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Abstract. The complexity of a general sparse Gaussian elimination algorithm based on the
bordering algorithm is analyzed. It has been shown that this procedure requires less integer overhead
storage than more traditional general sparse procedures, but the complexity of the nonnumerical
overhead calculations was not clear. Here the nonnumerical complexity of the original procedure is
shown to be comparable to the numerical complexity for an n× n grid graph, and an enhancement
of the procedure that can reduce the overhead is presented.
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1. Introduction. In this paper, we consider the solution of the N × N linear
system

Ax = b(1.1)

where A is large, sparse, symmetric, and positive definite. We consider the direct
solution of (1.1) by means of general sparse Gaussian elimination. In such a procedure,
we find a permutation matrix P , and compute the decomposition

PAP t = LDLt

where L is unit lower triangular and D is diagonal. The system (1.1) is then solved
by

Lw = Pb,

Dy = w,

Ltz = y,

x = P tz.

Several good ordering algorithms (nested dissection and minimum degree) are
available for computing P [5], [9]. Since our interest here does not focus directly on
the ordering, we assume for convenience that P = I, or that A has been preordered
to reflect an appropriate choice of P .

Our purpose here is to examine the nonnumerical complexity of the sparse elimi-
nation algorithm given in [3]. As was shown there, a general sparse elimination scheme
based on the bordering algorithm requires less storage for pointers and row/column
indices than more traditional implementations of general sparse elimination. This is
accomplished by exploiting the m-tree, a particular spanning tree for the graph of the
filled-in matrix. To our knowledge, the m-tree previously has not been applied in this
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fashion to the numerical factorization, but it has been used, directly or indirectly, in
several optimal order algorithms for computing the fill-in during the symbolic factor-
ization phase [4] - [8], [10], [12].

In §2, we review the bordering algorithm, and introduce the sorting and inter-
section problems that arise in the sparse formulation of the algorithm. In §3, we
introduce m-trees (or elimination trees) and review their role in sparse Gaussian elim-
ination. We do not attempt to present an overview here, but rather attempt to focus
on those results that are relevant to our particular algorithm. This section assumes
prior knowledge of the role of graph theory in sparse Gaussian elimination; surveys
of this role are available in [9] and [5]. More general discussions of elimination trees
are given in [6] - [8], [12].

In §4, we return to the sorting and intersection problems, and show how m-trees
can be exploited effectively in their solution. The sorting problem is relatively straight-
forward, and its computational complexity is of lower order than the complexity of
the numerical factorization. On the other hand, the complexity of the intersection
problem is potentially of the same order as the numerical factorization; indeed, in
our first formulation of the problem, it becomes clear that the complexity must be at
least as great as the numerical factorization. Later we split the intersection problem
into two parts, with one corresponding exactly to the numerical factorization, and the
second being pure overhead. We then present a new procedure for reducing the com-
plexity of this second part of the intersection problem; this procedure again exploits
the structure of the m-tree.

In §5, we analyze the complexity of the old and new approaches to the intersection
problem for the special case of an n×n grid ordered by nested dissection. The special
structure of this problem allows us to make exact estimates of the complexity. For the
old approach, we show that the complexity of the intersection problem is O(n3), the
same as the complexity of the numerical computations [5], [11]. For the new approach,
the complexity of the second part is reduced to O(n2(log n)2). In §6, we touch briefly
on the issues of data structures and implementation.

