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Abstract. A uniform framework for the study of upwinding schemes is developed. The standard
finite element Galerkin discretization is chosen as the reference discretization, and differences between
other discretization schemes and the reference are written as artificial diffusion terms. These artificial
diffusion terms are spanned by a four dimensional space of element diffusion matrices. Three basis
matrices are symmetric, rank one diffusion operators associated with the edges of the triangle; the
fourth basis matrix is skew symmetric and is associated with a rotation by π/2. While finite volume
discretizations may be written as upwinded Galerkin methods, the converse does not appear to be
true. Our approach is used to examine several upwinding schemes, including the streamline diffusion
method, the box method, the Scharfetter-Gummel discretization, and a divergence-free scheme.
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1. Introduction. We consider the model convection diffusion problem

−∇ · (∇u+ βu) = 0 in Ω ⊂ R2(1.1)

u = u0 on ∂Ω1

(∇u+ βu) · n = 0 on ∂Ω− ∂Ω1

Here β = ∇ψ and ψ ∈ H1(Ω). We assume that Ω is polygonal and that ∂Ω1 is
composed of one or more edges of ∂Ω. The function u0 is assumed constant on each
contiguous set of Dirichlet boundary edges. The outward normal direction n is defined
edgewise.

The weak form of (1.1) is: find u ∈ Hd such that

a(u, φ) =

∫
Ω

(∇u+ βu) · ∇φdx dy = 0(1.2)

for all φ ∈ H0, where

Hd = {u ∈ H1(Ω) and u = u0 on ∂Ω1}
H0 = {u ∈ H1(Ω) and u = 0 on ∂Ω1}

Let T be a shape regular, although not necessarily quasi uniform, triangulation
of Ω, characterized by a small parameter h indicating the size of the elements. Let Sh
be the space of continuous piecewise linear polynomials with respect to T , and define

Sd = {u ∈ Sh and u = u0 on ∂Ω1}
S0 = {u ∈ Sh and u = 0 on ∂Ω1}
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§AT&T Bell Laboratories, Murray Hill, New Jersey 07974

1



Here we are assuming that each point at which the type of boundary condition changes
from Dirichlet to Neumann is a vertex in the triangulation T . Also, we will assume
that β = ∇ψ, where ψ ∈ Sh. In the practical application that we have in mind,
where (1.1) is a current continuity equation from the semiconductor device model
and β is the gradient of the electrostatic potential, which itself is obtained as part of
the solution of a coupled system of partial differential equations [2].

The classical Galerkin finite element method for approximating (1.2) is: find
ug ∈ Sd such that

a(ug, φ) = 0(1.3)

for all φ ∈ S0. The classical method roughly corresponds to the use of centered
differences in the finite difference context, and is well known to be unstable when |β|h
is large.

This has led to the use of upwind finite element techniques [4, 5, 6, 7, 8, 9], which
are analogous to the use of upwind differences in the finite difference arena. In this
paper, we develop a uniform framework for the study of general upwinding schemes.
We choose the standard weak Galerkin form (1.3) as the reference discretization.
Then differences between other discretization schemes and the weak Galerkin form
are written as artificial diffusion terms; that is, we seek to write all schemes in the
form:

ah(u, φ) = a(u, φ) +
∑
τ∈T

∫
τ

hτ (ρ∇u) · ∇φdx dy = 0.(1.4)

Here ρ ≡ ρτ is a 2 × 2 diffusion matrix, defined elementwise and is characteristic of
the particular scheme, and hτ is a measure of the size of τ , for example, its diameter.
Normally, one might tend to think of ρ as a symmetric, positive semidefinite matrix,
but this will not be the case with many of the methods. The bilinear form ah(·, ·)
formally corresponds to the perturbed equation

−∇ · ((I + hτρ)∇u+ βu) = 0

for τ ∈ T .
For piecewise linear triangular elements, the diffusion term hτρ is contained in

a four dimensional space of element diffusion matrices. Three basis matrices for this
space are symmetric, rank one diffusion operators that can naturally be associated
with the edges of the triangle. The fourth basis matrix is skew symmetric and is
associated with a rotation by π/2.

In this paper, we will first consider the streamline diffusion method, proposed and
analyzed by T. Hughes et al [5] [6] and C. Johnson et al [8], among others. As this is
a standard approach, we do not make a formal derivation of the method, but rather
refer to the existing literature.

