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Abstract. We derive and analyze an a posteriori error estimate for the mini-element discretiza-
tion of the Stokes equations. The estimate is based on the solution of a local Stokes problem in each
element of the finite element mesh, using spaces of quadratic bump functions for both velocity and
pressure errors. This results in solving a 9 × 9 system which reduces to two 3 × 3 systems easily
invertible. Comparisons with other estimates based on a Petrov-Galerkin solution are used in our
analysis, which shows that it provides a reasonable approximation of the actual discretization error.
Numerical experiments clearly show the efficiency of such an estimate in the solution of self adaptive
mesh refinement procedures.
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1. Introduction. The need for accurate solutions of large scale problems (in
particular) in Computational Fluid Dynamics has made the use of adaptive, auto-
matic re-meshing very attractive for finite element computations of approximations
to solution of partial differential equations [2]. A posteriori error estimates/estimators
were introduced in order to provide an information about the local and global quality
of the computed finite element solution. They allow the automatic determination of
the zones in the mesh which require some refinement or unrefinement.

In this paper we present and analyze an error estimate for the Stokes problem
[13], which plays a center role in the solution of more complicated problems arising
in particular in Computational Fluid Dynamics [12] [18] [13] [15] [14].

In section 2, we introduce the equations and the notations used. These equations
were solved using a two-level iterative scheme applied to a mini-element discretization
of the corresponding variational formulation [6].

Numerous a priori and a posteriori error estimates for elliptic problems [3], for
indefinite problems like the Stokes equations [16] or more general problems [2] have
already been derived. In particular our new estimate can be viewed as a simplifi-
cation of the one presented in [16]. Because a direct analysis of this estimate was
quite difficult, we compared the mini-element formulation [1] [7] [8] with the method
proposed by T.J.R.Hughes et al. [10] for solving the Stokes problem, and performed
our analysis on the Petrov-Galerkin scheme.

Section 3 contains a presentation of the error estimate, which is based on the
solution of a local Stokes problem in each element. This estimate is shown to be both
a global upper and lower bound of the discretization error, by comparing it to an
estimate derived from the Petrov-Galerkin approach.
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In section 4, we test this estimate on several classical problems and demonstrate
its efficiency in grid adaptation.

2. The Stokes Equations. In this section we consider a mixed finite element
approximation of the following Stokes equations [9]:

Find u (velocity field, 2 components) ∈ (H1(Ω))2 (the usual Sobolev space) and
p (pressure field) ∈ L2(Ω) (the usual Lebesgue space) such that


−ν∆u+∇p = f in Ω

∇ · u = 0 in Ω

u = g on ∂Ω

(2.1)

in a bounded domain Ω ⊂ R2 . The function f is a smooth function on R2, g is
piecewise linear and satisfies the compatibility condition

∫
∂Ω
g ·nds = 0. Furthermore∫

Ω
p dΩ is assumed to be 0. The constant ν is a viscosity parameter.
We define the spaces

H1
g(Ω) = {u ∈ (H1(Ω))2, u = g on ∂Ω }(2.2)

L2
0(Ω) = {p ∈ L2(Ω),

∫
Ω

p dΩ = 0}(2.3)

H g = H1
g(Ω)× L2

0(Ω)(2.4)

and the two bilinear forms

a(u,v) = ν

∫
Ω

∇u∇vdΩ u,v ∈ (H1(Ω))2(2.5)

b(u, p) = −
∫

Ω

p ∇.udΩ u ∈ (H1(Ω))2, p ∈ L2(Ω)(2.6)

(·, ·) will denote the L2 inner product associated with the norm ‖ · ‖. We define the
energy norm ‖|(·, ·)‖| by

‖|(u, p)‖|2 = a(u,u) +
1

ν
‖p‖2 u ∈ H1, p ∈ L2(2.7)

Then a classical variational formulation of the system of equations (2.1) reads
Find (u, p) ∈ Hg such that{

a(u,v) + b(v, p) = (f,v) v ∈ (H1
0(Ω))2

b(u, q) = 0 q ∈ L2
0(Ω)

(2.8)

It satisfies the following “inf-sup” condition:

inf
p ∈ L2(Ω)
p 6= 0

sup
u ∈ (H1(Ω))2

u 6= 0

b(u, p)

‖∇u‖.‖p‖
≥ µ1 > 0(2.9)

which guarantees existence and uniqueness of a solution (u, p) of (2.8) (or (2.1)).
Let T be a triangulation of Ω such that any two triangles in T share at most a

vertex or an edge. For τ ∈ T let hτ be the diameter of τ and Eτ the set of (three)
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edges on ∂τ . Let h = max
τ∈T

hτ . The set E contains all interior edges and for e ∈ E
we denote by he the length of e. We suppose also that the triangulation T satisfies
a minimal angle condition, i.e. the smallest angle in triangle τ ∈ T is bounded away
from zero by some constant independent of h. This is equivalent to

h−1
τ min

e∈Eτ
he ≥ C1 > 0 and h−1

τ max
e∈Eτ

he ≤ C2 τ ∈ T(2.10)

Furthermore, for Γ = e, E, or some subset of E, we define the inner product and
associated norm

〈u, v〉Γ =

∫
Γ

uvds =
∑
e∈Γ

∫
e

uvds

‖u‖Γ = (〈u, u〉Γ)1/2

Let C0 be the space of continuous functions over T . Let ψi = ψi(τ), i = 1, 3 be
the barycentric coordinates (linear nodal basis functions) in the triangle τ . In order
to facilitate the introduction of local function spaces and inner products we will need
in our analysis, we consider the following spaces of piecewise H1 functions

HT =
∏
τ∈T
H1(τ) = {u, u|τ ∈ H1(τ), τ ∈ T }(2.11)

and the spaces

L =
∏
τ∈T
Lτ =

∏
τ∈T

span{ψi(τ), 1 ≤ i ≤ 3, τ ∈ T }(2.12)

K =
∏
τ∈T
Kτ =

∏
τ∈T

span{ψi(τ)ψj(τ), 1 ≤ i < j ≤ 3, τ ∈ T }(2.13)

B =
∏
τ∈T
Bτ =

∏
τ∈T

span{ψ1(τ)ψ2(τ)ψ3(τ), τ ∈ T }(2.14)

X̄ = HT ∩ L ∩ C0(2.15)

X = (X̄ ⊕ B)2(2.16)

Y = L2
0 ∩ L ∩ C0(2.17)

and set Qτ = Lτ ⊕Kτ for τ ∈ T and Q =
∏
τ∈T Qτ . L is the space of piecewise linear

functions and Q the space of piecewise quadratic functions on T . The elements of B
are referred to as bubble functions.

For u,v ∈ (HT )2 and p ∈ L2
0 the forms a(·, ·) and b(·, ·) are interpreted as

a(u,v) =
∑
τ∈T

a(u,v)τ = ν
∑
τ∈T

∫
τ

∇u∇vdτ(2.18)

b(u, p) =
∑
τ∈T

b(u, p)τ = −
∑
τ∈T

∫
τ

p ∇ · udτ(2.19)

Note that since X and Y are contained in L2 the L2-inner product on X and Y
is the usual L2-inner product.

Problem (2.8) can be solved using a good choice of spaces for u and p.
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For example, the mini-element discretization [1] of the system (2.1) is given by:

Find (uh, ph) ∈ Xg × Y such that

{
a(uh,v) + b(v, ph) = (f ,v)
b(uh, q) = 0

(2.20)

for all (v, q) ∈ X0 × Y.

This formulation also satisfies an inequality of the type (2.9) [9],

inf
(u, p) ∈ X × Y

(u, p) 6= 0

sup
(v, q) ∈ X × Y

(v, q) 6= 0

a(u,v) + b(u, q) + b(v, p)

‖|(u, p)‖|.‖|(v, q)‖|
≥ µ1(2.21)

for a constant µ1 > 0 which is independent of the mesh size h (both constants µ1

in (2.21) and (2.9) are denoted with the same symbol since no confusion can arise).
This condition implies the unique solvability of the system (2.20).