We emphasize that in terms of a practical computer code for doing sparse Gaus-
sian elimination, the best we realistically can expect to achieve for a package based
on bordering is an execution time comparable to the better row-oriented general
sparse matrix packages currently available (e.g., Yale Sparse Matrix Package [4] and
Sparspak [5]), at least for sequential computation. Certainly the number of float-
ing point computations in a general sparse code depends only on the ordering of the
equations and the zero-nonzero structure of the original matrix, and this is the same
for all procedures. The differences between algorithms are mainly in the ordering of
the computations, data structures, and nonnumerical overhead. Here the bordering
approach can offer some advantages. It usually requires less integer overhead storage
[3] than row schemes, and since the storage required is not a function of the fill-in,
the amount of integer overhead is known before the computation begins. Also, some
sparse matrix problems present themselves in a way such that a columnwise sparse
storage scheme coupled with the bordering algorithm for Gaussian elimination be-
comes the most convenient and obvious approach to their solution. Indeed, one such
application (to the linear systems arising in the hierarchical basis multigrid method
[1], [2]) motivated our original exploration of such algorithms.

In terms of nonnumerical computations, our new appoach to the intersection
problem reduces nonnumerical computations in the numerical factorization phase to
a level approximately equal to that of row-oriented schemes, that is, about one indi-
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rect address for each floating point multiplication operation in the inner loop in the
symmetric case. For nonsymmetric problems with symmetric zero-nonzero patterns,
the nonnumerical costs of our bordering approach remain the same, but the number of
floating point operations approximately doubles. The number of nonnumerical com-
putations in the forward/backward solution phases has always been about the same
for the row- and column-oriented schemes. Thus we need not sacrifice execution time
if it seems desirable to use a column-oriented approach.

2. The bordering algorithm and sparse elimination. Let A be a symmet-
ric, positive definite matrix. We consider the factorization

A = LDLt(2.1)

where D is diagonal and L is unit lower triangular. Let Ak denote the k × k upper
left principal submatrix of A, and we assume that we have already computed

Ak−1 = Lk−1Dk−1L
t
k−1

by the bordering algorithm. Then

Ak =

[
Ak−1 c
ct α

]
= LkDkL

t
k

=

[
Lk−1 0
`t 1

] [
Dk−1 0

0 δ

] [
Lt
k−1 `
0 1

]
where

Lk−1Dk−1` = c,

δ = α− `tDk−1`.

Thus, at the kth stage, the bordering algorithm consists of solving the lower triangular
system

Lk−1v = c(2.2)

and setting

` = D−1k−1v,(2.3)

δ = α− `tv.(2.4)

Elementwise, the algorithm may be written in the following manner.

Procedure Dense Factor.

(D1) for k = 1, N
(D2) dkk ← akk
(D3) for j = 1, k − 1

(D4) vj = ajk −
∑j−1

i=1 `jivi
(D5) `kj = vj/djj
(D6) dkk ← dkk − `kjvj
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Let Ck denote the index set of nonzeroes in column k of Lt − I (row k of L− I ).
Then, for sparse matrices, the factorization algorithm may be written as follows:

Procedure Sparse Factor.

(S1) for k = 1, N
(S2) dkk ← akk
(S3) for j ∈ Ck
(S4) vj = ajk −

∑
i∈Ck∩Cj `jivi

(S5) `kj = vj/djj
(S6) dkk ← dkk − `kjvj

Because of the implicit nature of line (S4), the indices j on line (S3) must be
sorted such that the right-hand side of line (S4) is always well defined. Sorting Ck
by increasing order is certainly sufficient, but other orderings are possible and will
prove more convenient. In particular, any sorting of the indices that allows (2.2) to
be backsolved is acceptable. We will refer to this as the sorting problem.

The computation of vj in line (S4) requires the computation of Ck ∩ Cj . We will
refer to this as the intersection problem. Since this is an inner loop computation,
it clearly contributes to the highest order term of the overall complexity; thus it is
important to compute these intersections as efficiently as possible. We will analyze
these problems in §§4 and 5.

3. m-trees and sparse elimination. Let G = (X , E , α) be the connected,
ordered graph associated with the irreducible, symmetric, positive definite matrix
A = LDLt. Here X = {xi}Ni=1 denotes the vertex set, E the edge set (eji = eij ∈
E , i 6= j if and only if aij 6= 0), and α is the ordering (α(i) = xi). Let G′ = (X , E∪F , α)
denote the chordal graph generated by α. F denotes the set of fill-in edges generated
by the elimination process.

