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Abstract. A new multigrid or incomplete LU technique is developed in this paper for solving
large sparse algebraic systems from discretizing partial differential equations. By exploring some
deep connection between the hierarchical basis method and incomplete LU decomposition, the re-
sulting algorithm can be effectively applied to problems discretized on completely unstructured grids.
Numerical experiments demonstrating the efficiency of the method are also reported.
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1. Introduction. In this work, we explore the connection between the methods
of sparse Gaussian elimination [8][13], incomplete LU (ILU) decomposition [9][10] and
the hierarchical basis multigrid (HBMG) [16][4].

Hierarchical basis methods have proved to be one of the more robust classes of
methods for solving broad classes of elliptic partial differential equations, especially
the large systems arising in conjunction with adaptive local mesh refinement tech-
niques [5][2]; they have been shown to be strongly connected to space decomposition
methods and to classical multigrid methods [14][15][4][9]. As with typical multigrid
methods, classical hierarchical basis methods are usually defined in terms of an un-
derlying refinement structure of a sequence of nested meshes. In many cases this is
no disadvantage, but it limits the applicability of the methods to truly unstructured
meshes, which may be highly nonuniform but not derived from some grid refinement
process. A major goal of our study is to generalize the construction of hierarchical
bases to such meshes, allowing HBMG and other hierarchical basis methods to be ap-
plied. Some work on multigrid methods on non-nested meshes is reported in Bramble,
Pasciak and Xu [6], Xu [14], and Zhang [17].

In Section 2, we develop a simple graph elimination model for classical hierar-
chical basis methods on sequences of nested meshes. This elimination model can be
interpreted as a particular ILU decomposition where certain fillin edges, namely those
corresponding the element edges on a coarser mesh, are allowed. This graph elimi-
nation model can be generalized in a very simple and straightforward fashion to the
case of completely unstructured meshes, providing a simple mechanism for defining
hierarchical bases on such meshes. The key concept is that of vertex parents of a given
vertex vi in the mesh. In the case of a sequence of refined meshes, the parents of vi
are just the endpoints of the triangle edge which was bisected when vi was created.
By generalizing this notion slightly, we are able to define vertex parents for vertices
in an unstructured mesh, which in effect, supplies us with a heuristic procedure for
systematically unrefining the unstructured mesh.

In Section 3, we describe algebraic aspects of HBMG and its application to com-
pletely unstructured meshes. In the classical case, vertices are ordered (blocked) by
refinement level and we apply symmetric block Gauss-Seidel to the linear system rep-
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resented in the hierarchical basis. We note that it is the transformation of the stiffness
matrix from nodal to hierarchical basis which has a strong connection to ILU , and
this is completely algebraic in nature once the transformation is defined. In turn,
the transformation matrix relies upon the vertex parents function to determine its
sparsity structure and blocking, and upon the geometric properties of the refinement
procedure to determine the numerical values of the nonzero elements. Since we define
vertex parents on unstructured meshes as part of our ILU graph elimination algo-
rithm, we can determine the structure of the transformation matrix just as in the case
of nested meshes. The numerical values are selected by examining the geometry of the
mesh, in a fashion similar to the nested mesh case. At the level of implementation,
HBMG and other iterations based on hierarchical bases are algebraically identical for
the cases of structured and unstructured meshes. Indeed, we made only slight changes
to our HBMG routines to implement the new method; essentially all new coding was
devoted to the graph elimination process and the hueristics for determining vertex
parents.

In Section 4, we present a numerical illustration of the method and make a few
concluding remarks.

2. Graph Theoretical Properties of Hierarchical Bases. In this section, we
explore the connection between the HBMG method and ILU decomposition in terms
of graph theory. We will consider first the standard Gaussian elimination and classical
ILU factorization. We then progress to the HBMG method, first considering the
triangular meshes generated through a process of grid refinement and then considering
completely unstructured triangular meshes. To begin, we briefly review the process
of Gaussian Elimination from a graph theoretical point of view. A more complete
discussion of this point can be found in Rose [13] or George and Liu [8].