The decomposition uh = uh,l + uh,b, with uh,l ∈ (L ∩ C0)2 and uh,b ∈ B2, is
unique. A static condensation of the bubble unknowns uh,b yields, for v ∈ X̄ and
q ∈ Ȳ:


a(uh,l,v) + b(v, ph) = (f ,v)

b(uh,l, q) −
∑
τ∈T

1

3600στν
(∇ph,∇q)τ = −

∑
τ∈T

1

60στν
(f , ψb)τ∇q(2.22)

Here στ =
1

|τ |
(∇ψb(τ),∇ψb(τ))τ (|τ | represents the area of the triangle τ) and

ψb(τ) = ψ1(τ)ψ2(τ)ψ3(τ) in triangle τ (bubble function). στ is of order O(h−2
τ ) in

the sense that there exist two positive constants C3 and C4 depending on the minimal
angle in the triangulation such that

C3 h
2
τ ≤ σ−1

τ ≤ C4 h
2
τ

Using elementwise integration by parts on (2.22), a simple calculation yields, for
(u, p) solution of the system (2.1) and (v, p) in HT ×HT × L2

0
a(u− uh,l,v) + b(v, p− ph) = (r,v)− ν〈

[
∂(u− uh,l)

∂n

]
A

, [v]J〉

+〈(p− ph)n, [v]J〉E + ν〈
[
∂uh,l
∂n

]
J

, [v]A〉E
b(u− uh,l, q) = (s, q)

(2.23)

where the vector n = (nx, ny) is the unit normal to a triangle, and average values
([·]A) and jump ([·]J) of a function v across an edge e are defined edgewise by:
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nτin τout

[v]A = 1
2 (vin + vout)

and

[v]J = vout − vin

Here τin denotes the current triangle. The quantities r and s are the residuals of
(2.1) defined as {

r = f −∇ph
s = ∇ · uh,l

(2.24)

The velocity term does not appear explicitly in the residual r since ∆uh,l = 0.
However, an integration by part of (r,v) yields :

(r,v) =
∑
τ∈T

(r,v)τ

= (f ,v)− a(uh,l,v)− b(v, ph)− 〈ν
[
∂uh,l
∂n

]
A

− phn, [v]J〉E(2.25)

− ν〈
[
∂uh,l
∂n

]
J

, [v]A〉E

which is the computational form we will use in the following.
Note also that since the computed pressure is continuous, no jump of the quantity

p− ph appears in (2.23).

A classical development of an a posteriori error estimate for this system is difficult,
mainly because the mini-element discretization is not a member of a sequence of
discretizations of varying degrees of approximation.

However, we can take advantage of the similarity between the mini-element formu-
lation and the Petrov-Galerkin method of T. J. R. Hughes et al [10] using continuous
piecewise linear interpolation for both pressure and velocity terms. Let G = L ∩ C0

or Q∩C0, and (uG, pG) ≡ (uL, pL) when G = L∩ C0 and (uG, pG) ≡ (uQ, pQ) when
G = Q∩ C0. Then the Petrov-Galerkin formulation reads:



a(uG,v) + b(v, pG) = (f ,v) v ∈ G2

b(uG, q)−
∑
τ∈T

1

3600στν
((∇pG,∇q)τ − ν(∆uG,∇q))τ

= −
∑
τ∈T

1

3600στν
(f ,∇q)τ q ∈ G

(2.26)

It is well known that the use of either piecewise linear or piecewise quadratic ve-
locity and pressure terms yields a stable formulation, provided that the coefficient
(3600στ )−1 is small enough. We now show that the matrix of the resulting system is
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non singular (equivalent to the fact that the formulation satisfies an inf-sup condition).
To see this we will need the following lemma:

Lemma 2.1.

For τ ∈ T ‖∆u‖2τ ≤ 2160στ‖∇u‖2τ ≤ 1944 · 105σ2
τ‖u‖2τ u ∈ Qτ

Also ‖∇(∇u)‖τ ≤ 2160
√

15στ‖u‖τ u ∈ Kτ

Proof. Let {1, 2, 3} be a numbering of the vertices in the triangle τ and let θi be
the angle at vertex i, 1 ≤ i ≤ 3. We have Qτ = span{1, ψ2, ψ3, 4ψ1ψ2, 4ψ2ψ3, 4ψ3ψ1}.
So let

u = u1 + u2ψ2 + u3ψ3 + 4u1bψ2ψ3 + 4u2bψ3ψ1 + 4u3bψ1ψ2

and set xt = (u2, u3, u1b, u2b, u3b). Define the 5× 5 matrices

M =

(
0 0
0 D

)
and N =

(
A B
Bt C

)
where the 2 × 2 matrix A, the 2 × 3 matrix B and the 3 × 3 matrices C and D are
respectively defined by

A =
1

2

(
c1 + c3 −c1
−c1 c1 + c2

)
B = −2

3

(
−c3 c1 + c3 −c1
−c2 −c1 c1 + c2

)

C =
4

3

 c −c3 −c2
−c3 c −c1
−c2 −c1 c

 D =
2880στ

c

 c1
c2
c3

( c1 c2 c3
)t

Here ci = cotg(θi) (1 ≤ i ≤ 3) and c = c1 + c2 + c3. Note also that c = 180στ |τ |.
Since

‖∆u‖2τ = xtMx and ‖∇u‖2τ = xtNx

we have the inequality

‖∆u‖2τ ≤ λ1στ‖∇u‖2τ

with λ1 being the largest (positive) root of det( 1
στ
M − λN) = 0. The matrix M is

positive semi definite and of rank 1 and N is positive definite, so that this equation
has root 0 of multiplicity 4 and a positive root, which is λ1. A direct calculation
(add the last three rows in the determinant) shows that λ1 = 2160, i.e. this value is
independent of the geometry of the triangle τ .

We have also Qτ = span{ψ1, ψ2, ψ3, 4ψ1ψ2, 4ψ2ψ3, 4ψ3ψ1}. So let

u = u1ψ1 + u2ψ2 + u3ψ3 + 4u1bψ2ψ3 + 4u2bψ3ψ1 + 4u3bψ1ψ2

and set yt = (u1, u2, u3, u1b, u2b, u3b). Now we have

‖u‖2τ = ytSy and ‖∇u‖2τ = ytN ′y
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where

S =
|τ |
180


30 15 15 12 24 24
15 30 15 24 12 24
15 15 30 24 24 12
12 24 24 32 16 16
24 12 24 16 32 16
24 24 12 16 16 32

 N ′ =

(
α zt

z N

)

and α =
c2 + c3

2
, zt =

1

6
(−3c3,−3c2,−4(c2 + c3), 4c3, 4c2). The matrix S is positive

definite while N ′ is now positive semi-definite, which implies that the maximal eigen-
value of N ′ is smaller than the trace Tr(N ′) of N ′. Thus

ytN ′y ≤ Tr(N ′)yty = 5c yty

Since the minimal eigenvalue of S is λ =
31−

√
901

90
|τ | ' 1.093 · 10−2|τ | > 10−2|τ |,

we get:

ytN ′y ≤ 500c

|τ |
ytSy = 9 · 104στy

tSy

which was to be shown.
Finally, for u ∈ Kτ , let u = 4u1bψ2ψ3 + 4u2bψ3ψ1 + 4u3bψ1ψ2. Then, in the

two-dimensional plane (x, y):

‖∇(∇u)‖2τ = |τ | (u2
xx + 2u2

xy + u2
yy)

= 32|τ |

(
2(

3∑
i=1

uibψi+1,xψi+2,x)2 + 2(

3∑
i=1

uibψi+1,yψi+2,y)2

+(

3∑
i=1

uib(ψi+1,xψi+2,y + ψi+1,yψi+2,x))2

)

≤ 192|τ |
3∑
i=1

u2
ib‖∇ψi+1‖2τ ‖∇ψi+2‖2τ

≤ 768 · 902|τ |σ2
τ

3∑
i=1

u2
ib

≤ 192 · 902 · 45σ2
τ‖u‖2τ

where the indices x, y, xx, xy and yy denote partial derivatives, and the indices i+ 1
and i+ 2 represent the modulo 3 values of i+ 1 and i+ 2 in the set {1, 2, 3}.

These inequalities also apply to u ∈ Qkτ (or u ∈ Kkτ ), k > 1, by simply adding
the results on each component.

Let

S = {(u, p) ∈ (Q∩ C0)3,u = g on ∂Ω,

∫
Ω

pdΩ = 0}

Introducing the (nonsymmetric) bilinear form

B((u, p), (v, q)) = a(u,v)+b(v, p)−b(u, q)+
∑
τ∈T

1

3600στν
((∇p,∇q)τ − ν(∆u,∇q)τ )
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and the semi-norm ‖ · ‖∗ defined by

‖(u, p)‖2∗ ≡ ν‖∇u‖2 +
∑
τ∈T

1

3600στν
‖∇p‖2τ

we have then

Theorem 2.2. For (u, p) ∈ Q×Q×Q we have

B((u, p), (u, p)) ≥ ω‖(u, p)‖2∗

Proof. It is similar to the proof of the coercivity of the very same bilinear form
in [8] for a special choice of the stability constant (3600στ )−1 for τ ∈ T . A direct
application of Lemma 2.1 yields

B((u, p), (u, p)) = a(u,u) +
∑
τ∈T

1

3600στν

(
‖∇p‖2τ − ν(∆u,∇p)τ

)
≥ a(u,u) +

∑
τ∈T

1

3600στν

(
‖∇p‖2τ − ν

√
2160στ‖∇u‖τ‖∇p‖τ

)
≥ (1−

√
3

2
√

5
)

(
ν‖∇u‖2 +

∑
τ∈T

1

3600στν
‖∇p‖2τ

)

= (1−
√

3

2
√

5
)‖(u, p)‖2∗(2.27)

and the theorem holds with ω = 1− 0.5
√

0.6 ' 0.612. Then, since the semi-norm is a
norm on subspaces of Q×Q×Q (like K×K×K) the form B(·, ·) is positive definite
on these same subspaces (and in particular on K ×K ×K).