For xi ∈ X ,

adj(xi) = {yj |eij ∈ E ∪ F}

denotes the adjacency of xi in G′. We denote the monotone adjacency of xi by

madj(xi) = {yj ∈ adj(xi)|j > i}

and set

cadj(xi) = adj(xi)−madj(xi).

The index set associated with madj(xi) is the set of column indices for row i of Lt−I,
while cadj(xi) corresponds to Ci. Additionally, recall that madj(xi) is a clique in G′.

Let G′ = (X , E ∪ F , α) be a chordal graph and let m(i), 1 ≤ i ≤ N − 1 be given
by

m(i) = min{j|xj ∈ madj(xi)}.(3.1)

Then the m-tree T for G′ is the tree with vertex set X and edges E ′ = {eim(i)}N−1i=1 .
The m-tree is also called the elimination tree by Liu [7] and Schreiber [12]. See Liu
[8] for a recent survey of the role of m-trees in sparse Gaussian elimination. Among
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Fig. 3.1. A 3× 3 grid graph with nested dissection ordering.
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Fig. 3.2. Fill-in for the 3× 3 grid graph.

the m-tree’s more important applications is its use in optimal order procedures for
computing the fill-in E ∪ F using the ideas of Rose, Tarjan, and Lueker [10].

As an example, consider the 3× 3 grid graph with the nested dissection ordering
α, illustrated in Figs. 1 and 2.

For this graph m(i) is defined as follows:

i 1 2 3 4 5 6 7 8 9
m(i) 5 5 6 6 7 7 8 9 −

The m-tree is shown in Fig. 3.
Lemma 3.1. Let G′ = (X , E ∪ F , α) be chordal and let eij ∈ E ∪ F , i < j. Then

either m(i) = j or em(i)j ∈ E ∪ F .
Proof. See Schreiber [12]. We give proofs of this and other lemmas in this section

because of their brevity. If m(i) = j, we are done, so we assume that m(i) = k < j.
Then, since madj(xi) is a clique and xj , xk ∈ madj(xi), ekj ∈ E ∪ F .

Lemma 3.2. Let Ti be the subgraph of T induced by the set {xi}∪ cadj(xi). Then
Ti is connected (i.e., it is a subtree).

Proof. See Schreiber [12]. We will show the path from xj ∈ cadj(xi) to xi in T
contains only vertices in the set {xi} ∪ cadj(xi). This is done by induction on `, the
length of the path. If ` = 1, then m(j) = i, and eij ∈ E ′. We assume the lemma is
true for paths of length ` − 1, and show it for a path of length `. Let the path from
xj ∈ cadj(xi) to xi in T be of length `, and let k = m(j) < i. Note that eki ∈ E ∪ F .
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Fig. 3.3. An m-tree for the 3× 3 grid graph.

Thus, xk ∈ cadj(xi) and the length of the path from xk to xi in T is ` − 1. The
subtrees for the example 3× 3 grid graph are shown in Fig. 4.
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Fig. 3.4. Subtrees for the 3× 3 grid graph.

Let Li = {xj ∈ cadj(xi)|xj is a leaf of Ti} denote the set of leaves of Ti. For
xj ∈ Li, m(j) 6= i, let {x`1 , x`2 , · · · , x`k} be the path of length k−1 ≥ 2 from xj = x`1
to xi = x`k in T . The edge eij is called a backedge. Since x`p ∈ cadj(xi), 2 ≤ p ≤ k−1,
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e`pi ∈ E ∪F . Thus the path and the backedge form a cycle in G′; this cycle is chorded
by the edges e`pi, 2 ≤ p ≤ k − 1. Let B denote the set of backedges and K the set of
chords. It is easy to see

E ∪ F = E ′ ∪ B ∪ K.