Corresponding to a sparse, symmetric, positive definite N × N matrix A, let
G(X,E) be the graph that consists of a set of N ordered vertices vi ∈ X, 1 ≤ i ≤ N ,
and a set of edges E such that the edge (connecting vertices vi and vj) eij ∈ E if and
only if aij 6= 0, i 6= j. Note that edges in the graph G correspond to the nonzero off
diagonal entries of A. For the case of interest here, A is the stiffness matrix for the
space of continuous piecewise linear polynomials represented in the standard nodal
basis. Then G is just the underlying triangulation of the domain (with some possible
minor modifications due to the treatment of Dirichlet boundary conditions). If we
view G as an unordered graph, then the graph corresponds to the class of matrices
of the form P tAP , where P is a permutation matrix; that is, reordering the vertices
of the graph corresponds to forming the product P tAP for a suitable permutation
matrix P .

For convenience, we shall need a little additional terminology from graph theory.
Let vi ∈ X; the set of adjacent vertices adj(vi)is given by

adj(vi) = {vj ∈ X| eij ∈ E}.

Roughly speaking, the set adj(vi) corresponds to the set of column indices for the
nonzero entries in row i of matrix A (or the set of row indices for nonzero entries of
column i of A), with the exception of the diagonal entry aii.

A clique C ⊆ X is a set of vertices which are all pairwise connected; that is
vi, vj ∈ C, i 6= j ⇒ eij ∈ E. If A is a dense N ×N matrix, then its graph is a clique on
N vertices. More generally, with a proper ordering of the vertices, cliques correspond
to dense submatrices of A.
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With these definitions, we can define the graph theoretic equivalent of Gaussian
elimination of A. First, in terms of matrices let

A =

[
a11 rt

r B

]
,

where r is an N − 1-vector and B is an (N − 1) × (N − 1) matrix. The first step of
Gaussian elimination consists of the factorization

A =

[
1 0

r/a11 I

] [
a11 0
0 B − rrt/a11

] [
1 rt/a11
0 I

]
= L1D1L

t
1.

The matrix A′ = B − rrt/a11 is a symmetric, positive definite matrix of order N − 1
to which the factorization can be inductively applied. Note that A′ may be less sparse
than B due to the fillin caused by the outer product rrt/a11.

In graph theoretic terms, eliminating vertex v1 from G transforms G(X,E) to a
new graph G′(X ′, E′), corresponding to matrix A′, as follows

1. Eliminate vertex v1 and all its incident edges from G. Set X ′ = X − {v1}.
Denote the resulting set of edges E1 ⊆ E.

2. Create the set F of fillin edges as follows: For each distinct pair vj , vk ∈
adj(v1) in G, add the edge ejk to F if is not already present in E1. Set
E′ = E1 ∪ F .

Note that the set adj(v1) in G becomes a clique in G′.
Within this framework, an ILU factorization is one in which all the fillin called

for in step 2 above is not allowed. The classical form of ILU is to allow no fillin, that
is, no new edges are added in step 2 (E′ = E1). That forces the resulting matrix A′,
(which is now not necessarily equal to B− rrt/a11) to have the same sparsity pattern
as B. The effect of the neglected fillin elements in terms of the numerical values of
entries in A′ varies, and is not considered here; at the moment, our concern is with
the sparsity pattern itself.

Now let us view HBMG on a set of nested meshes in terms of ILU . For conve-
nience, we will restrict to the case of only two levels. Let Tc be the coarse triangulation,
and Tf be the fine triangulation, where some elements t ∈ Tc are refined into four
elements in Tf by pairwise connecting the midpoints of the three edges of t (regular
refinement). Some elements near the boundary of the refined region can be bisected
(green refinement), while others are left unrefined. The details of such a refinement
algorithm can be found in [5] [2] and are not of great interest to the current discussion.
An example is shown in Figure 1. Let X be the set of vertices in Tf , and Xc ⊂ X
be the set of vertices in Tc. Denote by Xf the set of fine grid vertices not in Xc

(Xf = X \Xc).
For each vertex vi ∈ Xf , there are a (unique) pair of vertices vj , vk ∈ Xc such

that vi is the midpoint of the edge connecting vj and vk in the coarse grid Tc. This
pair of vertices are called the vertex parents of vi. The vertex parents for the set Xf

for our example are given in Figure 1.
Suppose now that we choose an ordering in which all the vertices in Xf are

ordered first, followed by those in Xc. We then consider eliminating the vertices in
Xf as follows:

1. Eliminate vertex v1 and all its incident edges from G. Set X ′ = X − {v1}.
Denote the resulting set of edges E1 ⊆ E.
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Fig. 1. The coarse grid Tc and the fine grid Tf Vertices {vi}10i=6 = Xc, while {vi}5i=1 = Xf .