We then consider the box scheme [1] and the Scharfetter-Gummel scheme [2], two
finite volume discretizations. Our recasting of these schemes in the form (1.4) may be
regarded as an extension of [1], in which only self-adjoint problems were considered.
Interestingly, while finite volume discretizations may always be written as upwinded
Galerkin methods, the converse does not appear to be true, since the skew symmetric
elementary diffusion operator seems to have no analogue in the standard finite volume
framework.

Finally, we consider the new divergence free upwinding scheme proposed by the
authors [3]. In some instances, the artificial diffusion introduced by this method
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Fig. 2.1. Parameters associated with the triangle τ

resembles that of the streamline diffusion method. In other cases, it can lead to
very nonsymmetric and indefinite artificial diffusion matrices. In extreme cases, the
overall diffusion matrix I + hτρ can have one positive and one negative eigenvalue.
Nevertheless, the method appears to be extremely robust and stable, and remains so
even in unfavorable situations where other upwinding schemes fail [3].

The remainder of this paper is organized as follows: In section 2, we describe the
triangular element geometry and elemental stiffness matrix. In addition, the element
diffusion matrices and there properties are presented. The next four sections are
devoted to discussions of the various upwinding schemes in terms of these elemental
matrices. We make some concluding remarks in the final section.

2. Preliminaries. Let {φi}ni=1 denote the standard nodal basis functions for S0.
Then the global stiffness matrix A corresponding to (1.3) is given by

Aij = ah(φj , φi)(2.1)

The global stiffness matrix may be decomposed in terms of element stiffness matrices
Aτ as

A =
∑
τ∈T

Aτ

where

(Aτ )ij = aτ (φj , φi)

aτ (φj , φi) =

∫
τ

(I + hτρ)∇φj · ∇φi + βφj · ∇φi dx dy

Since there are only three nonzero basis functions on each element, we can char-
acterize Aτ by a dense 3×3 element matrix. Without loss of generality, or by virtue of
a local coordinate renumbering, we assume that our canonical element τ has vertices
vti = (xi, yi) , for 1 ≤ i ≤ 3, and corresponding nodal basis functions {φi}3i=1.

We define {ni}3i=1 to be the unit outward normal vectors for τ , {ti}3i=1 to be the
unit tangent vectors for the three edges, {`i}3i=1 to be their lengths, and {hi}3i=1 to
be the perpendicular heights (see Fig.1). Let ṽ be the point of intersection for the
perpendicular bisectors of the three sides of τ . Let |sj | denote the distance between
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ṽ and side j. If τ has no obtuse angles, then the sj will be nonnegative; otherwise,
the distance to the side opposite the obtuse angle will be negative.

There are many relationships among these quantities; in particular we note the
following:

`ihi = 2|τ |, 1 ≤ i ≤ 3(2.2)

∇φi = −ni/hi, 1 ≤ i ≤ 3(2.3)

φ1 + φ2 + φ3 = 1(2.4)

∇φ1 +∇φ2 +∇φ3 = 0(2.5)

`1t1 + `2t2 + `3t3 = 0(2.6)  `1t
t
1

`2t
t
2

`3t
t
3

 [ ∇φ1 ∇φ2 ∇φ3

]
=

 0 −1 1
1 0 −1
−1 1 0

(2.7)

s1 = −|τ | `1∇φ2 · ∇φ3(2.8)

Equation (2.8) is valid cyclically for s2 and s3. A hint for verifying (2.8) is to recall
that, if the angle at vertex v1 is θ1, then the angle at ṽ between the lines joining ṽ
to v2 and ṽ to v3 is 2θ1.

