulation
T . With these basis functions, the finite element solution can be written as
u =

∑
xiφi where x = (xi)i=1,···,n satisfies

ANBx = b.

ANBij = aSG(φj , ψi) is the stiffness matrix with respect to the nodal basis,
and b is given by an appropriate linear functional f : bi = f(ψi).

The first step in constructing a hierarchical basis is to create a certain
hierarchical structure based on the given triangulation T . We will consider
the case of two nested meshes where the fine mesh is a uniform refinement of
a coarse mesh, generated by pairwise connecting the midpoints of the coarse
grid edges in the usual way [5], [22], [16]. Here we can make the direct sum
decomposition X = Xc ⊕ Xf , where Xc is the set of (interior) coarse grid
vertices, and Xf is the set of (interior) fine grid vertices (those not in Xc). For
each vertex vi ∈ Xf , there is a unique pair of vertex parents vj , vk ∈ Xc such
that vi is the midpoint of the edge connecting vj and vk (vi = (vj + vk)/2).
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Consistent with the decomposition of X, we define the hierarchical de-
composition

V = Vc ⊕ Vf
where

Vf = {φ ∈ V|φ(x) = 0 for all coarse grid vertices x}

and Vc is a space spanned by basis functions associated with the coarse grid
vertices. In the case of the standard nodal basis, Vc is given by

Vc = {φ ∈ V|φ(x) = 0 for all fine grid vertices x}.

For the classical hierarchical basis, Vc is the space of continuous piecewise lin-
ear functions on the coarse grid. In the generalized hierarchical basis method
we modify Vc in order to improve the convergence behaviour of the HBMG
method. In all cases, the basis functions of Vc are linear combinations of the
(fine grid) nodal basis functions. In the nodal basis, the combination coeffi-
cients associated with fine grid vertices are simply 0, i.e. the coarse grid basis
functions are chosen equal to the fine grid basis functions.

In the classical hierarchical basis, the coefficients are derived from the
geometry of the mesh. In section 3 we will derive the Scharfetter-Gummel
and the ILU coefficients. The Scharfetter-Gummel coefficients depend not
only on the geometry of the mesh, but also on the boundary value problem
itself, in particular on the convection vector β.

A more algebraic approach leads to the ILU coefficients. Here the strong
connection between the HBMG method and the ILU factorization is explored,
and the coefficients are chosen to eliminate certain off-diagonal elements of
the hierarchical basis stiffness matrix, as is done in the case of classical ILU
elimination.

The hierarchical basis functions for the test space W are defined in a
similar fashion.

3 Derivation of the Scharfetter-Gummel and the ILU
coefficients

3.1 The Scharfetter-Gummel coefficients

From the Scharfetter-Gummel formula, an exponential interpolation scheme
can be derived. We begin by noting that fundamental solutions of our model
convection-diffusion equation (1) are given by

u(x) = α+ γe−〈β,x〉

for some constants α, γ ∈ IR. Suppose the values u1 = u(v1) and u2 = u(v2)
are known and um ≡ u(vm) = u(θv1 + (1 − θ)v2) is to be approximated
for a vertex vm between v1 and v2. If we require exact interpolation of the
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fundamental solutions on the one dimensional edge between v1 and v2, we
obtain by a straightforward calculation um = νu1 + ν̃u2 where

ν =
θB(〈β, v2 − v1〉)
B(θ〈β, v2 − v1〉)

, (4)

ν̃ = 1− ν. (5)

For β = 0 this method reduces to the classical HBMG algorithm (ν = ν̃ = 1
2 ).

For β 6= 0 an equivalent formulation for ν is given by

ν =
eθ〈β,v2−v1〉 − 1

e〈β,v2−v1〉 − 1
=

B(θ〈β, v2 − v1〉)
B(θ〈β, v2 − v1〉) + B(θ〈β, v1 − v2〉)

.

In the case of regular refinement we have θ = 1/2. Note that the interpolation
coefficients lie in (0, 1) and sum up to 1: ν + ν̃ = 1.