Note that ‖| · ‖| and ‖ · ‖∗ define two norms on K ×K ×K which are equivalent,
i.e.

β1‖(u, p)‖∗ ≤ ‖|(u, p)‖| ≤ β2‖(u, p)‖∗ (u, p) ∈ K ×K ×K

for some positive constants β1 and β2. The first inequality results from a direct
application of Lemma 2.1, and is more generally valid on Q × Q × Q (β1 = 25),
while the second one is a consequence of the minimal angle condition expressed by
the inequality

‖χ‖τ ≤
c5√
στ
‖∇χ‖τ for χ ∈ Kτ(2.28)

It is true in particular in K × K × K (but not all of Q × Q × Q). As an indication,
c5 < 2 when the minimal angle in the triangulation is greater than 1 degree, which
gives β2 < 120 (c5 < 0.4 for a minimal angle greater than 5 degrees, or β2 < 24).

Another important case where the semi-norms are equivalent is the following

Lemma 2.3. Let (u, p) ∈ Q×Q×Q such that

a(u,v) + b(v, p) = 0 all v ∈ L × L
8



Then there exist two positive constants β3 and β4 such that

β3‖(u, p)‖∗ ≤ ‖|(u, p)‖| ≤ β4‖(u, p)‖∗

Proof. Our proof is based on the duality argument given in [7].
Consider the dual problem

−∆w +∇ρ = 0 in Ω

∇ ·w = p in Ω

w = 0 on ∂Ω

so that the regularity inequality

‖∇w‖+ ‖ρ‖ ≤ c6‖p‖

holds. We have then

‖p‖2 = (p,∇ ·w) = (p,∇ · v) + (p,∇ · (w − v))

where v is the linear interpolator of w at the vertices of the triangulation so that

‖w − v‖τ ≤
c7√
στ
‖∇w‖τ

and

‖∇v‖τ ≤ ‖∇w‖τ + ‖∇(v −w)‖τ ≤ c8‖∇w‖τ

for all triangles τ ( στ = O(h−2
τ )).

Integrating the second term by parts and using the hypothesis on (u, p) for the
first term, we get

‖p‖2 = a(u,v)− (∇p,w − v)

≤ ν‖∇u‖ ‖∇v‖+
∑
τ∈T
‖∇p‖τ ‖w − v‖τ

≤ νc8‖∇u‖ ‖∇w‖+ c7
∑
τ∈T

1
√
στ
‖∇p‖τ ‖∇w‖τ

≤ νc8‖∇u‖ ‖∇w‖+ c7‖∇w‖

(∑
τ∈T

‖∇p‖2τ
στ

)1/2

≤ νc6c8‖∇u‖ ‖p‖+ c6c7‖p‖

(∑
τ∈T

‖∇p‖2τ
στ

)1/2

so that

‖p‖ ≤ νc6c8‖∇u‖+ c6c7

(∑
τ∈T

‖∇p‖2τ
στ

)1/2
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Consequently

ν−1‖p‖2 ≤ 2c26c
2
8ν‖∇u‖2 + 2c26c

2
7

∑
τ∈T

‖∇p‖2τ
νστ

and finally

‖|(u, p)‖| ≤ β4‖(u, p)‖∗

Conversely ∑
τ∈T

1

3600στ
‖∇p‖2τ ≤ 25

∑
τ∈T
‖p‖2τ = 25‖p‖2

which implies

‖(u, p)‖2∗ = ν‖∇u‖2 +
∑
τ∈T

1

3600στν
‖∇p‖2τ

≤ ν‖∇u‖2 + 25
‖p‖2

ν

≤ 25‖|(u, p)‖|2

Note that the second part of the proof remains valid for any (u, p) ∈ Q×Q×Q.

In order to show the next result (continuity property) on the bilinear form B, we
shall use the inequality

‖∇ · u‖2τ ≤ 2 ‖∇u‖2τ u ∈ HT ×HT

Lemma 2.4.

|B((u, p), (v, q))| ≤ 27‖|(u, p)‖| ‖|(v, q)‖|(2.29)

for all (u, p) and (v, q) in Q3.

Proof. A straightforward calculation leads to

|B((u, p), (v, q))| ≤ ν‖∇u‖ ‖∇v‖+ ‖p‖ ‖∇ · v‖+ ‖q‖ ‖∇ · u‖

+
∑
τ∈T

‖∇p‖τ‖∇q‖τ
3600στν

+
∑
τ∈T

‖∆u‖τ‖∇q‖τ
3600στ

≤ ν‖∇u‖ ‖∇v‖+
√

2‖∇u‖ ‖q‖+
√

2‖∇v‖ ‖p‖

+
25

ν

∑
τ∈T
‖p‖τ ‖q‖τ +

√
15
∑
τ∈T
‖∇u‖τ ‖q‖τ

≤ ν‖∇u‖ ‖∇v‖+
√

2‖∇u‖ ‖q‖+
√

2‖∇v‖ ‖p‖

+
25

ν
‖p‖ ‖q‖+

√
15‖∇u‖ ‖q‖

≤
(
18ν‖∇u‖2 + 27ν−1‖p‖2τ

)1/2 (
2ν‖∇v‖2 + 27ν−1‖q‖2

)1/2
≤ 27‖|(u, p)‖| ‖|(v, q)‖|
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The mini-element form after static condensation (2.22) and the Petrov-Galerkin
form using piecewise linear velocities and pressure (G = L in (2.26)) are nearly identi-
cal: the stiffness matrices are identical and the right-hand sides differ by only a small
quantity since

60(1, ψb)τ = |τ |

so that

|(f ,∇q)τ − 60(f , ψb)τ∇q| =
∣∣(f − f̄ , (1− 60ψb)∇q)τ

∣∣
≤ c9hτ‖∇f‖τ‖∇q‖τ

where f̄ is the mean value of f in triangle τ and c9 is a constant independent of τ .
Consequently, we have

Theorem 2.5.

‖|(uL, pL)− (uh,l, ph)‖| ≤ c10h
2

√
ν
‖∇f‖

Proof. By Theorem 2.2 we have

ω‖(uL, pL)− (uh,l, ph)‖2∗ ≤ B((uL, pL)− (uh,l, ph), (uL, pL)− (uh,l, ph))

=
∑
τ∈T

((f ,∇(pL − ph))τ − 60(f , ψb∇(pL − ph))τ )

3600στν

≤ c9
3600

∑
τ∈T

hτ
στν
‖∇f‖τ .‖∇(pL − ph)‖τ

≤ c9
√
C4h

2

√
3600 ν

∑
τ∈T

1√
3600στν

‖∇f‖τ .‖∇(pL − ph)‖τ

≤ c9
√
C4h

2

√
3600 ν

‖∇f‖ · ‖(uL, pL)− (uh, ph)‖∗

The linear part (uh,l, ph) of the computed solution (uh, ph) in the mini-element
formulation is certainly a good approximation of the solution (u, p) of the initial
problem, and that the bubble part of this solution is only introduced for stability
reasons and does not improve the approximation of the velocity and pressure terms,
as was pointed out in [16].

In the next section we take advantage of this special similarity between these two
formulations in order to carry out the analysis of our error estimate.

3. An a posteriori error estimate based on the solution of a local Stokes
problem. The goal of this section is to define an estimation of the discretization
errors (e, ε) = (u, p)−(uL, pL) and (e′, ε′) = (u, p)−(uh,l, ph) for the Petrov-Galerkin
and Mini-Element formulations respectively. The estimates are based on the solution
of local Stokes problems (i.e. defined in each element). The analysis and derivation of
these small problems extend the work done by Bank and Weiser for elliptic problems
[5].
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The main results presented here are Theorem 3.6 and Corollary 3.11, which show
that the estimates provide a good global assessment of the discretization error, under
reasonable assumptions.

Let (eQ, εQ) = (uQ, pQ)−(uL, pL). An error analysis on the system (2.26) similar
to the one on (2.20) leads to the following system of equations:



a(e,v) + b(v, ε) = (r,v)− ν〈
[
∂e

∂n

]
A

, [v]J〉

+〈εn, [v]J〉+ ν〈
[
∂uL

∂n

]
J

, [v]A〉

b(e, q)−
∑
τ∈T

1

3600στν

(
(∇ε,∇q)τ − ν(∆e,∇q)τ

)
= (s, q)

−
∑
τ∈T

1

3600στν
(r,∇q)τ

(3.1)

Equations (3.1) are valid for all (v, q) ∈ (H(T ))3.