The affine mapping of the reference element τ̂ , with vertices (x̂1, ŷ1) = (0, 0),
(x̂2, ŷ2) = (1, 0), and (x̂3, ŷ3) = (0, 1), to our canonical element τ is given by[

x
y

]
= J

[
x̂
ŷ

]
+ v1(2.9)

with

J =
[
`3t3 −`2t2

]
(2.10)

and

J−t =
[
∇φ2 ∇φ3

]
(2.11)

The function ∇u defined on τ is transformed to J−t∇̂û defined on the reference
element τ̂ . The local basis functions on the reference element are

φ̂1 = 1− x̂− ŷ
φ̂2 = x̂

φ̂3 = ŷ

Assuming the β is constant on τ , as will be the case when β = ∇ψ for ψ ∈ Sh,
the element stiffness matrix for the standard Galerkin method is given by

Ag = |τ |

 ∇φ1 · ∇φ1 ∇φ1 · ∇φ2 ∇φ1 · ∇φ3

∇φ1 · ∇φ2 ∇φ2 · ∇φ2 ∇φ2 · ∇φ3

∇φ1 · ∇φ3 ∇φ2 · ∇φ3 ∇φ3 · ∇φ3

(2.12)

+
|τ |
3

 β · ∇φ1

β · ∇φ2

β · ∇φ3

 [ 1 1 1
]
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The first matrix on the right hand side of (2.12) corresponds to the contribution
to Ag from the Laplace operator. This matrix is symmetric, positive semi-definite
and has rank two. Its kernel is spanned by the vector (1 1 1)t, a reflection of (2.5).
The second matrix corresponds to the convection term and has rank one. Note that
the column sums of both matrices are zero.

In the general setting, the contribution to the element stiffness matrix from an
artificial diffusion term will be a 3×3 matrix with zero row sums and zero column sums
(reflecting the fact that ∇c = 0 for a constant c). It is a straightforward calculation to
see that this represents five independent constraints on the nine coefficients in such a
matrix. A basis for the remaining four dimensional space of element diffusion matrices
is given by

1

|τ |

 0 0 0
0 1 −1
0 −1 1

 =
`21
|τ |

 ∇φt1∇φt2
∇φt3

 t1tt1 [ ∇φ1 ∇φ2 ∇φ3

]
(2.13)

1

|τ |

 1 0 −1
0 0 0
−1 0 1

 =
`22
|τ |

 ∇φt1∇φt2
∇φt3

 t2tt2 [ ∇φ1 ∇φ2 ∇φ3

]
(2.14)

1

|τ |

 1 −1 0
−1 1 0

0 0 0

 =
`23
|τ |

 ∇φt1∇φt2
∇φt3

 t3tt3 [ ∇φ1 ∇φ2 ∇φ3

]
(2.15)

1

|τ |

 0 −1 1
1 0 −1
−1 1 0

 =

 ∇φt1∇φt2
∇φt3

[ 0 −1
1 0

] [
∇φ1 ∇φ2 ∇φ3

]
(2.16)

The 2× 2 diffusion matrices

ρ̂i =
`2i
|τ |
tit

t
i(2.17)

for 1 ≤ i ≤ 3, are symmetric, rank one diffusion operators which can naturally be
associated with the three edges of τ . The skew symmetric operator

ρ̂s =

[
0 −1
1 0

]
(2.18)

corresponds to a rotation by π/2.
If D is a 2× 2 diffusion matrix, then we may expand D in terms of this basis as

D = αsρ̂s +

3∑
i=1

αiρ̂i(2.19)

where

α1 = −|τ |∇φ2 ·
(
D +Dt

2

)
∇φ3

(cyclically for α2 and α3), and

αsρ̂s =
D −Dt

2
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These coefficients can be computed directly using (2.2)-(2.11).

As an example, the diffusion operator corresponding to the Laplace operator −∆
is the 2× 2 identity matrix, which can be decomposed as

I2×2 =

3∑
i=1

Liρ̂i(2.20)

where

L1 = −|τ |∇φ2 · ∇φ3(2.21)

=
s1

`1

The scalars L2 and L3 are defined cyclically.

3. The Streamline Diffusion Method. The streamline diffusion is one of the
more widely used upwinding schemes in the finite element arena. Since derivations of
the method are widely available in the literature [6], [5], [8], we will merely summarize
the method within the current framework.

For the streamline diffusion method, the element stiffness matrix is

As = Ag +
C|τ |hτ
|β|

 β · ∇φ1

β · ∇φ2

β · ∇φ3

 [ β · ∇φ1 β · ∇φ2 β · ∇φ3

]
(3.1)

where C is a positive constant.

The artificial diffusion term is a symmetric, positive semidefinite matrix of rank
one, corresponding to the diffusion term

ρs =
C

|β|
ββt(3.2)

This rank one matrix adds artificial diffusion in the streamline direction (in the di-
rection of β).