2. Add one fillin edge connecting the vertex parents of vi, say vj , vk ∈ Xc. Set
E′ = E1 ∪ {ejk}.

It is easy to see this is an ILU algorithm in that only selected fillin edges are allowed,
namely those connecting vertex parents. It also is important to note that the triangu-
lation Tf is the graph for the original stiffness matrix A represented in the standard
nodal basis. After all the vertices in Xf are eliminated, the resulting graph is just the
triangulation Tc; that is, the sparity structure of the coarse grid matrix corresponds
to the coarse grid triangulation. One of the important properties of HBMG is that
the corresponding coarse grid matrix is just the stiffness matrix with respect to the
nodal basis of the coarse grid (e.g., the hierarchical basis). For this to occur requires
a particular (but natural) choice of numerical values for the multipliers used in com-
puting the ILU . This is a topic for the next section. A comparison of the elimination
graphs for vertex v1, using regular Gaussian elimination, classical ILU and HBMG is
shown in Figure 2.

This brings us to HBMG for completely unstructured, nonnested meshes. So far
we have considered two different algorithms. We begin with the simpler of the two.
Suppose that for a vertex vi ∈ X, we denote a pair of distinct vertices vj , vk ∈ adj(vi)
as the tentative vertex parents of vi. Generally, in selecting tentative vertex parents,
we try to emulate the case of nested HBMG as closely as possible; that is, we want vi
to be “close” in some sense to being the midpoint of the straight line connecting vj
and vk. Not all vertices can be assigned reasonable parents; those that cannot will be
called “corners” of the region. Among those vertices that do have tentative parents,
we chose the vertex vi which best optimizes the hueristic criteria used in selecting
tentative parents, and eliminate it as follows:

1. Eliminate vi and all its incident edges. Set X ′ = X − {vi}.
2. If not already present, add one fillin edge connecting the tentative vertex

parents of vi, say vj and vk. These become the permanent vertex parents of
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Fig. 2. The elimination graphs G′ generated by eliminating vertex v1. Standard Gaussian
elimination is shown at the top, classical ILU in the center, and HBMG at the bottom.

vi. Set E′ = Ei ∪ {ejk}.
3. For each v` ∈ adj(vi) in G, compute new tentative vertex parents based on

the new graph G′.
The third step is essential, since vi could have been a tentative parent in G of any

the vertices in adj(vi), including its permanent vertex parents vj and vk. Furthermore,
the additional edge connecting vj and vk allows them to be considered as tentative
vertex parents of each other in G′. This algorithm continues inductively until no more
vertices can be eliminated (all remaining vertices are corners).

After the first vertex is eliminated, the remaining elimination graphs are not
necessarily triangulations of the domain, but typically contain polygonal elements
of various orders. The second variant of the algorithm addresses this issue. In this
algorithm, a vertex vi can have either two or three tentative vertex parents, again
selected from among the vertices in adj(vi). The first two are chosen as in the first
variant. If vi is “too far” from being colinear with its tentative parents vj and vk, then
a third tentative parent, say vm ∈ adj(vi) is chosen such that the resulting triangle
with vertices vj , vk and vm is optimized with respect to shape regularity. Once again,
not all vertices may have tentative vertex parents, although in practice, allowing for
the possibility of three parents tends to reduce the number of corners.

In any event, the vertex vi which best optimizes the criteria, is then eliminated
as follows:

1. Eliminate vi and all its incident edges. Set X ′ = X − {vi}.
2. If not already present, add a fillin edge connecting the two principal vertex

parents of vi. Add additional fillin edges as required, such that the resulting
graph remains a triangulation of the domain. Denote this set of edges by F
and set E′ = Ei ∪ F . The two or three tentative vertex parents of vi become
permanent.

3. For each v` ∈ adj(vi) in G, compute new tentative vertex parents based on
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the new graph G′.
This algorithm is aesthetically more pleasing than the first. Since all the elimina-

tion graphs are triangulations, it seems easier to handle in terms of the mathematical
analysis. However, it generally allows for more fillin than the first algorithm, and
requires more complex data structures based on linked lists to represent the graphs.
The additional fillin and the possibility of having vertices with three vertex parents
makes the resulting HBMG algorithm more expensive (see next section). Of course,
this would be justified if the resulting HBMG algorithm performed significantly bet-
ter, but so far in our experience, both algorithms perform comparably well in terms of
convergence rate. Thus, at present we don’t see a justification for the more expensive
version.