This is equivalent to{
B((e, ε), (v, q)) ≡ F ((v, q))

= L((v, q)) + J((e, ε), (v, q)) (v, q) ∈ (H(T ))3.
(3.2)

with the forms L(·) and J(·) defined by

L((v, q)) = (r,v)− (s, q) + ν〈
[
∂uL

∂n

]
J

, [v]A〉+
∑
τ∈T

1

3600στν
(r,∇q)τ

J((e, ε), (v, q)) = −ν〈
[
∂e

∂n

]
A

, [v]J〉+ 〈εn, [v]J〉

and the residuals r and s have the same meaning as in (2.24) with (uh,l, ph) replaced
by (uL, pL).

Note that J((v, q)) = 0 when v is continuous. From equations (3.2) we have for
(v, q) ∈ (L ∩ C0)3

B((eQ, εQ), (v, q)) = B((uQ, pQ), (v, q))−B((uL, pL), (v, q)) = 0(3.3)

and in particular

a(eQ,v) + b(v, εQ) = 0

which gives, using Lemma 2.3,

β3‖(eQ, εQ)‖∗ ≤ ‖|(eQ, εQ)‖| ≤ β4‖(eQ, εQ)‖∗

Note that the classical relation

B((e, ε), (v, q)) = B((u, p), (v, q))−B((uL, pL), (v, q)) = 0(3.4)

also holds.
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For (v, q) ∈ (Q∩ C0)3 we also have

B((eQ, εQ), (v, q)) = B((uQ, pQ), (v, q))−B((uL, pL), (v, q))(3.5)

= B((u, p), (v, q))−B((uL, pL), (v, q))

= B((e, ε), (v, q))

= L((v, q))

We now define the local error estimate (ě, ε̌) ∈ K3 by

B((ě, ε̌), (v, q))τ = L((v, q))τ (v, q) ∈ K3(τ)(3.6)

Since the bilinear B(·, ·) form is positive definite on K3, this estimate is well defined,
on each triangle τ ∈ T . The velocity components as well as the pressure component
are described in each triangle τ by quadratic bump functions, which schematically
correspond to the following degrees of freedom:

�
�
�
�
�
�

A
A
A
A
A
Ay y
y

degrees of freedom for velocity and pressure errors

Equation (3.6) is a 9 × 9 system to be solved in each triangle. Note that using
an integration by parts on (r,v)τ similar to the one performed to get (2.25) the
right-hand side L((v, q))τ takes the form

L((v, q))τ = (f ,v)τ − a(uL,v)τ − b(v, pL)τ + b(uL, q)τ

+ν〈
[
∂uL

∂n

]
A

− pLn,v〉∂τ +
1

3600στν
(f −∇pL,∇q)τ

In the sequel of the paper we will need some notion of convergence of the finite element
solutions (uL, pL) and (uQ, pQ) to the weak solution (u, p) of (2.1). In particular, for
τ ∈ T , we make the following saturation assumption

‖|(u, p)− (uQ, pQ)‖|2 +

∥∥∥∥∥∥h1/2
e

(
ν

[∣∣∣∣∂(u− uQ)

∂n

∣∣∣∣]2

A

+
|(p− pQ)n|2

ν

)1/2
∥∥∥∥∥∥

2

E

(3.7)

≤β2‖|(u, p)− (uL, pL)‖|2

where β = o(1), which implies in particular

(1− β)‖|(e, ε)‖| ≤ ‖|(eQ, εQ)‖| ≤ (1 + β)‖|(e, ε)‖|(3.8)

This is not a very strong condition since (uQ, pQ) is an approximation to (u, p) in a
higher degree polynomial space than (uL, pL). It supposes however that the solution
is more than H1-regular.
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We now present a few basic estimates, which will be used in the next part of
this section. Their proofs make use of the following inequalities, valid for τ ∈ T and
e ∈ Eτ :

‖v‖e ≤ c11h
−1/2
τ ‖v‖τ v ∈ Q(τ)×Q(τ)(3.9) ∥∥∥∥ ∂v∂n

∥∥∥∥
e

≤ c12h
−1/2
τ ‖∇v‖τ v ∈ Q(τ)×Q(τ)(3.10)

These inequalities are not satisfied for general functions v; they remain valid however
for polynomial functions, the constants c11 and c12 depending then on the degree of
the polynomial.

Lemma 3.1.

ν‖v‖2τ ≤ c13h
2
τa(v,v)τ v ∈ K2(τ)

Proof. It is a simple reformulation of inequality (2.28) where στ = O(h−2
τ ).

Lemma 3.2.

√
ν
∥∥∥h−1/2

e v
∥∥∥
∂τ
≤ c14 a(v,v)1/2

τ v ∈ K2(τ)

Proof. for e ∈ ∂τ , using inequality (3.9) and Lemma 3.1, we have

ν‖v‖2e ≤ c211h
−1
τ ν‖v‖2τ ≤ c13c

2
11hτ a(v,v)τ

so that

ν
∥∥∥h−1/2

e v
∥∥∥2

∂τ
≤ 3C−1

1 c211c13a(v,v)τ

Lemma 3.3. Assume (3.7) holds. Then∥∥∥∥∥∥h1/2
e

(
ν

[∣∣∣∣ ∂e∂n
∣∣∣∣]2

A

+
|εn|2

ν

)1/2
∥∥∥∥∥∥
E

≤ c15‖|(e, ε)‖|

Proof. The proof is similar to the proof of Lemma 3.1 in [5] with only a few
differences due to the pressure term. For e ∈ E such that e = τin ∩ τout∥∥∥∥∥∥h1/2

e

(
ν

[∣∣∣∣∂(uQ − uL)

∂n

∣∣∣∣]2

A

+
|(pQ − pL)n|2

ν

)1/2
∥∥∥∥∥∥

2

e

=

∥∥∥∥∥∥h1/2
e

(
ν

[∣∣∣∣∂eQ∂n
∣∣∣∣]2

A

+
|εQn|2

ν

)1/2
∥∥∥∥∥∥

2

e
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≤he

{
ν

∥∥∥∥∂eQ∂n |τin
∥∥∥∥2

e

+
‖(εQn)|τin‖2e

ν
+ ν

∥∥∥∥∂eQ∂n |τout
∥∥∥∥2

e

}

≤he
{
c212ν(h−1

τin‖∇eQ‖
2
τin + h−1

τout‖∇eQ‖
2
τout) +

c211

ν
h−1
τin‖εQ‖

2
τin

}
≤C2(c212 + c211)(‖|(eQ, εQ)‖|2τin + ‖|(eQ, εQ)‖|2τout)

Therefore, summing over all edges, we get∥∥∥∥∥∥h1/2
e

(
ν

[∣∣∣∣∂(uQ − uL)

∂n

∣∣∣∣]2

A

+
|(pQ − pL)n|2

ν

)1/2
∥∥∥∥∥∥

2

E

≤3C2(c212 + c211)‖|(eQ, εQ)‖|2

≤ 3C2(c212 + c211)(1 + β)2‖|(e, ε)‖|2(3.11)

Finally, combining (3.7), (3.11) and using the triangular inequality we get∥∥∥∥∥∥h1/2
e

(
ν

[∣∣∣∣ ∂e∂n
∣∣∣∣]2

A

+
|εn|2

ν

)1/2
∥∥∥∥∥∥
E

≤

∥∥∥∥∥∥h1/2
e

(
2ν

[∣∣∣∣∂(u− uQ)

∂n

∣∣∣∣]2

A

+ 2ν

[∣∣∣∣∂eQ∂n
∣∣∣∣]2

A

+ 2
|(p− pQ)n|2

ν
+ 2
|εQn|2

ν

)1/2
∥∥∥∥∥∥
E

≤

∥∥∥∥∥∥h1/2
e

√
2

(
ν

[∣∣∣∣∂(u− uQ)

∂n

∣∣∣∣]2

A

+
|(p− pQ)n|2

ν

)1/2
∥∥∥∥∥∥
E

+

∥∥∥∥∥∥h1/2
e

√
2

(
ν

[∣∣∣∣∂eQ∂n
∣∣∣∣]2

A

+
|εQn|2

ν

)1/2
∥∥∥∥∥∥
E

≤β
√

2‖|(e, ε)‖|+ (1 + β)
√

6C2(c212 + c211)‖|(e, ε)‖|

Lemma 3.4. The “continuity” inequality

|B((e, ε), (v, q))| ≤ c16 ‖|(e, ε)‖| ‖|(v, q)‖|

holds for all (v, q) ∈ K ×K ×K.