In analogy with (2.20), the diffusion may be expanded in terms of only the edge
diffusion matrices ρ̂i, 1 ≤ i ≤ 3 as

ρs =

3∑
i=1

αiρ̂i

where

α1 = −C|τ |
|β|

β · ∇φ2 β · ∇φ3

and α2 and α3 are defined cyclically.

Upwinding in the crosswind direction involves contributions perpendicular to the
streamline direction. These terms are also symmetric and therefore involve only the
edge diffusion operators. Thus both the streamline and the crosswind upwinding
terms do not involve the skew symmetric operator given by (2.18).
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Fig. 4.1. The box bi

4. The Box Method. The box method is formally derived as a finite volume
approximation of (1.1). Assume, for the moment, that T is such that all triangles
have interior angles that are not obtuse. This is nonessential to the definition, but
will simplify our initial derivation. Indeed, once the box method has been cast in the
form (1.4), such a restriction will obviously not be required. In any event, for each
vertex vi, we can associate a box bi, generated by the perpendicular bisectors of the
triangle edges incident on that vertex, as illustrated in Fig. 2 (although we could
allow a more general definition of boxes, as in [1]).

A given triangle τ contains parts of three boxes; thus one can easily develop the
concept of an element stiffness matrix for the box method. This matrix will contain
the contributions to the global matrix arising from integrals on the portions of box
boundaries lying within τ . See [1] for a complete discussion of this point with respect
to the Laplace operator.

We now integrate equation (1.1) over the box bi, and then apply the divergence
theorem to get

−
∫
∂bi

(∇u+ βu) · n ds = 0(4.1)

where n is the outward normal for the box bi, defined edgewise.
Let ηi be the index set of vertices in T connected via a triangle edge to vertex

vi. Then (4.1) is approximated by

∑
j∈ηi

{(
ui − uj
`ij

)
sij − (β · nij)uksij

}
= 0(4.2)

where

k =

{
i if β · nij < 0
j if β · nij ≥ 0

ui is the approximate solution at vertex vi, `ij is the length of the triangle edge
connecting vertices vi and vj , and sij is the length of the box edge corresponding to
the perpendicular bisector of the edge connecting vi and vj . The normal directions
nij for the box bi correspond to (plus or minus) tangent directions for triangle edges.
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To simplify our indices, we will write β · nijuk as

−β · nijuk =
1

2
{|β · nij | − β · nij}ui −

1

2
{|β · nij |+ β · nij}uj

so then (4.2) becomes∑
j∈ηi

(
1 +

`ij |β · nij |
2

)(
ui − uj
`ij

)
sij − (β · nij)

(
ui + uj

2

)
sij = 0(4.3)

It should be noted that the effect of the upwinding is to add a diffusion term to each
triangle edge of strength 1

2`ij |β · nij |.
A straightforward calculation shows that the element stiffness matrix for the box

method is given by

Ab =

(
1 +

`1|β · t1|
2

)
s1

`1

 0 0 0
0 1 −1
0 −1 1

+

(
1 +

`2|β · t2|
2

)
s2

`2

 1 0 −1
0 0 0
−1 0 1


+

(
1 +

`3|β · t3|
2

)
s3

`3

 1 −1 0
−1 1 0

0 0 0

+
s1β · t1

2

 0 0 0
0 −1 −1
0 1 1

(4.4)

+
s2β · t2

2

 1 0 1
0 0 0
−1 0 −1

+
s3β · t3

2

 −1 −1 0
1 1 0
0 0 0


The element stiffness matrix has zero column sums, with nonnegative diagonal

and nonpositive off diagonal entries, if we assume no obtuse angles for each element.
For elements with vertices on the boundary, the rows and columns corresponding to
Dirichlet vertices are ignored in computing the global stiffness matrix. Thus, the
global stiffness matrix will be an irreducible, diagonally dominant M-matrix with
respect to its columns. This leads to a number of desirable properties, including
a discrete maximum principle associated with the columns. We remark that the
assumption of no obtuse angles is necessary for the condition of nonnegative diagonal
and nonpositive off diagonal entries to hold element by element. It is not a necessary
condition (but certainly sufficient) for the global stiffness matrix to inherit these
properties [11].