3.2 The ILU coefficients

Unless we choose all coefficients to be equal to zero (which would lead to
the classical nodal basis block Gauß-Seidel iteration), the supports of the
coarse grid hierarchical basis functions are larger than those of the nodal
basis functions. This leads to a less sparse stiffness matrix. By analysing the
computation of the numerical values in the hierarchical basis stiffness matrix,
we can derive coefficients that force certain values to be zero, in particular
those corresponding to vertical or horizontal edges between fine and coarse
grid vertices in the two level grid.

To derive the coefficients, let va be a coarse grid vertex and let vi, i =
1, · · · , 6 be the (fine grid) neighbours of va as shown in Figure 1.

Fig. 1. Triangulation with coarse grid vertex va and fine grid vertices vi, i = 1, · · · , 6

The hierarchical basis function corresponding to va is a linear combination
of the (fine grid) nodal basis function corresponding to va and the (fine grid)
nodal basis functions corresponding to the neighbouring fine grid vertices
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vi, i = 1, · · · , 6. Let φa and φi, i = 1, · · · , 6 denote the relevant nodal basis
functions. The hierarchical basis function φ̂a corresponding to va is then given
by the linear combination

φ̂a = φa +

6∑
i=1

θai φi

with some coefficients θai , i = 1, · · · , 6. For example, the value in the hierar-
chical basis stiffness matrix corresponding to the edge between va and v1 will
be

aSG(φ̂a, φ1) = aSG(φa +

6∑
i=1

θai φi, φ1)

= aSG(φa, φ1) + θa1a
SG(φ1, φ1) + θa2a

SG(φ2, φ1).

Here we used the fact that the Scharfetter-Gummel discretization leads to a
five point stencil. We can force aSG(φ̂a, φ1) to be zero by choosing

θa1 = −a
SG(φa, φ1)

aSG(φ1, φ1)
, (6)

θa2 = −a
SG(φa, φ2)

aSG(φ1, φ1)
= 0. (7)

Analogously, the remaining coefficients can be determined. We refer to these
factors as the ILU coefficients since they lead to the elimination of certain
off-diagonal elements of the hierarchical basis stiffness matrix. This scheme
leads to a local minimization of the affected row and column vectors of the
stiffness matrix at each elimination step. Note that the ILU coefficients can
have either sign, and generally θam + θbm 6= 1 where the fine grid vertex vm is
the midpoint of the coarse grid vertices va and vb.

4 Some auxiliary results

Our analysis of the two level method will be framed in terms of a strengthened
Cauchy-Schwarz inequality, a fairly traditional approach [19,13,4]. In this
section, we collect some technical results which are necessary for this analysis
in subsequent sections. We begin with a simple lemma from linear algebra:

Lemma 1. (angle between order 1 subspaces) Let v ∈ IRn, w ∈ IRm and
C = vwT ∈ IRn×m. Let A ∈ IRn×n and B ∈ IRm×m be symmetric, positive
semi-definite with v ∈ range(A) and w ∈ range(B). Then there exists a
positive constant γ such that for every x ∈ IRn and every y ∈ IRm

|xTCy| ≤ γ
√
xTAx

√
yTBy
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where
γ =
√
vTA+v

√
wTB+w

and A+ is the (generalized) inverse of A restricted to range(A).

Proof. see [2] Lemma 2.1

Lemma 2. (angle between subspaces of any order) Let A be n×n, symmetric
positive semi-definite. Let B be m × m, symmetric positive semi-definite.
Let C be n × m and satisfy Kernel(A) ⊆ Kernel(Ct) and Kernel(B) ⊆
Kernel(C). Let γ be

γ = max
xtAx = 1
ytBy = 1

|xTCy|.

Define matrices D =

(
A C
CT B

)
∈ IR(n+m)×(n+m), R =

(
I
0

)
∈ IR(n+m)×n,

S =

(
0
I

)
∈ IR(n+m)×m. This leads to

xTCy = xTRTDSy and xTAx = xTRTDRx, yTBy = yTSTDSy.