Proof. We bound successively each term in the definition of B(·, ·). The first three
terms are easily bounded, namely:

|a(e,v)| ≤ ν ‖∇e‖ ‖∇v‖
|b(v, ε)| ≤ ‖ε‖ ‖∇ · v‖ ≤

√
2‖ε‖ ‖∇v‖

and |b(e, q)| ≤ ‖∇ · e‖ ‖q‖ ≤
√

2‖∇e‖ ‖q‖

while the two remaining terms need to be integrated by parts; for τ ∈ T we have:

(∇ε,∇q)τ = −(ε,∆q)τ + 〈εn,∇q〉∂τ
15



On one hand we get∣∣∣∣∣∑
τ∈T

(ε,∆q)τ
3600στν

∣∣∣∣∣ ≤
√

15

ν

∑
τ∈T
‖ε‖τ‖q‖τ ≤

√
15

ν
‖ε‖ ‖q‖

and on the other hand the boundary term gives∣∣∣∣∣∑
τ∈T

〈εn,∇q〉∂τ
3600στν

∣∣∣∣∣ =

∣∣∣∣∣− 1

3600ν

∑
e∈E
〈ε,
[

1

στ

∂q

∂n

]
J

〉e

∣∣∣∣∣
≤ 1

3600ν

∑
e∈E
‖ε‖e

∥∥∥∥[ 1

στ

∂q

∂n

]
J

∥∥∥∥
e

Now, for e = τin ∩ τout ∈ E:∥∥∥∥[ 1

στ

∂q

∂n

]
J

∥∥∥∥2

e

≤ 2c212(h−1
τinσ

−2
τin‖∇q‖

2
τin + h−1

τoutσ
−2
τout‖∇q‖

2
τout)

≤ 18 · 104 c212C4(hτin‖q‖2τin + hτout‖q‖2τout)
≤ 18 · 104 c212C4C

−1
1 he(‖q‖2τin + ‖q‖2τout)

Note that the same inequality holds with the jump of
1

στ

∂q

∂n
replaced by its average

value.
Consequently∣∣∣∣∣∑

τ∈T

〈εn,∇q〉∂τ
3600στν

∣∣∣∣∣ ≤ c12

√
C4C

−1
1

6ν
√

2

(∑
e∈E

he‖ε‖2e

)1/2(
3
∑
τ∈T
‖q‖2τ

)1/2

≤ c17

∥∥∥∥h1/2
e

|ε|√
ν

∥∥∥∥
E

‖q‖√
ν

where c17 =
c12

√
C4C

−1
1

2
√

6
.

Likewise, an integration by parts on the last term yields

(∆e,∇q)τ = −(∇e,∇(∇q))τ + 〈 ∂e
∂n

,∇q〉∂τ

and by Lemma 2.1: ∣∣∣∣∣∑
τ∈T

(∇e,∇(∇q))τ
3600στ

∣∣∣∣∣ ≤ 3
√

3√
5
‖∇e‖ ‖q‖

As for the boundary term involving the velocity, a calculation comparable to the one
performed above for the pressure implies∣∣∣∣∣∑

τ∈T

〈 ∂e∂n ,∇q〉∂τ
3600στ

∣∣∣∣∣ =

∣∣∣∣∣− 1

3600

∑
e∈E

(
〈
[
∂e

∂n

]
A

,

[
1

στ
∇q
]
J

〉

+〈
[
∂e

∂n

]
J

,

[
1

στ
∇q
]
A

〉
)∣∣∣∣
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≤ c17√
3

∑
e∈E

h1/2
e

(∥∥∥∥[ ∂e∂n
]
A

∥∥∥∥
e

+

∥∥∥∥[ ∂e∂n
]
J

∥∥∥∥
e

)
(‖q‖2τin + ‖q‖2τout)

1/2

≤ c17

∑
e∈E

3h1/2
e

∥∥∥∥[∣∣∣∣ ∂e∂n
∣∣∣∣]
A

∥∥∥∥
e

(‖q‖2τin + ‖q‖2τout)
1/2

≤ 3c17

∥∥∥∥√νh1/2
e

[∣∣∣∣ ∂e∂n
∣∣∣∣]
A

∥∥∥∥
E

‖q‖√
ν

Adding all the terms together finally yields:

|B((e, ε))| ≤ ν‖∇e‖ ‖∇v‖+
√

2 ‖ε‖ ‖∇v‖

+
√

2 ‖∇e‖ ‖q‖+

√
15

ν
‖ε‖ ‖q‖+

3
√

3√
5
‖∇e‖ ‖q‖

+c17

∥∥∥∥h1/2
e

|ε|√
ν

∥∥∥∥
E

‖q‖√
ν

+ 3c17

∥∥∥∥√νh1/2
e

[∣∣∣∣ ∂e∂n
∣∣∣∣]
A

∥∥∥∥
E

‖q‖√
ν

≤
(
ν‖∇v‖2 +

‖q‖2

ν

)1/2(
42

5
ν‖∇e‖2 + 17

‖ε‖2

ν

+9c217

(∥∥∥∥h1/2
e

|ε|√
ν

∥∥∥∥2

E

+

∥∥∥∥√νh1/2
e

[∣∣∣∣ ∂e∂n
∣∣∣∣]
A

∥∥∥∥2

E

))1/2

≤ ‖|(v, q)‖| (17‖|(e, ε)‖|2 + 9c217c15‖|(e, ε)‖|2)1/2

≤
√

17 + 9c217c15 ‖|(e, ε)‖| ‖|(v, q)‖|

Lemma 3.5. Let (v, q) ∈ K3 and (χ, ρ) ∈ L3. Then there exists a positive
constant γ < 1 such that

‖|(v, q)‖| ≤ 1√
1− γ2

‖|(v + χ, q + ρ)‖|

Proof. Let τ ∈ T with angles θi, i = 1, 3. Define dτ = cos2θ1,τ+cos2θ2,τ+cos2θ3,τ .
From [11] we know that

(∇v,∇χ)τ ≤ γτ‖∇v‖τ‖∇χ‖τ

and

(q, ρ)τ ≤
√

15

4
‖q‖τ‖ρ‖τ

with γ2
τ =

1

2
+

1

3

√
dτ −

3

4
. If the triangulation satisfies a minimal angle condition,

then dτ < 3 and thus γ ≡ max(max
τ∈T

γτ ,

√
15

4
) < 1. (For example, when the minimal

angle is 5 degrees we have γ ' 0.99873). Next we get

|((v, q), (χ, ρ))| ≡
∣∣∣∣ν(∇v,∇χ) +

(q, ρ)

ν

∣∣∣∣ ≤ γ‖|(v, q)‖| ‖|(χ, ρ)‖|
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and finally

‖|(v + χ, q + ρ)‖|2 = ‖|(v, q)‖|2 + ‖|(χ, ρ)‖|2 + 2((v, q), (χ, ρ))

≥ ‖|(v, q)‖|2 + ‖|(χ, ρ)‖|2 − 2γ‖|(v, q)‖| ‖|(χ, ρ)‖|
≥ (1− γ2)‖|(v, q)‖|2

The following theorem proves that the estimate (ě, ε̌) is a global upper and lower

bound of the error (e, ε) in the ‖| · ‖| norm.

Theorem 3.6. there exist two positive constants c18 and c19 such that

c18‖|(e, ε)‖| ≤ ‖|(ě, ε̌)‖| ≤ c19‖|(e, ε)‖|(3.12)

Proof. Let (eLQ, ε
L
Q) and (eQQ, ε

Q
Q) be respectively the linear and (continuous)

quadratic parts of (eQ, εQ), so that

(eQ, εQ) = (eLQ, ε
L
Q) + (eQQ, ε

Q
Q)

Recalling (3.5), (3.6) and using (3.3), we have

B((ě, ε̌), (eQQ, ε
Q
Q)) = B((eQ, εQ), (eQQ, ε

Q
Q))

= B((eQ, εQ), (eQ, εQ))

Now we have, from Theorem 2.2 and Lemmas 2.4 and 3.5:

‖|(eQ, εQ)‖|2 ≤ β2
4 ‖(eQ, εQ)‖2∗

≤ β2
4ω
−1 B((eQ, εQ), (eQ, εQ))

= β2
4ω
−1 B((ě, ε̌), (eQQ, ε

Q
Q))

≤ 27β2
4ω
−1 ‖|(ě, ε̌)‖| ‖|(eQQ, ε

Q
Q)‖|

≤ 27β2
4ω
−1√

1− γ2
‖|(ě, ε̌)‖| · ‖|(eQ, εQ)‖|

and thus

(1− β) ‖|(e, ε)‖| ≤ ‖|(eQ, εQ)‖| ≤ 27β2
4ω
−1√

1− γ2
‖|(ě, ε̌)‖|

Conversely we have

‖|(ě, ε̌)‖|2 ≤ β2
2 ‖(ě, ε̌)‖2∗ ≤ β2

2ω
−1 B((ě, ε̌), (ě, ε̌))

= β2
2ω
−1 (B((e, ε), (ě, ε̌))− J((e, ε), (ě, ε̌)))