The first three terms on the right hand side of (4.4) correspond to the Laplace
term and the upwinding, which can be written as

|τ |

 ∇φt1∇φt2
∇φt3

{ 3∑
i=1

Liρ̂i +
Li`i|β · ti|ρ̂i

2

}[
∇φ1 ∇φ2 ∇φ3

]
where we have used (2.13)-(2.16), and (2.20)-(2.21).

The last three terms of (4.4) correspond to the centered difference approximation
to the convective term by the finite volume method. To analyze these terms, we begin
by defining

βi =
1

|τ |
`isiti · β(4.5)

=
`2i
|τ |
Liti · β
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With this definition, we have, from (2.20) and (2.21)

β =

3∑
i=1

βiti(4.6)

This decomposes β into components lying along the tangent directions of each edge
of τ . Using (2.7), we next observe that −1 −1 0

1 1 0
0 0 0

 = (e2 − e1)(e1 + e2)t

=

 ∇φt1∇φt2
∇φt3

 `3t3(e1 + e2)t

where ei is the i-th column of the 3× 3 identity matrix.
Thus, the last three terms of (4.4) can be written as

|τ |
2

 ∇φt1∇φt2
∇φt3

{β1t1(e2 + e3)t + β2t2(e3 + e1)t + β3t3(e1 + e2)t
}

Our next task is to compute the form of the artificial diffusion associated with
the box method, and then to recast the box method in the form (1.4). We begin by
finding the matrix corresponding to the upwinding (relative to the standard Galerkin
method) given by Ab −Ag. To simplify the resulting expressions, we will need(

e2 + e3

2

)
−
(
e1 + e2 + e3

3

)
=

1

6
(e2 − e1 + e3 − e1)

=
1

6

 ∇φt1∇φt2
∇φt3

 (`3t3 − `2t2)(4.7)

≡ 1

2

 ∇φt1∇φt2
∇φt3

d1

The vectors d2 and d3 are defined cyclically. Thus using (4.5)-(4.7), as well as (2.20),
we have

Ab −Ag =
|τ |
2

 ∇φt1∇φt2
∇φt3

{ 3∑
i=1

`i|βi|titti + βitid
t
i

}[
∇φ1 ∇φ2 ∇φ3

]
(4.8)

Note that βi = O(|β|) and di = O(hτ ). Thus

hτρb =
1

2

3∑
i=1

`i|βi|titti + βitid
t
i(4.9)

is the artificial diffusion term (1.4) for the box method. Note that there are two types
of terms on the right hand side of (4.9). The first type comes from upwinding along a
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single edge; these terms contribute symmetric, positive semidefinite artificial diffusion
terms to hτρb. The second set of terms arise from the differences in approximating the
convection term using centered differences; the box method considers only approxima-
tions along each edge, while the standard Galerkin method develops approximations
within the triangle as a whole. This generally contributes a nonsymmetric artificial
diffusion term to the overall upwinding.

Having defined the form of the artificial diffusion, we can now interpret the box
method as a finite element method, which remains well defined even when some
elements have obtuse angles, and when β is no longer assumed to be constant on
each element.

5. The Scharfetter-Gummel Method. A second finite volume scheme, sim-
ilar to the box method of section 4, but making explicit use of the assumption that
β = ∇ψ, is the Scharfetter-Gummel discretization. Originally proposed for the one
dimensional discretization of the current continuity equation in the semiconductor
device model [10], it has been generalized to two dimensions [2], and is a widely used
discretization in contemporary device simulators. The Scharfetter-Gummel discretiza-
tion is an exponential upwinding scheme which will produce the exact values at the
vertices for a one dimensional problem in the special case where ψ is linear.

We define the Bernoulli function B(x) by

B(x) =
x

ex − 1
(5.1)

We will use the identity

B(−x) = B(x) + x

in the forms

B(x) = C(x)− x

2

B(−x) = C(x) +
x

2

where

C(x) =
B(x) + B(−x)

2
= B(|x|) +

|x|
2

(5.2)

Along the triangle edge connecting vertices v1 and v2 in element τ , the flux term

−(∇u+ βu) · n = −e−ψ∇(eψu) · n

is approximated along the box boundary by

e−ψ̃
(
eψ1u1 − eψ2u2

`3

)
(5.3)

where ψi ≡ ψ(vi). The value of ψ̃ is given by [2]

e−ψ̃ =

∫ ψ1

ψ2
eψ dψ

ψ1 − ψ2

−1

=
ψ1 − ψ2

eψ1 − eψ2
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This allows us to write (5.3) as

u1B(ψ1 − ψ2)− u2B(ψ2 − ψ1)

`3
(5.4)

Assuming that ψ is linear, we have

ψ2 − ψ1 = β · t3 `3

Setting C3 ≡ C(β · t3 `3), our flux approximation becomes

C3
(
u1 − u2

`3

)
+ β · t3

(
u1 + u2

2

)
(5.5)

Notice that the second term in (5.5) is identical to the corresponding term for the box
method.