Following Liu [7], the graph S = (X , E ′ ∪B) is called the skeleton of G′. The skeleton
of the 3× 3 grid graph is shown in Fig. 5.
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Fig. 3.5. Skeleton for the 3× 3 grid graph.

Lemma 3.3. Let G, G′, E ∪ F , and B be defined as above. Then B ⊂ E.

Proof. See Liu [7] and Schreiber [12]. Let eij ∈ B, j < i. Then xj ∈ Li. Suppose
eij 6∈ E , so eij ∈ F . Define

k = max{p|xi, xj ∈ madj(xp)}.

Clearly k exists; otherwise, eij would not be in F . We now observe that m(k) = j;
if ` = m(k) < j, then x`, xi, xj ∈ madj(xk). Since madj(xk) is a clique, xi, xj ∈
madj(x`), contradicting the definition of k. However, since m(k) = j, ekj ∈ E ′,
contradicting xj ∈ Li.

Since B ⊆ E , the index sets corresponding to the Li are subsets of the row indices
for the upper triangular part of column i of the matrix A.

4. The sorting and intersection problems. It is apparent that the generation
of the sets Ck required for the numerical factorization requires only knowledge of the
sets Lk ⊆ Ck and the m-tree for G′. The m-tree T , along with the sets Ck for all k,
can be computed in O(|E ∪ F|) time using the procedures in [3]. The Ck need not be
permanently stored, since they can be regenerated as needed using the Lk and the
m-tree.

By Lemma 3.3, the index set for Lk is a subset of the row indices for the nonzeros
in the strict upper triangular part of column k of A. It is thus convenient to store
the strict upper triangular part of A column by column, since this also facilitates the
use of the bordering algorithm. It is not essential that the index set Lk be explicitly
determined; indeed, it is convenient to define generalized leaves L′k by

L′k = {xj ∈ Ck|ekj ∈ E , j < k}.
7



The index set for L′k corresponds exactly to the row indices for the nonzeros in the
strict upper triangle of column k of A; clearly Lk ⊆ L′k.

We next partition the index set Ci among the generalized leaves for Ci. Thus we
let

Ci =
⋃

xj∈L′
i

Dij ,

Dij ∩ Dik = ∅, j 6= k.

The sets Dij are defined as follows: for xj ∈ L′i, Dij is the index set of vertices
on the path from xj to xi in T which do not coincide with the path of any higher
ordered vertex in L′i. For example, in our 3× 3 grid graph, we have for x9,

Li = {x3, x2},
L′i = {x8, x3, x2},
D98 = {8},
D93 = {3, 6, 7},
D92 = {2, 5}.

This partitioning of Ci results naturally if the vertices in L′i are sorted by index
and Ci is generated by processing xj ∈ L′i in decreasing order. Since |L′i| is typically
not large, sorting these sets as an initialization step generally does not contribute to
the highest order complexity terms. Thus we assume that the sorted L′i are available
as input.

For any xj ∈ L′i, the set Dij is generated from j and ` = |Dij | using the m-
function,

Dij = {j,m(j),m(m(j)), · · · ,m`−1(j)}.(4.1)

We now return to the two problems mentioned at the conclusion of §2. We
consider first the sorting problem for Ck in line (S3) of Procedure Sparse Factor. In
light of the analysis of §3, we must sort the vertices in cadj(xk), which together with
xk are the vertices of Tk, such that the predecessors of vertex xj ∈ cadj(xk) are
ordered before xj itself. If this is done, the right-hand side of line (S4) of Procedure
Sparse Factor always will be well defined. One such sorting can be generated easily
by processing the vertices in L′k in increasing order, generating the sets Dkj using the
m-function. For example, for vertex x9 of our 3 × 3 grid graph, this would result in
the ordering

C9 = {2, 5, 3, 6, 7, 8}
= D92 ∪ D93 ∪ D98.