Then γ is the angle between the subspace pair {range(D 1
2R), range(D

1
2S)}

and thus the largest singular value of C := QT
D

1
2R
Q
D

1
2 S

where Q
D

1
2R

and

Q
D

1
2 S

are given by the QR-decompositions of D
1
2R and D

1
2S:

D
1
2R = Q

D
1
2R
R
D

1
2R
, QT

D
1
2R
Q
D

1
2R

= I,

D
1
2S = Q

D
1
2 S
R
D

1
2 S
, QT

D
1
2 S
Q
D

1
2 S

= I,

Proof. see [14] p. 429

Lemma 3. Let V be the space of continuous piecewise linear polynomials
associated with the triangulation T . Let V = Vc ⊕ Vf be a decomposition of
V. Let

b(v, w) =
∑
t∈T

b(v, w)t

be an inner product defined in V, with induced norm

‖u‖2 =
∑
t∈T

b(u, u)t =
∑
t∈T
‖u‖2t

Suppose for each t ∈ T exists 0 ≤ γt < 1 such that for all v ∈ Vc and for all
w ∈ Vf

|b(v, w)t| ≤ γt ‖v‖t ‖w‖t.
Then

|b(v, w)| ≤ γ ‖v‖ ‖w‖ (8)

with
γ = maxt∈T γt.
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Proof. see [2] Lemma 2.3

Lemma 4. Let A(β) be the nodal basis stiffness matrix for our model problem
(1) discretized by the Scharfetter-Gummel method. Then there exists a non-
singular diagonal matrix B such that AB is symmetric.

Proof. Let
B = diag(e−〈β,vi〉), (9)

The Lemma immediately follows from the form of the element stiffness ma-
trices given in (3). ut

This leads to the following corollary:

Corollary 5. Let A be the nodal basis stiffness matrix for our model problem
(1) discretized by the Scharfetter-Gummel method, and let B be defined in (9).

Then B−
1
2AB

1
2 is a symmetric matrix.

For the remaining lemmas in this section, we restrict our attention to the
special case of a uniform mesh composed of isosceles right triangles. For this
case, the Scharfetter-Gummel discretization can be interpreted as a 5-point
difference approximation.

Lemma 6. Let A(β) be the nodal basis stiffness matrix for our model problem
(1) discretized by the Scharfetter-Gummel method. Then

A(β) = A(−β)T .

Proof. A(β) can be described by the 5 point stencil B(−β2h)
B(β1h) d B(−β1h)

B(β2h)

 with (10)

d = B(β1h) + B(−β1h) + B(β2h) + B(−β2h) (11)

where B(x) denotes the Bernoulli function. It follows that A(β) = A(−β)T .
ut

Corollary 7. Let A(β) be the nodal basis stiffness matrix for our model prob-
lem (1) discretized by the Scharfetter-Gummel method. Let B be the non-
singular diagonal matrix defined in (10). Then

B−
1
2A(β)B

1
2 = B

1
2A(−β)B−

1
2 . (12)

Remark 8. Another useful notation of (12) is

B−
1
2A(β)B

1
2 =

1

2
[B−

1
2A(β)B

1
2 +B

1
2A(−β)B−

1
2 ]. (13)

This remark will allow us to analyse the element stiffness matrices for
the term on the rhs of (13). We will use Lemma 1 to get the factors γt in
the strengthened Cauchy inequality (8) for the reference triangle, and then
extend the result to the domain Ω using Lemma 3.
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5 The element stiffness matrix

In this section, we make estimates for γt for our interpolation schemes for the
special case of a uniform mesh. We consider a coarse grid reference triangle t̂
with the coarse grid vertices v1 = (0, 0), v2 = (2, 0), v3 = (0, 2) and the fine
grid vertices va = (1, 1), vb = (0, 1), vc = (1, 0) as illustrated in Fig. 1.

Fig. 2. A coarse grid triangle.

The restriction of the space V to t̂ is the space of piecewise linear functions
on t̂, and the nodal basis functions φ1, · · · , φc are those associated with the
vertices v1, · · · , vc. aSGt (·, ·) denotes the Scharfetter-Gummel bilinear form
evaluated on the reference triangle.
The entries of the stiffness matrix ANB can be regarded as the sum of the
contributions of the coarse grid triangles:

ANBij =
∑
t∈Ω

aSGt (φj , φi).