Using this approximation to the flux, the element stiffness matrix for the Schar-
fetter-Gummel discretization can be found in a fashion, completely analogous to (4.1)-
(4.4), to be

Asg = |τ |

 ∇φt1∇φt2
∇φt3

{ 3∑
i=1

LiCiρ̂i

}[
∇φ1 ∇φ2 ∇φ3

]
(5.6)

+
|τ |
2

 ∇φt1∇φt2
∇φt3

{β1t1(e2 + e3)t + β2t2(e3 + e1)t + β3t3(e1 + e2)t
}

Similarly, the upwinding operator ρsg can be found, by forming Asg −Ag, to be

hτρsg =

3∑
i=1

Li(Ci − 1)ρ̂i + βitid
t
i(5.7)

where the di are defined as in (4.7).
We point out here that the term Ci−1 is formally of order O(h2

τ |β|2) as hτβ → 0,
whereas the corresponding term in the standard box method is O(hτ |β|). Thus, while
in some regimes we can expect the two discretizations to behave quite similarly, there
can be cases where there are significant differences.

6. Divergence-Free Upwinding. Our new discretization [3] is defined in terms
of a single element τ and the corresponding element stiffness matrix Ad. Let the
current J be defined by

J = ∇u+ βu(6.1)

so that (1.2) becomes ∫
Ω

J · ∇φdx dy = 0(6.2)

for all φ ∈ H0.
Since β = ∇ψ, we may write (6.1) as

J = e−ψ∇(eψu)(6.3)
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For the case ψ ∈ Sh, we can replace e±ψ by e±β·v , where vt = (x y).
For our approximation, we seek a discrete current J h in the form

J h = e−ψ∇(eψη)(6.4)

= ∇η + βη

where η is a linear polynomial in τ . Over all of Ω, η will be a discontinuous piecewise
linear polynomial.

The consistency of our approximation is determined by the edge conditions∫ vj

vi

eψJ · ds ≡
∫ vj

vi

eψJ h · ds(6.5)

where vi and vj are two vertices of τ . Since the integrations can be carried out
exactly, we may write (6.5) as

eψ(vj)u(vj)− eψ(vi)u(vi) = eψ(vj)η(vj)− eψ(vi)η(vi)(6.6)

Although there are three edge conditions, only two represent independent constraints
on η. In any event, the edge conditions imply that

η = uh + αI(e−ψ)(6.7)

where uh is the finite element solution, α is a scalar, and I(e−ψ) is the linear polyno-
mial interpolating e−ψ at the vertices of τ . Note that since uh ∈ Sh, the discontinuities
in η can arise only from α having different values in different elements.

The scalar α, and the stability of the discretization, is determined by the diver-
gence condition

∇ ·J h = 0(6.8)

on τ , which implies, for ψ ∈ Sh,

α = − β · ∇uh
β · ∇I(e−ψ)

(6.9)

Setting z = I(e−ψ), we have

J h · ∇φ = (∇η + βη) · ∇φ(6.10)

= (∇uh + βuh) · ∇φ− β · ∇uh
β · ∇z

(∇z + βz)∇φ

= (∇uh + βuh) · ∇φ+∇uh · (βdt)∇φ

where

d =
∇z + βz

−β · ∇z
(6.11)

The first term on the right hand side of the last line in (6.10) corresponds to
the standard Galerkin method; thus the artificial diffusion for the divergence-free
upwinding scheme is

hτρd = βdt(6.12)
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which is a generally nonsymmetric, rank one diffusion matrix.
By noting that

∇e−ψ + βe−ψ = 0

we can set

ε = e−ψ − I(e−ψ)

= e−ψ − z

and write (6.11) as

d = − ∇ε+ βε

β · βe−ψ + β · ∇ε
(6.13)

Since ε is the interpolation error for linear interpolation of e−ψ, we can see (formally)
that |d| = O(hτ ).