As a final point in this section, we consider the assignment of vertex levels. Each
vertex in the mesh has a unique level; this level is used to partition the stiffness matrix
in HBMG and other hierarchical basis iterations. It is not such an important point for
the current discussion, since we have assumed only two levels, but it is very important
for the case of more than two levels. In the classical HBMG using a sequence of nested
meshes, the level `i of vertex vi is defined as follows. All vertices on the coarse grid
are assigned `i = 1. Thereafter, the remaining vertices are assigned levels in terms of
the levels of their parents, according to

`i = max(`k, `j) + 1,(1)

where vk and vj are the parents of vertex vi. In the case of unstructured meshes,
equation (1) can still be used, modified appropriately for the case of vertices with
three vertex parents. All vertices without parents (corners) are assigned `i = 1, and
then (1) uniquely determines the level of the remaining vertices. In computing vertex
levels, one should process the vertices in the reverse order of elimination, so that the
level of all parents of vertex vi will be defined prior to the processing of vi.

3. Algebraic HBMG and ILU. In this section we consider the algebraic as-
pects of the HBMG method, and its relation to Gaussian elimination. Again for
convenience we will consider the case of only two levels. Let A denote the stiffness
matrix for the fine grid, and consider the block partitioning

A =

[
Af C
Ct Ac

]
,(2)

where Af corresponds to the nodal basis functions in Xf , Ac corresponds to the (fine
grid) nodal basis functions in Xc, and C corresponds to the coupling between the two
sets of basis functions. We consider transformations of the form A′ = SASt, where S
has the block structure

S =

[
I 0
R I

]
.(3)

From (2)-(3), we obtain

SASt =

[
Af AfR

t + C

RAf + Ct Âc

]
,(4)

where

Âc = RAfR
t + CtRt +RC +Ac.(5)
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Different algorithms can be characterized by different choices of R. For example,
in classical block Gaussian elimination R = −CtA−1f , and Âc = Ac − CtA−1f C is the
Schur complement. In this case, the off diagonal blocks are reduced to zero, but at
the cost of having fairly dense matrices R and Âc.

In the case of classical HBMG, the matrix Rt is sparse, and contains information
about changing from the nodal to hierarchical basis [4],[1]. Each row of Rt is zero
except for two entries which are equal to 1/2. For the row corresponding to vertex
vi ∈ Xf , the two nonzero entries are in the columns corresponding to vj ∈ Xc and

vk ∈ Xc, where vj and vk are the vertex parents of vi. In this case, the matrix Âc is
just the stiffness matrix for the coarse grid represented in the coarse grid nodal basis.
Although we know a priori that the graph for Âc is just the coarse grid triangulation
Tc, we can formally compute this graph by applying the symbolic ILU elimination
process described in the last section. The matrix RAf +Ct is not zero as in the case
of Gaussian elimination; indeed it is less sparse than Ct. However, the matrix is small
in some sense; the usual Cauchy inequality estimate [3] [1] [7] written in this notation
is:

|xt(RAf + Ct)y| ≤ γ(xtÂcx)1/2(ytAfy)1/2,

where γ < 1 is the constant in the strengthened Cauchy inequality. It is worth
commenting that in implementation, the matrix RAf +Ct is never formed explicitly;
all that is required to implement HBMG and other iterations using hierarchical bases
(either additive or multiplicative variants) are the matrices Af , C, Âc and R. For our
current discussion, R is the critical matrix. Af and C are of course just parts of the

nodal stiffness matrix, and Âc is explicitly computed from (5) once R is known.
The sparsity pattern of R is completely determined by the vertex parents func-

tion; in the case of classical HBMG on nested meshes, it follows from the refinement
structure of the mesh. The numerical values of the coefficients ( the “weights” or the
“multipliers”) are all equal to 1/2 for the nested case; the 1/2 arises naturally from
the geometry of the refinement process, stating that a vertex created at the midpoint
of an edge of a coarse grid triangle is midway between its vertex parents.