The nodal basis element stiffness matrix for the Scharfetter Gummel dis-
cretization on the reference triangle is given by

ANB
t̂

=

(
ANBf ANBfc
ANBcf ANBc

)
with

ANBf =

at(φa, φa) at(φa, φb) at(φa, φc)
at(φb, φa) at(φb, φb) 0
at(φc, φa) 0 at(φc, φc)

 ,

ANBfc =

 0 0 0
− 1

2B(−β2h) 0 − 1
2B(β2h)

− 1
2B(−β1h) − 1

2B(β1h) 0

 ,



Generalized HBMG 11

ANBcf =

0 − 1
2B(β2h) − 1

2B(β1h)
0 0 − 1

2B(−β1h)
0 − 1

2B(−β2h) 0

 ,

ANBc =

 1
2B(β1h) + 1

2B(β2h) 0 0
0 1

2B(−β1h) 0
0 0 1

2B(−β2h)


where

at(φa, φa) = B(−β1h) + B(−β2h),

at(φa, φb) = −B(−β1h),

at(φa, φc) = −B(−β2h),

at(φb, φa) = −B(β1h),

at(φb, φb) = B(β1h) +
1

2
B(−β2h) +

1

2
B(β2h),

at(φc, φa) = −B(β2h),

at(φc, φc) = B(β2h) +
1

2
B(−β1h) +

1

2
B(β1h).

Here B(x) denotes the Bernoulli function. ANBt is positive (semi)-definite (to
see this use Gerschgorin criterion). Let

B = diag(e(β1+β2)h, eβ2h, eβ1h, 1, e2β1h, e2β2h).

Then by Lemma 6

ANBt,symm := B−
1
2ANBt B

1
2

is a symmetric (semi-) positive definite matrix with blocks of the form

ANBfc,symm = (ANBcf,symm)T

=

 0 0 0

− 1
2e

β2h

2 B(β2h) 0 − 1
2e

β2h

2 B(β2h)

− 1
2e

β1h

2 B(β1h) − 1
2e

β1h

2 B(β1h) 0


ANBc,symm = ANBc

ANBf,symm =

 at(φa, φa) −e
β1h

2 B(β1h) −e
β2h

2 B(β2h)

−e
β1h

2 B(β1h) at(φb, φb) 0

−e
β2h

2 B(β2h) 0 at(φc, φc)

 .

The crucial point in the following analysis is the observation that although
the symmetrized element stiffness matrices for β and −β are not the same,
their sum over all triangles is the same, i.e. A(β)NBsymm = A(−β)NBsymm (see
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Corollary 7). From now on we can thus consider the averaged element stiffness
matrices

ANBt,av,symm =
1

2
[A(β)NBt,symm +A(−β)NBt,symm]

for which we have
ANBsymm =

∑
t∈Ω

ANBt,av,symm.

Note that ANBt,f,av,symm and ANBt,c,av,symm are non-singular.
To transform these averaged element stiffness matrices from nodal basis to
hierarchical basis representation, we choose transformation matrices S of the
form

S =

(
I R
0 I

)
where R =

 0 ν ν
η 0 η
θ θ 0

 .

The values of θ, η and ν for the three schemes we consider are given in Table
1. Note that these values are obtained by taking the coefficients derived in
section 3 and applying the diagonal similarity transformation used in com-
puting ANBt,symm.

coefficient G-S S-G ILU

θ 0 e
β1h
2 B(β1h)

B(β1h)+B(−β1h)
e
β1h
2 B(β1h)

B(β1h)+B(−β1h)+B(β2h)+B(−β2h)

η 0 e
β2h
2 B(β2h)

B(β2h)+B(−β2h)
e
β2h
2 B(β2h)

B(β1h)+B(−β1h)+B(β2h)+B(−β2h)

ν 0 e
(β2−β1)h

2 B((β2−β1)h)
B((β2−β1)h)+B((β1−β2)h)

0

Table 1. Interpolation coefficients for various schemes. “G-S” is Gauß-Seidel, “S-
G” is exponential interpolation and “ILU” is ILU interpolation.