An interesting special case occurs whenever β is perpendicular to one of the edges
of τ . Then d and β are parallel vectors, and the divergence-free upwinding scheme is
similar to the streamline diffusion method, in terms of the added artificial diffusion.
However, unlike the streamline diffusion method, there is no constant to be adjusted;
in effect, the constant was chosen to satisfy the divergence condition.

For the case ψ ∈ Sh, the element stiffness matrix for the divergence-free upwinding
scheme is given by

Ad = Ag + |τ |

 ∇φ1 · d
∇φ2 · d
∇φ3 · d

 [ β · ∇φ1 β · ∇φ2 β · ∇φ3

]
(6.14)

An important consideration for the divergence-free upwinding scheme is the ques-
tion of whether it is always well defined. In particular, we must examine conditions
under which β ·∇z = 0, since this term is in the denominator of (6.11). We can begin
by observing that

−β · ∇z = β · βe−ψ + β · ∇ε
= |β|2e−ψ +O(|β|2hτe−ψ)

> 0 as hτ → 0

so that the method is certainly well defined for h sufficiently small. On the other
hand, it is possible on a coarse mesh, with proper element geometry and a certain
element orientation with respect to β, that −β · ∇z ≤ 0.

To see how this can occur, assume for the moment that our element τ has vertices
vt1 = (0 0), vt2 = (1 0), vt3 = (x̄ ȳ), and that ψ ∈ Sh. The Jacobian matrix J for this
element is

J =

[
1 x̄
0 ȳ

]
J−1 =

1

ȳ

[
ȳ −x̄
0 1

]
J−1J−t =

1

ȳ2

[
x̄2 + ȳ2 −x̄
−x̄ 1

]
13



Let

J tβ =

[
q2

q3

]
Then

z = φ1 + e−q2φ2 + e−q3φ3

and

∇z = (e−q2 − 1)∇φ2 + (e−q3 − 1)∇φ3

Without loss of generality, assume that q2 ≥ q3 ≥ 0 and q2 > 0. Then let

r =
q3

q2

s =
e−q3 − 1

e−q2 − 1

Clearly

0 ≤ r ≤ s ≤ 1

and

−∇z · β = −q2(e−q2 − 1)

ȳ2

[
1 r

] [ x̄2 + ȳ2 −x̄
−x̄ 1

] [
1
s

]
The condition −∇z · β = 0 implies

x̄2 + ȳ2 − x̄(r + s) + rs = 0

or

ȳ2 +

(
x̄− r + s

2

)2

=

(
s− r

2

)2

(6.15)

Equation (6.15) is the equation of a circle with center ((r+s)/2, 0) and radius (s−r)/2.
The properties of this upwinding scheme have a nice geometrical interpretation

as illustrated in Fig. 3. The outer circle C1 separates acute from obtuse triangles.
All triangles with (x̄, ȳ) lying outside this circle are acute, those with (x̄, ȳ) inside are
obtuse, and those with (x̄, ȳ) lying on C1 are right triangles.

The inner circle C0, corresponding to (6.15), always lies inside the circle C1, and
separates triangles of positive and negative −β ·∇z. Triangles with (x̄, ȳ) lying outside
this circle are have −β · ∇z > 0. Clearly, −∇z · β ≤ 0 requires τ to have an obtuse
angle.

For triangles with (x̄, ȳ) lying on this circle, β · ∇z = 0, and the discretization is
not defined. The chance of this condition being met in practice is very small. Indeed,
we don’t even check for this in our code, since roundoff error will almost certainly
produce nonzero values of β · ∇z.