Another solution to the sorting problem, based on a renumbering of the vertices using
a postorder traversal of the m-tree, is given by Liu [7].

As each element j ∈ Ck is generated, we can mark an integer vector c, initialized
to zero, to mark the set Ck. It is thus easy to test if i ∈ Ck for any i by checking if
c(i) 6= 0. We assume the existence of such an array as we analyze the intersection
problem.

Given Ck, represented by the array c, the problem of computing Ci ∩ Ck can be
done in O(|Ci|) time by generating

Ci =
⋃
j∈L′

i

Dij

8



and testing using c. Let {`p}
|Dij |
p=1 be the ordered sequence of indices in Dij . Then,

assuming Dij ∩ Ck 6= ∅, there will exist a p such that

`p 6∈ Ck, 1 ≤ p ≤ p− 1,(4.2)

`p ∈ Ck, p ≤ p ≤ |Dij |.(4.3)

This is true since Tk is a connected subtree of T and the sequence {`p} corresponds
to a path in T generated using the m-function.

Clearly, the second part of the sequence (4.3) generates actual floating point
computations on line (S4) of Procedure Sparse Factor, and thus the complexity of
this portion is unavoidably of the same order as the floating point work. On the other
hand, generating the first part of the sequence is nonnumerical overhead which does
not correspond to anything useful in terms of the numerical factorization.

Since the computation of intersections must contribute to the highest order com-
plexity term, we are interested in finding a procedure for reducing the wasted com-
putuation in (4.2). We are thus led to define, for each Dij , i ∈ Ck, the index

qijk =

{
`p Dij ∩ Ck 6= ∅
0 Dij ∩ Ck = ∅

}
(4.4)

for j < i < k. We then recast the intersection problem in terms of computing qijk
as quickly as possible, and then view the complexity of the intersection problem in
terms of the complexity of computing qijk.

Let s ≤ t < r be integers; we now define the run R = R(r, s) = {t}r−1t=s such that

m(t) = t+ 1 s ≤ t ≤ r − 1

m(r) 6= r + 1 if r 6= N(4.5)

m(s− 1) 6= s if s 6= 1

Note that a run must contain at least one vertex (in which case R(r, s) = {s}, m(s) =
s+ 1).

It is well known that sparse Gaussian elimination tends to produce large cliques
in G′; most of the vertices in these cliques will have m(k) = k+1. On the other hand,
the formation of a large clique is not a necessary condition for the formation of a large
run; for example, m(k) = k + 1 for all k < N in a tridiagonal matrix.

In any event, because of the restrictions on m(r) and m(s − 1) in (4.5), a given
integer t can be in at most one run. Thus we are able to define an express vector e(t)
which allows us to examine all the vertices in a run in O(1) work. The express vector
e, of length N is given by

e(t)

{
= r if t ∈ R(r, s) for some r and s ,
≤ 0 otherwise.

Initially, we set e(k) = 0 if k is not in a run. In particular, note that if r is at the end
of the run R(r, s) then e(r) = 0. The use of the express vector results in a particular
type of path compression in the m-tree, which maintains the structure that is crucial
in the solution of the intersection problem.
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Suppose a run R(r, s) ∩ Ck 6= ∅. We then (temporarily) set e(r) = −min{` ∈
R(r, s) ∩ Ck}; that is, −e(r) points to the lowest numbered vertex in the run that is
also in Ck. This can be determined easily as the marker array c is being computed
(for each i ∈ Ck, check if e(i) > 0). Given the arrays e, c, and m, and the integer
|Dij |, the following procedure computes qijk.

Procedure Get qijk.