We next calculate the averaged element stiffness matrix for the sym-
metrized problem in hierarchical basis representation:

AHBt,av,symm = STANBt,av,symmS =

(
AHBf,av,symm AHBfc,av,symm
AHBcf,av,symm AHBc,av,symm

)
,

AHBfc,av,symm = ANBfc,symm +ANBf,symmR = (AHBcf,av,symm)T ,

AHBf,av,symm = ANBf,symm,

AHBc,av,symm = RTANBf,symmR+RTANBfc,symm +ANBcf,symmR+ANBc,symm.

Our goal is to compute γt in the strengthened Cauchy-Schwarz inequality

|xTAHBfc,av,symmy| ≤ γt(xTAHBf,av,symmx)1/2(yTAHBc,av,symmy)1/2.
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If AHBfc,av,symm is a rank one matrix, we define v and w such that

AHBfc,av,symm = vwT .

and apply Lemma 1 to determine γt as

γt =
√
vT (AHBf,av,symm)−1v

√
wT (AHBc,av,symm)−1w. (14)

If AHBfc,av,symm is not a rank one matrix, we use Lemma 2 to determine γt.

Fig. 3. Top: γt for Gauß-Seidel factors (left) and Scharfetter-Gummel factors
(right). Bottom: γt for ILU factors (left) and the hybrid scheme (right).

Using the interpolation coefficients given in Table 1, we have numerically
computed γt for the Gauß-Seidel, the ILU and the Scharfetter-Gummel fac-
tors. AHBfc,av,symm is a rank one matrix only for the ILU factors.

The results are shown in Figure 3. In these figures, γt is graphed as a
function of (β1h, β2h).
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In viewing these figures, we note that the ILU scheme seems preferable in
most cases; when |β|h ≈ 0, the convergence rate for ILU approaches one, while
that for exponential interpolation approaches 1/

√
2. Thus we are motivated

to suggest a hybrid variant which combines the best properties of these two
methods. Let θSG and θILU be a pair of corresponding interpolation factors
for the SG and ILU schemes. Let F (x) be any continuous, monotonically
increasing function on [0,∞) satisfying F (0) = 0, i.e. F (x) = xp for some
p > 0 or F (x) = eαx − 1 for some α > 0. Define a new interpolation factor θ
by

θ =
F (|β| |v2 − v1|)θILU + θSG

F (|β| |v2 − v1|) + 1

where v1, v2 denote the coarse grid vertices between which we want to inter-
polate. We have a similar formula for all corresponding pairs of interpolation
factors.
Near |β| |v2−v1| = 0, this scheme behaves like the exponential scheme, which
is the best scheme for small |β| |v2−v1|. On the other hand, when |β| |v2−v1|
is large, it will behave like the ILU scheme. Figure 3 (bottom right) shows γt
for F (x) = e

x
2 − 1.

6 Analysis for the two-level method

In this section we will derive upper bounds for the convergence rate of the
generalized hierarchical basis multigrid method (on two levels).

The discretization described in section 2 leads to a linear system of equa-
tions of the form

ANBx = b. (15)

If we order the nodal basis functions by level (i.e. first coarse and then fine),
the following block partitioning results for ANB :

ANB =

(
ANBc ANBcf
ANBfc ANBf

)
, (16)

where ANBf corresponds to the nodal basis functions of the fine grid nodes,

ANBc corresponds to the (fine grid) nodal basis functions of the coarse grid
nodes and ANBcf and ANBfc correspond to the coupling between the two sets of

basis functions. We consider transformations of the form AHB = STANBS̃,
where S and S̃ have the block structure

S =

(
I 0
R I

)
and S̃ =

(
I 0

R̃ I

)
. (17)

By direct calculation, we obtain

STANBS̃ =

(
AHBc ANBcf +RTANBf

ANBfc +ANBf R̃ ANBf

)
(18)
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where
AHBc = ANBc +RTANBfc +ANBcf R̃+RTANBf R̃. (19)

Different algorithms are characterized by different choices of R and R̃. Our
two level iteration is the block symmetric Gauß-Seidel iteration. Given a
starting vector x0, the matrix formulation for the remaining iterates is given
by

xi+1 = xi +W−1(b−Axi) (20)

where W = (D + U)D−1(D + L), and D, L, and U are the block diagonal,
lower triangular, and upper triangular, resp. parts of A. The asymptotic
convergence rate of the method is given by the spectral radius σ(M) of the
iteration matrix M = I −W−1A.