On coarse meshes containing many badly shaped elements, it may be possible to
have triangles with (x̄, ȳ) lying inside this circle, in which case, −β · ∇z < 0. When
this occurs, it is analogous to subtracting a one dimensional artificial diffusion from

14



Fig. 6.1. Geometrical interpretation of upwinding term

the system, which seems rather counter intuitive (and dangerous). In particular, the
eigenvalues of the of the 2× 2 diffusion matrix I + βdt are

λ = 1

and

λ =
β · βz
−β · ∇z

so that the overall diffusion term ceases to be elliptic whenever −β · ∇z < 0.
If we scale τ to be an element with the same geometry but with diameter h,

we note that q2 and q3 will scale to be of size |β|h. Thus, as h → 0, r → s and
the (relative) radius of the circle tends to zero, which is consistent with our earlier
remarks. Also, r = s if q3 = 0; this implies that β is perpendicular to one side of τ .
In general, if β is perpendicular to any side of τ , then −∇z · β 6= 0, since then ∇z is
in the direction β as in the streamline diffusion method.

Given the above comments, one might naturally approach this method with a
great deal of skepticism with respect to its usefulness in general and its stability in
particular (we certainly did). At present, we do not have any a priori error estimates
for the method, except in the case when it reduces to the streamline diffusion method
and existing estimates for that method apply. Nevertheless, the method is extremely
stable, even under unfavorable geometric conditions. This stability comes from the
divergence condition, as can be seen from the following line of reasoning. Let φi be the
piecewise linear nodal basis function associated with vertex vi in the triangulation.
Then, using integration by parts, element by element, we have from (1.4)∫

Ω

J h · ∇φi dx =
∑
eij

∫
eij

{J h · nij}φi ds = 0

where eij is the triangle edge connecting vertices vi and vj and {J h · nij} is the
jump in the normal component of J h across eij . By simple geometry, it seems clear
that in order to have a massive overshoot or undershoot (a ”spike”) at vi, the sum of
the normal components of these jumps must be correspondingly large in magnitude,
a circumstance which is prohibited by the divergence condition.
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In effect, the divergence condition prevents the creation of any numerical sources
or sinks within element interiors. The edge conditions guarantee good approximation
along element edges, in particular at the vertices. The situation is entirely analogous
to the finite element approximation of the Laplacian using piecewise linear elements;
there ∆u = 0 within each element and it is the jumps in the normal components of ∇u
across the triangle edges that support the approximation. Thus we can expect, at least
with hindsight, that this method will provide a stable and accurate approximation to
(1.2).

We end this section by noting that this method and its derivation remain well
defined for three dimensional meshes based on tetrahedral elements. Indeed, it was
our desire to have an upwinding procedure for tetrahedral meshes that remains stable
even in the presence of unfavorable element geometries, which motivated our current
work.

7. Summary. A uniform framework is developed for the study of general up-
winding schemes. The standard finite element weak Galerkin discretization is cho-
sen as the reference. Differences between other discretization schemes and the weak
Galerkin form are written as artificial diffusion terms. These artificial diffusion terms
are spanned by a four dimensional space of element diffusion matrices. Three basis
matrices are symmetric, rank one diffusion operators which can naturally be associ-
ated with the edges of the triangle. The fourth basis matrix is skew symmetric and
is associated with a rotation by π/2.

The streamline diffusion method is one of the more widely used upwinding schemes
in the finite element arena. Both the streamline and the crosswind upwinding terms
are symmetric, positive semidefinite matrices of rank one and involve only the edge
diffusions operators.

Two finite volume discretizations, the box method and the Scharfetter-Gummel
method, are then analyzed. Finite volume methods involve only approximations along
each triangle edge, while the standard Galerkin method uses approximations within
the triangle as a whole. Discretizations of convection diffusion problems give rise to
two types of contributions to the element stiffness matrices. The first type corresponds
to the upwinding terms, which contribute symmetric, positive semidefinite artificial
edge diffusion terms. The second type arises from the centered difference approxima-
tion of the convective term. When viewed as a finite element method, these terms
contribute nonsymmetric artificial diffusion upwinding terms. While finite volume
discretizations may always be written as upwinded Galerkin methods, the converse
does not appear to be true, since the skew symmetric elementary diffusion operator
seems to have no analogue in the standard finite volume framework.

Finally, the divergence-free upwinding scheme is analyzed. In general, the artifi-
cial diffusion introduced by this method leads to both symmetric and nonsymmetric
diffusion terms. However, whenever the velocity is perpendicular to one of the trian-
gle edges, the streamline diffusion method is recovered. In some extreme cases, the
overall diffusion matrix has both positive and negative eigenvalues. Nevertheless, the
method appears to be extremely robust and stable, and remains so even in unfavorable
situations where other upwinding schemes fail.
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