Now let us consider HBMG on nonnested meshes; from the algebraic point of
view, nothing changes (!!) from the nested case once the matrix R is defined, and to
define R we need only two things: the vertex parents function to define the sparsity
pattern, and the weights to define the numerical values. From this point of view, it
should be clear that this process will (implicitly) construct linear combinations of the
fine grid nodal basis functions, whose energy inner products appear as matrix elements
in the matrix Âc just as in the nested case. The difference is that in the nested case,
these complicated linear combinations reduce to simple nodal basis functions for the
coarse mesh. For nonnested meshes, they remain complicated linear combinations of
the fine grid basis functions. On the other hand, one never need explicitly deal with
these basis functions (except in the mathematical analysis), since the iteration itself
is completely algebraic. The critical issue for HBMG is not that one obtains simple
coarse grid nodal basis functions, but rather that the support of the basis functions
which are obtained is increasing at the proper rate, and as long as the complicated
basis functions have that property, one should see the expected convergence rates.
The use of modified hierarchical basis functions appears in the work of Hoppe and
Kornhuber [11] and Kornhuber [12] in connection with the the solution of obstacle
problems.

We now consider the construction of R for the two heuristic algorithms for un-
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structured meshes described in the last section. In both cases, the vertex parents
function (sparsity pattern for R) is determined by the graph elimination algorithms
discussed in the last section. Each column of Rt will have either two or three nonze-
roes, corresponding to its permanent vertex parents.

As for the weights, for the algorithm which allows just two vertex parents, let ver-
tex vi have parents vj and vk, and let v′i = θvj +(1−θ)vk be the orthogonal projection
of vi onto the straight line connecting vj and vk. Then we take the corresponding
weights (numerical values of the nonzeroes in R) to be θ and 1− θ.

In the case of a vertex with three vertex parents, let vj and vk be the two principle
parents and v` the third. In this case, we compute the barycentric coordinates of vi
with respect to the the triangle with vertices vj , vk and v`, and these barycentric
coordinates became the numerical values used in R. Since vi was supposed to be
close to the line connecting vj and vk, the barycentric coordinate corresponding to
v` should generally be small in comparison with the others, which in turn, should be
close to the form described above for method using only two vertex parents. Allowing
for the possibility of three permanent parents means that the matrix R will be less
sparse, which in turn means Âc will be less sparse, a situation which is of course
compounded as recursion adds more levels. Overall, this leads to more work (a bigger
constant, but apparently not a change in the order of magnitude), but as far as we
can tell from our early experience with the algorithm, does not significantly improve
the rate of convergence.

4. Numerical Illustrations and Conclusions. In this section, we present
a simple example of our algorithm. This example was developed using the finite
element package PLTMG [2]. We consider a square domain Ω with a circular hole.
We triangulate this domain using 684 triangles and 398 vertices as shown in Figure
3. The mesh is unstructured, in that it was not generated through the refinement of
a coarser mesh.

Fig. 3. The triangulation and the convergence history for HBMG.
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We solved the equation −∆u = 1 in Ω with a combination of homogeneous Dirich-
let and Neumann boundary conditions on ∂Ω. Applying the algorithms outlined in
Sections 2-3, we created an algebraic hierarchical basis with 10 levels, and 95 vertices
on the coarsest level. Levels were determined using (1). In Figure 3 we show the
convergence history of the multiplicative (symmetric Gauss-Seidel) hierarchical basis
iteration, starting from a zero initial guess. The quantity plotted is

σk = log

{
‖ rk ‖
‖ r0 ‖

}
,

where rk is the residual at iteration k and ‖ · ‖ is the `2 norm. From the data points,
we estimate by least squares that the convergence rate is approximately .44, which
is fairly typical of this particular iterative method applied to a similar problem on a
sequence of refined meshes.

We close with several remarks. First, the success of the method obviously de-
pends rather crucially on the method for choosing tentative vertex parents, and the
criteria which determines which vertex to eliminate next in the symbolic (graph) elim-
ination phase of the algorithm. These are of course both hueristics, which are based
on emulating the case of hierarchical basis for a sequence of refined meshes. At the
moment, we do not think our hueristics are optimal, and we expect them to signifi-
cantly improve as we gain further insights through the mathematical analysis of the
iteration.

Second, we think that our scheme for choosing vertex parents, and that of the
classical hierarchical basis multigrid method, are generally appropriate for self ad-
joint Laplace like operators. We anticipate that as we gain more experience with
the method, variations more suitable for anisotropic problems or convection dom-
inated problems will be developed. For example, one can imagine adding weights
and/or directions to the edges in the graph and incorporating this information into
the hueristics used to select vertex parents.
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