The jump term on the right-hand side is bounded using Lemmas 3.2 and 3.3:

|J((e, ε), (ě, ε̌))| =
∣∣∣∣〈ν [ ∂e∂n

]
A

− ε n, [ě]J〉E
∣∣∣∣

≤

∥∥∥∥∥∥h1/2
e

(
ν

[∣∣∣∣ ∂e∂n
∣∣∣∣]2

A

+
|ε n|2

ν

)1/2
∥∥∥∥∥∥
E

‖h−1/2
e

√
ν[ě]J‖E

≤ c15 ‖|(e, ε)‖|
√
ν

(∑
e∈E
‖h−1/2

e [ě]J‖2e

)1/2

≤
√

2c15c14 ‖|(e, ε)‖| ‖|(ě, ε̌)‖|
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Finally, by Lemma 3.4, we have

‖|(ě, ε̌)‖|2 ≤ β2
2ω
−1(27‖|(eQ, εQ)‖| ‖|(ě, ε̌)‖|+ c16‖|(e, ε)‖| ‖|(ě, ε̌)‖|)

and hence

‖|(ě, ε̌)‖| ≤ β2
2ω
−1(27(1 + β) + c16)‖|(e, ε)‖|

Let e
′

= u − uh,l and ε
′

= p − ph. We now define the local error estimate
(ẽ, ε̃) ∈ K3(τ) by

B((ẽ, ε̃), (v, q)) = L
′
((v, q)) (v, q) ∈ K3(τ)(3.13)

with

L
′
((v, q)) = (f ,v)τ − a(uh,l,v)τ + (ph,∇.v)τ − (∇.uh,l, q)τ

+ν〈
[
∂uh,l

∂n

]
A

− phn,v〉∂τ +
1

3600στν
(f −∇ph,∇q)τ

Lemma 3.7. For all (v, q) ∈ Q3 we have∑
τ∈T

∣∣∣L((v, q))τ − L
′
((v, q))τ

∣∣∣ ≤ c20‖|(uL, pL)− (uh,l, ph)‖| ‖|(v, q)‖|(3.14)

Proof. We write the difference between the right-hand sides of (3.6) and (3.13) in
triangle τ ∈ T as

L((v, q))τ − L
′
((v, q))τ = −a(uL − uh,l,v)τ + (pL − ph,∇.v)τ

−(∇.(uL − uh,l), q)τ + 〈ν
[
∂(uL − uh,l)

∂n

]
A

− (pL − ph)n,v〉∂τ

− 1

3600στν
(∇(pL − ph),∇q)τ

Each of these terms is now bounded in terms of the energy norm of the difference
(uL−uh,l, pL− ph) between the solution from the Petrov-Galerkin and mini-element
formulations, as in the proof of Lemma 3.4: First

|a(uL − uh,l,v)τ | ≤
√
ν‖∇(uL − uh,l)‖τa(v,v)1/2

τ

|(pL − ph,∇.v)τ | ≤ ‖pL − ph‖τ‖∇.v‖τ
≤
√

2‖pL − ph‖τ‖∇v‖τ

and similarly

|(∇.(uL − uh,l), q)τ | ≤
√

2‖∇(uL − uh,l)‖τ‖q‖τ

The bound on the boundary term is then derived using Lemma 3.2:∣∣∣∣〈ν [∂(uL − uh,l)

∂n

]
A

,v〉∂τ
∣∣∣∣ ≤ ν ∥∥∥∥h1/2

e

[
∂(uL − uh,l)

∂n

]
A

∥∥∥∥
∂τ

∥∥∥h−1/2
e v

∥∥∥
∂τ

19



for e ∈ ∂τ we have∥∥∥∥h1/2
e

[
∂(uL − uh,l)

∂n

]
A

∥∥∥∥2

e

≤ he
2

{∥∥∥∥∂(uL − uh,l)
∂n

|τ
∥∥∥∥2

e

+

∥∥∥∥∂(uL − uh,l)
∂n

|τout
∥∥∥∥2

e

}

≤ hec
2
12

2

{
h−1
τ ‖∇(uL − uh,l)‖2τ + h−1

τout‖∇(uL − uh,l)‖2τout
}

≤ C2c
2
12

2
‖∇(uL − uh,l)‖2τ∪τout

Thus summing over edges in τ

∥∥∥∥h1/2
e

[
∂(uL − uh,l)

∂n

]
A

∥∥∥∥2

∂τ

≤C2c
2
12

3

2
‖∇(uL − uh,l)‖2τ +

1

2

∑
τ ′

‖∇(uL − uh,l)‖2τ ′


where τ

′
is a triangle neighbor of τ (total of 3 neighbors in the 2D case). Similarly

|〈(pL − ph)n,v〉e| ≤ ‖h1/2
e (pL − ph)‖e ‖h−1/2

e v‖e

≤ C1/2
2 c11

‖pL − ph‖τ√
ν

c14 a(v,v)1/2
τ

Finally, summing over all triangles, we get∑
τ∈T

∣∣∣L((v, q))τ − L
′
((v, q))τ

∣∣∣ ≤ √ν∑
τ∈T
‖∇(uL − uh,l)‖τa(v,v)1/2

τ

+
∑
τ∈T

√
2‖pL − ph‖τ‖∇v‖τ +

∑
τ∈T

√
2‖∇(uL − uh,l)‖τ‖q‖τ +
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ν

∑
τ∈T
‖pL − ph‖τ ‖q‖τ

+
∑
τ∈T

C
1/2
2 c12

3

2
‖∇(uL − uh,l)‖2τ +

1

2

∑
τ ′

‖∇(uL − uh,l)‖2τ ′

1/2

c14

√
ν a(v,v)1/2

τ

+
∑
τ∈T

3C
1/2
2 c14c11‖pL − ph‖τ a(v,v)1/2

τ

≤

(∑
τ∈T

(a(v,v)τ + ν−1‖q‖2τ )

)1/2

·

(
(3 + 2C2c

2
14c

2
12)
∑
τ∈T

ν‖∇(uL − uh,l)‖2τ + (627 + 9C2c
2
14c

2
11)
∑
τ∈T

‖pL − ph‖2τ
ν

)1/2

≤ c20‖|(v, q)‖| ‖|(uL, pL)− (uh,l, ph)‖|

This estimate of the difference between the two right-hand sides of the systems
defining the two error estimates (ẽ, ε̃) and (ě, ε̌) allows us to get a bound for the
difference between the estimators themselves, since both systems have the same left-
hand side which is positive definite on the space K3. Indeed, for (v, q) = (ẽ, ε̃) −
(ě, ε̌) ∈ Q3 in the previous lemma, we have:

‖|(ẽ, ε̃)− (ě, ε̌)‖|2 ≤ β2
2‖(ẽ, ε̃)− (ě, ε̌)‖2∗
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≤ β2
2ω
−1
∑
τ∈T

B((ẽ, ε̃)− (ě, ε̌), (ẽ, ε̃)− (ě, ε̌))

= β2
2ω
−1
∑
τ∈T

(
L((ẽ, ε̃)− (ě, ε̌))τ − L

′
((ẽ, ε̃)− (ě, ε̌))τ

)
≤ β2

2ω
−1c20‖|(ẽ, ε̃)− (ě, ε̌)‖| ‖|(uL, pL)− (uh,l, ph)‖|

Noting that (uL, pL)− (uh,l, ph) = (e, ε)− (e
′
, ε

′
) and recalling Theorem 2.5 we thus

have the

Theorem 3.8.

‖|(ẽ, ε̃)− (ě, ε̌)‖| ≤ c14‖|(e, ε)− (e
′
, ε

′
)‖| ≤ c14c10h

2

√
ν
‖∇f‖(3.15)

Note that if neither (uL, pL) nor (uh,l, ph) is the exact solution to the original

Stokes system, then both terms (e, ε) and (e
′
, ε

′
) are of order O(h) and their difference

is of order O(h2). However, when for example (uL, pL) is the exact solution (which
is possible for properly chosen functions f and g and a particular domain Ω), (e, ε)
is zero while (e

′
, ε

′
) is of order O(h2). Therefore there is no constant c21 such that

c−1
21 (h)‖|(e, ε)‖| ≤ ‖|(e

′
, ε

′
)‖| ≤ c21(h)‖|(e, ε)‖|

Finally the best result we can get reads

Theorem 3.9. There exist two positive constants c22 and c23 such that

c22‖|(e
′
, ε

′
)‖| − O(h2) ≤ ‖|(ẽ, ε̃)‖| ≤ c23‖|(e

′
, ε

′
)‖|+O(h2)(3.16)

Proof. It is a direct consequence of Theorems 3.6 and 3.8.