(G1) q ← j; count← 1
(G2) while c(q) = 0 and count ≤ |Dij | do
(G3) if e(q) ≤ 0 then
(G4) q ← m(q)
(G5) count← count+ 1
(G6) else
(G7) q′ ← q
(G8) q ← e(q)
(G9) if e(q) < 0 then q ← −e(q)
(G10) count← count+ q − q′
(G11) end if
(G12) end while
(G13) if c(q) = 0 or count > |Dij | , then q ← 0

This procedure simply generates the sequence (4.1) for Dij , looking for qijk. When
it is possible to do so, we use the express vector to process runs in O(1) work.

5. The intersection problem for grid graphs. Let G(k) be the n × n grid
graph with n = 2k − 1, ordered using nested dissection (N = n2). G′(k) and T (k)
will denote the triangulation of G(k) and its m-tree, respectively. Recall that nested
dissection orders the vertices in a cross-shaped separater S, consisting of the 2n − 1
vertices in row (n + 1)/2 and column (n + 1)/2 last. This leaves four grid graphs
G′(k − 1) to be recursively ordered. This is shown schematically in Fig. 6.

G(k − 1) G(k − 1)

G(k − 1) G(k − 1)

Fig. 5.1. Nested dissection ordering.

The recursive nature of the ordering is reflected in the m-tree which has the
recursively defined structure shown in Fig. 7.

The nodes labeled T (k − 1) are m-trees for the four subgraphs G′(k − 1). Note
that, with the exceptions of vertices xp+m and xn, m(j) = j + 1 for all xj ∈ S.

Lemma 5.1. For each xi ∈ X in G(k), |Li| ≤ 2.
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Fig. 5.2. m-tree for the nested dissection ordering. p = n2 − 2n + 2, m = (n − 1)/2 and
n = 2k − 1.

Proof. Since |L′i| ≤ 4, there are at most four possible leaves for any vertex. The
proof is by induction on k; the case k = 1 is trivial. Using the induction hypothesis
for the four subgraphs G(k − 1), we are left to consider only xi ∈ S. For such an xi,
at most two vertices in L′i are not also in S. By considering all the special cases, we
straightfowardly surmise that |Li| ≤ 2 for all xi ∈ S.

Lemma 5.2. The height h(k) of T (k) is

h(k) = 3(2k − 2)− 2(k − 1)(5.1)

Proof. Evidently

h(k) = h(k − 1) + 3 ∗ 2k−1 − 2.

with h(1) = 0. The solution of the difference equation is given in (5.1).
Note also from (5.1) that

h(k) ≤ 3n.

Thus we have the following lemma from Lemmas 5.1 and 5.2.
Lemma 5.3. For any xi ∈ G′(k),

|Ci| ≤ 6n.

Theorem 5.4. The complexity of the intersection problem without using the
express function is O(n3).
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Proof. We estimate the cost F (n) for computing qijk for all the relevant indices
within the context of the numerical factorization. The procedure uses only the m-
function, and thus must generate all entries in (4.2).

First, consider the cost for a single xi ∈ S. By Lemmas 5.1-5.3, the cost will be
at most O(n2), since |Lj | and |L′j | are bounded by constants, and |Cj | ≤ O(n) for all

xj ∈ X . Since |S| = 2n− 1, the cost for all vertices in S is O(n3). Thus,

F (n) ≤ 4F (n/2) + γn3(5.2)

for some constant γ. The solution of the majorizing difference equation shows F (n) ≤
O(n3). This is the same complexity as the numerical factorization. Thus, although
the intersection problem contributes to the highest order complexity term, it does not
increase the overall order of complexity.

We now consider solving the intersection problem using the express vector and the
m-function, as in Procedure Get qijk. We let Q(k) be the cost of Procedure Get qijk
for T (k). Then, for any j, the cost of processing the portion of the first sequence in
(4.2) that lies in S is O(1), since all but two vertices in S are in runs. Thus

Q(k) ≤ Q(k − 1) + γ

for some constant γ. The solution of this difference equation shows

Q(k) ≤ γk +O(1) = O(log n).