Lemma 9. Let A be a regular matrix, let B be a diagonal non-singular ma-
trix and let Ā = B−1AB be a similarity transformation. Let M, M̄ be the
iteration matrices for the block symmetric Gauß-Seidel iteration (20) applied
to A, Ā. Then

σ(M) = σ(M̄),

i.e. the asymptotic convergence rates for A and Ā are asymptotically the
same.

Proof. The proof is straightforward.

Lemma 9 justifies deriving convergence rates for the symmetrized nodal
and hierarchical basis stiffness matrices since the unsymmetric matrices are
symmetrized by a similarity transformation with a non-singular diagonal ma-
trix B.

Theorem 10. Let W̄ = B−1WB where W and B are defined as above,
and suppose that γ < 1 in the strengthened Cauchy inequality. Then the
eigenvalues of the generalized eigenvalue problem

Āx = λW̄x

lie in the closed interval 1− γ2 ≤ λ ≤ 1, and σ(I − W̄−1Ā) ≤ γ2 < 1.

Proof. The proof follows Theorem 6 of [1]. The theorem is an immediate
consequence of the estimates

1 ≤ xT W̄x

xT Āx
≤ 1

1− γ2
.

Since W̄ = Ā+ L̄D̄−1L̄T (note Ū = L̄T ) and L̄D̄−1L̄T is symmetric, positive
semidefinite, it is clear that the lower bound is one. The upper bound is given
by 1 + µ where

µ = max
x 6=0

xT L̄D̄−1L̄Tx

xT Āx
.
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This can be written as

µ = max
x 6=0

yT D̄y

xT Āx
,

where
D̄y = L̄Tx.

Consider the hierarchical decomposition of V = Vc ⊕ Vf . Let ā(·, ·) be sym-
metrized bilinear form corresponding to Ā, and let ||v||2 = ā(v, v). Then in
finite element notation, we have

µ = max
u6=0

||v̂||2

||u||2
, (21)

where u = v + w, v ∈ Vc, w ∈ Vf and v̂ ∈ Vc satisfies

ā(v̂, χ) = ā(w,χ) (22)

for all χ ∈ Vc. Written in finite element language, it is easy to analyse (21)-
(22) in terms of the strengthened Cauchy inequality. We take χ = v̂ in (22)
to see

||v̂|| ≤ γ||w||.

On the other hand

||u||2 = ||v||2 + ||w||2 + 2ā(v, w)

≥ ||v||2 + ||w||2 − 2γ ||v|| ||w||
≥ (1− γ2)||w||2

≥ (1− γ2)γ−2||v̂||2.

The theorem now follows from combining this estimate and (21). ut

7 Numerical results and conclusions

In this section we present numerical results for the interpolation coefficients
analysed in the previous sections. We apply the schemes to the model
convection-diffusion equation (1) with f = 1 on Ω = (0, 1) × (0, 1). The
problem is discretized using the Scharfetter-Gummel method. We perform
experiments for the two-level method where the coarse grid is uniformly re-
fined by dividing each triangle into four congruent triangles. We use uniform
grids with structured refinement in order to treat all cases in a more stan-
dardized setting. We illustrate the dependence of the convergence rate on the
direction and magnitude of βh.
We record average rates of convergence after k = min{100, k̄} iterations,
where the residual was reduced by 10−4 in k̄ steps. The average rate of con-
vergence is given by (‖rk‖2/‖r0‖2)

1
k , where ri denotes the residual after i
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steps. In the first table, we also record the improvement in the last step,
i.e. ‖rk‖2/‖rk−1‖2. These values are denoted in brackets. The entry ‘zero’
denotes the occurrence of a zero pivot in the underlying LU-decomposition.
We choose x0 = (0, 0, · · · , 0)T as a starting vector. All calculations were done
in double precision on a Sparc10.