In the last step of our analysis we simplify the system (3.13). We introduce the
final estimate (e

′′
, ε

′′
) ∈ K3 defined in triangle τ by


a(e

′′
,v)τ + b(v, ε

′′
)τ = (f ,v)τ − a(uh,l,v)τ + (ph,∇.v)τ

+〈ν
[
∂uh,l
∂n

]
A

− phn,v〉∂τ

b(e
′′
, q)τ −

(∇ε′′ ,∇q)τ
3600στν

= (∇.uh,l, q)τ −
1

3600στν
(f −∇ph,∇q)τ

(3.17)

for (v, q) ∈ K3.
Note that the right-hand side has not changed and that only the Laplace term

has been removed from the left-hand side, when compared to the system (3.13).
The corresponding 9× 9 matrix Mτ of this system takes the form

Mτ =

 Aτ 0 Btτ,x
0 Aτ Btτ,y

Bτ,x Bτ,y −Sτ

(3.18)
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where the 3× 3 matrices Aτ , Bτ,x and Bτ,y are respectively defined by

(Aτ )i,j = ν

∫
τ

∇ψib(τ)∇ψib(τ)dτ 1 ≤ i, j ≤ 3(3.19)

(Bτ,x)i,j = −
∫
τ

ψjb(τ)
∂ψib(τ)

∂x
dτ 1 ≤ i, j ≤ 3(3.20)

(Bτ,y)i,j = −
∫
τ

ψjb(τ)
∂ψib(τ)

∂y
dτ 1 ≤ i, j ≤ 3(3.21)

( ψ1b = 4ψ2ψ3 and cyclically) and Sτ =
1

3600στν2
Aτ .

In the case of a boundary triangle, the equations in the system (3.17) associ-
ated with the corresponding edge(s) are replaced by a scaled version of the Dirichlet
boundary condition e′′ = u − u∗h,l, where u∗h,l represents the linearly interpolated
value of uh,l at the midpoint of the edge. Thus all elements but the diagonal terms
in the corresponding rows of Mτ are zeroed out.

Since K(τ) does not contain the constant functions, the matrix Aτ is symmetric
positive definite. If τ is an interior triangle, then the Schur complement Cτ = C ′τ +Sτ
of Mτ , with C ′τ ≡ Bτ,xA−1

τ Btτ,x +Bτ,yA
−1
τ Btτ,y, is therefore well defined, and because

Sτ is positive definite, Cτ is also positive definite. The matrix C ′τ can in fact be shown
to be independent of the geometry of the triangle τ , even though the matrices Aτ ,
Bτ,x and Bτ,y are not (see [17]).

In a boundary element, the matrix C ′τ does now depend on the geometry of the
element, but is still positive semi-definite, so that Cτ is non-singular.

Hence the matrix Mτ is non singular since Aτ 0 Btτ,x
0 Aτ Btτ,y

Bτ,x Bτ,y −Sτ

 =

 Aτ 0 0
0 Aτ 0

Bτ,x Bτ,y −Cτ

 I 0 A−1
τ Btτ,x

0 I A−1
τ Btτ,y

0 0 I

(3.22)

so that the system (3.17) has a unique solution (the non-singularity of the Schur com-
plement Cτ (and hence its positive definiteness), together with the non-singularity of
Aτ , is equivalent to the stability of the discretization of the error, i.e. the discretiza-
tion will satisfy a local Babuška-Brezzi type condition).

In our final theorem we compare this last estimate with the discretization error
resulting from the mini-element formulation.

Theorem 3.10. There exist two positive constants c24 and c25 such that

c24‖|(e
′′
, ε

′′
)‖| ≤ ‖|(ẽ, ε̃)‖| ≤ c25‖|(e

′′
, ε

′′
)‖|

Proof.

‖|(e
′′
, ε

′′
)‖|2 ≤ β2

2‖(e
′′
, ε

′′
)‖2∗

= β2
2

(
a(e

′′
, e

′′
) +

∑
τ∈T

1

3600στν
‖∇ε

′′
‖2τ

)
= β2

2 L
′((e

′′
, ε

′′
))

= β2
2 B((ẽ, ε̃), (e

′′
, ε

′′
))

≤ 27β2
2 ‖|(ẽ, ε̃)‖| ‖|(e

′′
, ε

′′
)‖|
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Conversely,

‖|(ẽ, ε̃)‖|2 ≤ β2
2 ‖(ẽ, ε̃)‖2∗

≤ β2
2ω
−1B((ẽ, ε̃), (ẽ, ε̃)) = β2

2ω
−1L′((ẽ, ε̃))

≤ β2
2ω
−1

(
a(e

′′
, ẽ) +

∑
τ∈T

1

3600στν
(∇ε

′′
,∇ε̃)τ + b(ẽ, ε

′′
)− b(e

′′
, ε̃)

)
≤ β2

2ω
−1
(
‖(e

′′
, ε

′′
)‖∗‖(ẽ, ε̃)‖∗ +

√
2‖ε

′′
‖ ‖∇ẽ‖+

√
2‖ε̃‖ ‖∇e

′′
‖
)

≤ β2
2ω
−1(
√

2 + β−2
1 )‖|(e

′′
, ε

′′
)‖| ‖|(ẽ, ε̃)‖|

This equivalence between the two estimate is true locally as well, since all in-
equalities in the proof remain valid in any triangle τ ∈ T .

Corollary 3.11. There exist positive constants c26, c27, c28 and c29 such that

c26‖|(e
′
, ε

′
)‖| − c27h

2 ≤ ‖|(e
′′
, ε

′′
)‖| ≤ c28‖|(e

′
, ε

′
)‖|+ c29h

2

This last result means that the error estimate (e
′′
, ε

′′
) is a reasonable global

estimate of the discretization error resulting from the use of the mini-element. No
local inequality is proved. However, as will be seen in section 4, this estimate seems
to be also a good local indicator of the size of the error and becomes an efficient tool
in the adaptation process of the mesh to the solution of the original problem (2.1).

4. Numerical Results. The system (3.17) is solved in each triangle τ using the
decomposition (3.22). Thus we need to solve eight 3× 3 systems with the matrix Aτ
(among which six are necessary to compute A−1

τ Btτ,x and A−1
τ Btτ,x), and then another

3× 3 system with Cτ to get the pressure error and finally the velocity error.

We present three numerical examples which demonstrate the efficiency of our
error estimator in controlling the mesh adaptation process and also in estimating the
discretization error.

4.1. Driven Cavity. We consider first the standard case in CFD of a driven
cavity in a unit square. In this example ν = 0.01. The right hand side f in (2.1) is
set to zero and boundary conditions are zero except on the upper side of the square
where the velocity is tangential and has value 1:
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-

ut = (0, 0)

ut = (1, 0)

ut = (0, 0) ut = (0, 0)

This domain is first triangulated into NT = 8 triangles, to form the level 1 grid
(Fig. 4.1(a)). After computing the solution of (2.1) on this coarse grid, the mesh
is either uniformly (Fig. 4.1(b)) or adaptively (Fig. 4.1(c)) refined. Each triangle
is subdivided into 4 smaller triangles by joining the midpoints of the three sides
(regular refinement). “Green” triangles are added to make the mesh an admissible
triangulation. Refinement stops when the total number of vertices NV in the mesh
reaches a preassigned target value. For further details on the refinement strategy the
reader can refer to [4].

We can notice that the adaptive strategy created a lot of triangles (up to 21
levels) in the two upper corners of the cavity, where two singularities arise due to the
discontinuities in the boundary conditions.

(a) (b) (c)

Fig. 4.1. (a) Initial grid with NV = 9 vertices and NT = 8 triangles; (b) uniformly refined
grid with NV = 289 vertices and NT = 512 triangles (4 levels) and (c) adaptively refined grid with
NV = 282 vertices and NT = 496 triangles (10 levels).

The resulting velocity field is plotted on Figure 4.2. Each arrow represents the
velocity at the inner vertices, with a streamline direction and a length proportional
to the norm of the velocity. Although the picture seems to be nicer for the uniform
refinement case because of the equal spacing of the vertices, the one corresponding
to the adaptive strategy gives a better idea of the real field, especially at the two top
corners: on the left the fluid is taken away and is forced back into the cavity on the
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right side, hence the corresponding negative and positive pressures on Figures 4.3(a)
and (b).

The capture of the discontinuities is much more effective on the adapted mesh
than on the uniform mesh, and the level of the pressure is about 104 times the level
reached on the uniform grid.

Error estimates are shown on Figures 4.4(a) and (b). In order to draw contin-
uous functions, errors at the vertices are computed by averaging the estimates on
neighboring triangles.