Using Lemmas 5.1-5.3, we have

F (n) ≤ 4F (n/2) + γn2 log n

instead of (5.2). The solution of the majorizing difference equation shows

F (n) ≤ O(n2(log n)2).

Thus we have shown the following theorem.
Theorem 5.5. The complexity of the intersection problem using the express

function is O(n2(log n)2).
In this case the intersection problem does not contribute to the highest order

complexity terms.
In Table 1, we compare the actual nonnumerical overhead for the two procedures

for n × n grid graphs with n = 2k − 1, 3 ≤ k ≤ 8, using the nested dissection
ordering. The row labeled f lists the number of floating point operations used on line
(S4) of Procedure Sparse Factor; this also counts the number of unavoidable indirect
addresses corresponding to indices in the intersection Ci ∩ Cj . The row labeled m
counts the number of times line (G4) of Procedure Get qijk is executed, while the
row labeled e counts the number of times line (G8) is executed. Thus the sum m+ e
reflects the nonnumerical overhead associated with solving the intersection problem
using the express vector. Finally, the row labeled s gives the number of saved indirect
addresses; m + e + s reflects the nonnumerical overhead in solving the intersection
problem without the express vector. This can be modeled using Procedure Get qijk
with e(i) = 0 for all i.

In Table 1, both f and s grow asO(n3) complexity; m+e is growing asO(n2(log n)2).
The behavior illustrated here seems to be typical of general grid problems arising from
finite element or finite difference discretizations of partial differential equations. We
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Table 5.1
Nonnumerical overhead for grid graphs.

k 3 4 5 6 7 8
N 49 225 961 3,969 16,129 65,025
f 580 11,496 153,668 1,664,596 15,963,924 142,335,428
m 448 6,684 66,392 524,564 3,585,936 22,215,844
e 72 2,256 35,460 332,716 2,519,844 16,693,084
s 66 3,814 95,094 1,510,526 18,581,430 195,752,462

have had the most experience with problems posed on irregular and nonuniform trian-
gular meshes; there we have noticed that without the express vector, in large problems,
50− 60 percent of the indirect addresses (generated as k ← m(k)) used in solving the
problem do not have corresponding floating point operations. On the other hand, with
the express vector, the ratio of indirect addresses to floating point operations is close
to one (or one half for nonsymmetric problems retaining a symmetric zero-nonzero
structure). Thus, a general sparse matrix code based on the bordering algorithm
should have execution times comparable to the current generation of general sparse
matrix packages based on rowwise Cholesky factorization (e.g., Yale Sparse Matrix
Package [4] and Sparspak [5]).

6. A note on data structures and implementation. Although it is possible
to implement the sparse bordering algorithm using only O(N) integer storage for the
factored matrix (all temporary work space), we favor the data structure described
in [3], which requires an integer array of length NZ + 1, where NZ is the number
of nonzeros in the upper triangle of A. This allows for a relatively simple and more
time-efficient code. At the same time, NZ = O(N) for many sparse matrix problems,
for example, systems arising from discretizations of partial differential equations. We
briefly summarize the data structures proposed in [3], restricted here to the case
of symmetric matrices, and discuss the practical implementation of our procedures
within this framework. 1

Nonzeros in the upper triangle of the sparse matrix A are stored in an array a
of length NZ + 1; elements are referenced through an integer array ja, also of length
NZ+1. Nonzeros in the Cholesky factor L = U t and the diagonal matrix D are stored
in an array u of length NZ ′ + 1, where NZ ′ is the number of nonzeros in D + U .
Entries in u are referenced through ja and an integer array jl of length NZ + 1, the
same length as ja.

The entries of a and ja are defined as follows: a(i), 1 ≤ i ≤ N contain the ith
diagonal entry of A (aii). Entries a(ja(i)) to a(ja(i+ 1)− 1), 1 ≤ i ≤ N contain the
nonzeros in the strict upper triangular part of the ith column of A, stored in order of
decreasing row index; corresponding entries of the ja array contain the row indices.
The entry a(N + 1) is arbitrary, and is included because N + 1 pointers are required
at the beginning of ja. This scheme, although different in detail, was motivated by
the data structures of the Yale Sparse Matrix Package [4], except that the roles of
rows and columns have been interchanged.