N = 3969 Lin G-S S-G ILU hybrid

(0, 0) 0.19 (0.34) 0.99 (0.99) 0.19 (0.34) 0.99 (0.99) 0.19 (0.34)
(0, 1000) 0.52 (0.49) 0.74 (0.17) 0.70 (0.08) 0.35 (0.13) 0.35 (0.13)
(0, 5000) 0.52 (0.48) 0.69 (0.01) 0.70 (0.09) 0.09 (0.03) 0.09 (0.03)
(707, 707) 0.56 (0.56) 0.80 (0.41) 0.82 (0.10) 0.62 (0.17) 0.62 (0.17)

(3536, 3536) 0.56 (0.56) 0.80 (0.41) zero (zero) 0.62 (0.17) 0.62 (0.17)
(−707, 707) 0.57 (0.63) 0.79 (0.41) 0.51 (0.28) 0.61 (0.17) 0.61 (0.17)

(−3536, 3536) 0.57 (0.63) 0.79 (0.41) 0.51 (0.28) 0.61 (0.17) 0.61 (0.17)
Table 2. Convergence rates for various two-level methods and for several values
of β = (β1, β2)T . (“lin” is linear interpolation, “G-S” is Gauß-Seidel, “S-G” is
exponential interpolation and “ILU” is ILU interpolation.

β = (0, 1000)T Lin G-S S-G ILU hybrid

h = 1/8 (N = 49) 0.45 0.02 0.44 e-3 e-3
h = 1/16 (N = 225) 0.50 0.22 0.45 0.01 0.01
h = 1/32 (N = 961) 0.51 0.56 0.49 0.08 0.08
h = 1/64 (N = 3969) 0.52 0.74 0.70 0.35 0.35
h = 1/128 (N = 16129) 0.53 0.85 0.86 0.63 0.63

β = (707, 707)T Lin G-S S-G ILU hybrid

h = 1/8 (N = 49) 0.50 e-3 zero e-5 e-5
h = 1/16 (N = 225) 0.56 0.39 zero 0.19 0.19
h = 1/32 (N = 961) 0.56 0.64 0.66 0.36 0.36
h = 1/64 (N = 3969) 0.56 0.80 0.82 0.62 0.62
h = 1/128 (N = 16129) 0.55 0.89 0.90 0.79 0.79

Table 3. Convergence rates for various two-level methods and for several values of
h with fixed β = (0, 1000)T (top) and β = (707, 707)T (bottom).

Typical convergence histories are shown in Figure 4, where log ‖ri‖/‖r0‖
is plotted as a function of the iteration index i. Here we observe the non-
monotonic behavior of the residual for the Scharfetter-Gummel factors.
The results for the two level method let the linear factors appear very fa-
vorable. We point out that this is only the case for two levels. For more
than two levels, the method is applied recursively for the calculated coarse
grid approximation. Unfortunately, the coarse grid matrix usually does not
correspond to a discretization of our model problem (1) on the coarse grid
anymore. For linear factors as well as for the Scharfetter-Gummel factors, we
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obtain seven point formulae describing possibly indefinite systems. For these
the above considerations about including the geometry of the mesh or the
coefficients of the problem into the calculation of the interpolation factors do
not apply. Thus it is not surprising that our numerical experiments for these
methods for more than two levels usually failed.
On the other side, the ILU-factors seem to provide a robust scheme for more
than two levels. The resulting coarse grid matrix will be diagonally dominant,
and the factors for further unrefinement are calculated using the entries of
this coarse grid matrix. In our numerical experiments we observed that the
convergence rates hardly decreased when switching from two to several levels.

Fig. 4. The initial mesh (1st) and convergence histories for ILU, β = (0, 1000)T ,
where h = 1/64 (2nd) and h = 1/128 (3rd)
.

Fig. 5. Convergence histories with β = (0, 1000)T for Scharfetter-Gummel where
h = 1/64, (1st), Gauß-Seidel, h = 1/64 (2nd) and Linear, h = 1/64 (3rd).
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