4.2. Backward Facing Step. Another classical case in CFD is the backward
facing step. Here the spikes in the pressure are not due to a discontinuity in the
boundary conditions but only to a discontinuity in the geometry of the boundary.
Boundary conditions are as follows:

ut = (y(a−y)
8b , 0)

ut = (
(y− a2 )(a−y)

b , 0)

&
6�-

6

?

ut = (0, 0)

ut = (0, 0)

ppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppp
�
�
�

ppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppp

-
-
-
-
-
-
-

The initial grid (Fig. 4.5(a)) is uniformly refined (Fig. 4.5(b), 4 levels of refine-
ment) or adaptively refined (Fig. 4.5(c), 9 levels of refinement) based on the error
estimate computed from the solution (ν = 1). In the latter case triangles were added
near the re-entrant corner to resolve the discontinuity. Profiles of the velocity field
are very similar this time (Fig. 4.6,4.7) but the drop in pressure is better represented
with the adaptive strategy (Fig. 4.8). Note that in Fig. 4.5(c) some refinement was
done near the non homogeneous Dirichlet boundaries.
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(a) (b)

Fig. 4.2. Velocity field on the uniform grid (a) and on the adapted grid (b).

(a) (b)

Fig. 4.3. Pressure elevation on the uniform grid (a) and on the adapted grid (b); it is negative
at the left upper corner of the cavity (suction effect) and positive at the right upper corner; at these
points the level of the pressure is actually much higher on the adapted grid (order of magnitude 102)
than on the uniform mesh (order of magnitude 100).
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(a) (b)

Fig. 4.4. Estimated error on the uniform (a) and adapted (b) grids. Although the represen-
tation (b) is less smooth than (a), the errors are much more uniformly reparted in (b) than in
(a).

(a) Initial grid with NV = 36 vertices and NT = 44 triangles.

(b) Uniformly refined grid with NV = 1513 vertices and NT = 2816 triangles (4 levels).

(c) Adaptively refined grid with NV = 1517 vertices and NT = 2863 triangles (9 levels).

Fig. 4.5.
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(a) Velocity field on the uniform grid.

(b) Velocity field on the adapted grid.

Fig. 4.6.

Fig. 4.7. Detail of velocity field near the re-entrant corner of the step.

(a) (b)

Fig. 4.8. Pressure elevation on the uniform grid (a) and on the adapted grid (b); note that
at the top corner of the step level of the pressure is higher on the adapted grid (order of magnitude
102) than on the uniform mesh (order of magnitude 101).
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(a) (b)

Fig. 4.9. Estimated error on the uniform (a) and adapted (b) grids.

29



4.3. Disk with a Crack. Finally we test our error estimate on a Stokes flow
in a disk of radius 1 with a crack joining the center to the boundary; the right-hand
side f is 0 and the boundary conditions are

ut =
3

2

(
cos

θ

2
− cos

3θ

2
, 3 sin

θ

2
− sin

3θ

2

)
where (r, θ) is a polar representation of a point in the disk. The exact solution is then
given by

ut =
3
√
r

2

(
cos

θ

2
− cos

3θ

2
, 3 sin

θ

2
− sin

3θ

2

)
p = − 6√

r
cos

θ

2

and is singular at the end of the crack, i.e. at the center of the disk.

(a) (b) (c)

Fig. 4.10. (a) Domain ; (b) velocity ; (c) pressure.

We first solve our Stokes problem on a coarse grid consisting of NV = 15 vertices
and NT = 16 triangles (Fig. 4.10(a)), then refine either uniformly or adaptively, thus
creating two sequences of meshes of increasing and comparable size (or degrees of
freedom = d. of f.)(see Tables 4.1 and 4.2) (ν = 1).

Pressure elevations are plotted on the uniform and adaptive refined grids (Fig-
ures 4.12(a)(b)).

The solution was computed on each grid, along with error estimates. During
the refinement process, these estimates were computed using an interpolation scheme
(one Jacobi sweep) for the values at the new nodes. Consequently their accuracy
deteriorates along with the number of refinement steps; however had we used inter-
mediate recalculations to base the computation of the estimates on, we would have
gotten a mesh with more levels of refinement around the singularity (hence giving a
higher level for the pressure). in that regard the use of interpolated values instead of
computed solution values had a grid smoothing effect.
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(a) (b) (c)

Fig. 4.11. (a) Initial grid with NV = 15 vertices and NT = 16 triangles; (b) uniform mesh
with NV = 561 vertices and NT = 1024 triangles (4 levels) and (c) adapted mesh with NV = 563
vertices and NT = 1054 triangles (9 levels).

(a) (b)

Fig. 4.12. Pressure elevation on the uniform (a) and adapted (b) meshes. The level of pressure
is much higher on the adapted grid (order of magnitude 103) than on the uniform mesh (order of
magnitude 102).
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We can measure the efficiency of our estimate both locally and globally:

• we perform a convergence analysis on the two sequences of (uniform and
adapted) meshes and evaluate in particular the “effectivity ratio” q defined
as the ratio of the exact global error ‖|(e, ε)‖| to the estimated global error
‖|(e′′

, ε
′′
)‖|, and report the results in Tables 4.1 and 4.2. The column labeled

“digits” gives the estimated number of correct digits in the solution of the
discrete problem.

Uniform refinement
levels NV NT d. of f. digits q

1 15 16 53 0.341 0.74
2 45 64 215 0.455 0.99
3 153 256 875 0.586 1.10
4 561 1024 3539 0.732 1.13
5 2145 4096 14243 0.883 1.14

Table 4.1
Convergence analysis and effectivity ratio for a sequence of uniform meshes.

Adaptive refinement
levels NV NT d. of f. digits q

1 15 16 53 0.341 0.74
3 41 64 219 0.606 0.50
5 143 250 861 0.772 0.73
8 556 1042 3616 1.077 0.93
12 2139 4124 14361 1.413 1.11

Table 4.2
Convergence analysis and effectivity ratio for a sequence of adapted meshes.

From the results in the column “digits” it is clear that the convergence is
much better in the adaptive case than in the uniform one.

• we plot the estimated error vs the exact error to test the local behavior of
the estimate, and its propensity to recognize the regions in the mesh needing
some refinement or unrefinement (Figures 4.13(a)(b) and 4.14(a)(b)).

In Table 4.3 are listed the convergence rates γ for both uniform and adaptive
cases, in the energy norm, as well as in the H1

0 norm (‖∇ · ‖) for the velocity and
the L2 norm of the pressure, which both are regrouped in the energy norm. These
numbers are such that 10−digits ∼ NV −γ/2 ∼ hγ (in the least square sense). The row
labeled “B-D” refers to a priori estimates results published by Brezzi and Douglas
[8].

All convergence rates are based on a least square fitting from the number of correct
digits in the solution for each of the grids in the (uniform and adapted) sequences. In
the uniform case these values are smaller than expected from the a priori estimates
given by Brezzi and Douglas, except maybe for the H1

0 norm of the pressure, mainly
because the solution does not have here the regularity required in the derivation of
their estimates. Note the singularity has about the same effect on the L2 and H1

0

norms for the velocity, this effect being less obvious on the pressure. Note also that
the difference between the convergence in L2 and H1

0 norms is of the order of unity,
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which corresponds to one power of h in the estimates in [8]. In the adaptive strategy
the rates of convergence are increased back to the expected levels (velocity) or more
(pressure), yielding a superlinear convergence in the energy norm (on a computational
point of view, the adaptive refinement has somehow regularized the solution around
the singularity).

Finally we plot the (estimated and exact) errors in both cases. Since the estimates
are given by triangles, they are transformed into errors on the vertices by averaging
between all the triangles neighbor of a node, as in the previous examples. On the other
hand exact errors are known at the vertices. However, in order to compare similar
results, these are used to compute errors in each triangle based on the energy norm of
interpolated errors at the midpoints of all interior edges. Then an averaging identical
to the one above is performed to get an error at the vertices. On Figures 4.13(a)(b)
(uniform case) and 4.14(a)(b) (adapted case) we can note that the estimate is in
good agreement with the exact error, thus providing a nice tool for adapting grids,
especially when discontinuities or steep variations in the solution occur.

(a) (b)

Fig. 4.13. (a) Estimated error and (b) exact error on the uniform grid. The error ranges from
7.10−3 to 8 10−1 for both estimated and exact errors.

5. Conclusion. In this paper we derived an a posteriori error estimate which
can be used toward the solution of the Stokes equations on geometries of industrial
interest. On the test problems of section 4 the computation of this estimate took
about one fourth of the total time for the solution process. It remains to compare it
with other estimates, in particular with those derived by R. Verfürth in [16].
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(a) (b)

Fig. 4.14. (a) Estimated error and (b) exact error on the adapted grid. The estimated error
ranges from 2.10−3 to 10−1, compared to 3.10−3 to 2.10−1 for the exact error.
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type of L2 norm H1
0 norm L2 norm H1

0 norm energy norm
refinement (velocity) (velocity) (pressure) (pressure) ‖|(·, ·)‖|

uniform 1.51 0.59 0.96 0.09 0.87
adaptive 1.79 1.03 1.66 0.29 1.46

B-D 2.00 1.00 1.00 0.00 1.00

Table 4.3
Rates of convergence in L2,H1

0 and energy norms.
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