The array u is somewhat similar in structure to a. The first N locations of
u contain the reciprocals of the diagonal entries of D; u(N + 1) is arbitrary. The

1A prototype package for carrying out general sparse Gaussian elimination using the bordering
approach (essentially identical to that presented in [3] except for the inclusion of an express vector
in the numerical factorization routine) is available from Argonne National Laboratory via Netlib.
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Table 6.1
Data structure entries for 3× 3 grid graph.

i ja(i) a(i) jl(i) u(i)

1 11 a11 5 d−111

2 11 a22 5 d−122

3 11 a33 6 d−133

4 11 a44 6 d−144

5 11 a55 7 d−155

6 13 a66 7 d−166

7 15 a77 8 d−177

8 17 a88 9 d−188

9 20 a99 d−199

10 23 11
11 2 a25 12 u25
12 1 a15 13 u15
13 4 a46 14 u46
14 3 a36 15 u36
15 4 a47 17 u47
16 1 a17 19 u67
17 7 a78 20 u17
18 6 a68 21 u57
19 5 a58 22 u78
20 8 a89 23 u68
21 3 a39 26 u58
22 2 a29 28 u89
23 u39
24 u69
25 u79
26 u29
27 u59

following entries in u contain the nonzeros in the strict upper triangular part of U ,
stored column by column; the entries are ordered corresponding to the sorting of the
indices generated by our solution of the sorting problem. The diagonal entries of U
are unity and are not stored.

The array jl is used in conjunction with ja to access the data in u. Recall
that each row index stored in ja corresponds to one of the generalized leaves in the
sets L′i; this is really the key observation in reducing the overhead storage. Entries
jl(i), 1 ≤ i ≤ N −1 contain m(i), yielding the N −1 edges in the m-tree. Entry jl(N)
is arbitrary. Entries jl(i − 1) (and jl(i) − 1), N + 2 ≤ i ≤ NZ + 1 point at the first
(and last) entries in u where the nonzeros of U generated by the leaf index ja(i) are
stored. These nonzeros correspond to one of the ordered index sets Djk defined in
this work. The row index for the first entry is of course given by ja(i); subsequent
indices are generated in the proper order using the m-tree.

The complete set of data structures as they appear for our simple 3×3 grid graph
is shown in Table 2.

The following looping structure accesses the nonzeros in column k of U in sorted
order:
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(A1) for leaf = ja(k + 1)− 1, ja(k), step −1
(A2) j ← ja(leaf)
(A3) for jloc = jl(leaf − 1), jl(leaf)− 1, step 1
(A4) (u(jloc) contains matrix entry ujk)
(A5) j ← jl(j)
(A6) end for
(A7) end for

Statement (A1) loops over the generalized leaves for Tk. The loop (A3)-(A6)
generates the ordered index set Dkj associated with that leaf; the m-tree is used in
(A5). By the definition of jl, the parameter jloc always points to the entry in the
Cholesky factor ujk = `kj .

Variations on the looping structure (A1)-(A7) suffice for the forward and backward
solution procedures using this data structure; for these procedures, the leaves can be
processed in either forward or reverse order. This also suffices for the middle loop,
line (S3) in Procedure Sparse Factor. The inner loop on line (S4) is of this form,
except that the starting value for the line corresponding to (A3) (i.e., jl(leaf − 1))
is replaced by a value determined by Procedure Get qijk. For this data structure,
a simple modification of parameter count in Procedure Get qijk will allow count to
return the starting index for line (A3), a value jl(leaf − 1) ≤ count ≤ jl(leaf) − 1,
provided that the intersection is not empty.
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