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Abstract. It is proven that the condition number of the linear system representing a finite element
discretization of an elliptic boundary values problem does not degrade significantly as the mesh is
refined locally, provided the mesh remains nondegenerate and a natural scaling of the basis functions
is used. Bounds for the Euclidean condition number as a function of the number of degrees of freedom
are derived in n ≥ 2 dimensions. When n ≥ 3, the bound is the same as for the regular mesh case,
but when n = 2 a factor appears in the bound for the condition number that is logarithmic in the
ratio of the maximum and minimum mesh sizes. Application of the results to the conjugate-gradient
iterative method for solving such linear systems are given.
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1. Introduction. We prove that the condition number of the linear systems
representing a finite element discretization need not degenerate as the mesh is refined
locally, provided certain restrictions on the mesh size are met and a natural scaling of
the basis functions is used. The convergence properties of iterative methods, such as
the conjugate-gradient method, for solving such linear systems can be estimated (cf.
Luenberger [6]) in terms of the condition number of the system. And the sensitivity
of the solution to perturbations in the right-hand side can be bounded using the
condition number (cf. Issacson and Keller [5]). Thus the condition number of the
system can be of great interest.

A particular setting that we have in mind is the refinement of meshes (perhaps
adaptively) to resolve singularities arising at angular points on the domain boundary
or at points of discontinuity of the coefficients of the differential equation. It might
seem, näıvely, that there would be large ratios of the eigenvalues of the linear sys-
tems (which would imply a large condition number) resulting from large mesh ratios.
However, we show that this is not the case if a natural scaling of the finite element
basis functions is used and the mesh is nondegenerate in a sense that is satisfied by
many mesh generation schemes, both ones that adaptively refine the mesh based on
intermediate calculations and ones based on a priori information about the boundary
value problem (see [2]). We note that the question of optimal scaling of linear systems
has been addressed in the past (cf. [7] and the references therein).

We shall consider the case when the finite element method is applied to ap-
proximate the solution of a linear, self-adjoint, elliptic boundary value problem in
n dimensions. Of special interest will be the situation when the boundary is not
smooth or when the coefficients of the partial differential equation are discontinuous.
In these cases, it is necessary to refine the mesh appropriately near the boundary and
coefficient singularities in order to approximate the solution efficiently. However, it
has been widely believed that that the resulting linear system of equations would be
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ill-conditioned, leading to slow convergence of iterative methods such as the conjugate-
gradient method. It is worth noting that error estimates for direct methods, such as
Gaussian elimination, also predict a degradation of performance for an ill-conditioned
system. Thus without further justification, it would not be a remedy simply to use a
direct method in such a situation. Fortunately, we are able to show that the condition
number of such linear systems need not degrade unacceptably as the mesh is refined.

On a regular mesh of size h, the condition number of the finite element equations
for a second order elliptic boundary value problem can be seen to be O(h−2) using
standard inverse estimates (see subsequent discussion for details). Also, the number,
N , of degrees of freedom in this case is N = O(h−n), where n is the dimension
of the domain of the boundary value problem. Thus, the condition number can be
expressed in terms of the number of degrees of freedom as O(N2/n). In the case that
n ≥ 3, we shall see that the condition number is bounded by O(Nn/2) for very general
(so-called nondegenerate meshes. In the case n = 2, our estimates for the condition
number increase slightly from this optimal estimate by a logarithmic factor depending
essentially on the ratio of the largest and smallest mesh sizes. (We show that this
logarithmic factor can be sharp by example.)

The condition number need not determine completely either the accuracy of a
solution process with a given right-hand side (cf. Rice [8]) or the speed of convergence
of an iterative process (cf. [6]). For example, if a linear system has a single large
eigenvalue, the conjugate-gradient method will not be affected adversely. However, if
the eigenvalues are distributed over a large range, it is quite conceivable that adverse
effects would result. In the type of problems we envisage here, namely ones in which
mesh sizes vary over a wide range, having eigenvalues ranging in size correspondingly
could be quite detrimental. Thus our prescriptions for avoiding such a spread of
eigenvalues is of interest.

2. Notation and preliminary Inequalities. Let Ω be a bounded open set
in IRn (n ≥ 2). We suppose that we are solving a boundary value problem posed
variationally with boundary conditions incorporated in a (closed) subspace, V of
the Sobolev space H1(Ω) (cf. Ciarlet [3]). For example, with Neumann bound-
ary conditions, V = H1(Ω), whereas for Dirichlet boundary conditions we have
V = H1

0(Ω) := {v ∈ H1(Ω) : v|∂Ω = 0}. Let a(·, ·) denote a symmetric, bilinear
form on H1(Ω) that is continuous on V,

a(v, w) ≤ α0||v||H1(Ω)||w||H1(Ω) ∀v, w ∈ V,(2.1)

and coercive on V,

||v||2H1(Ω) ≤ α1a(v, v) ∀v ∈ V.(2.2)

For example, with V = H1
0(Ω), we might have

a(v, w) =

∫
Ω

a(x)∇v · ∇w dx

where a(x) denotes a function in L∞(Ω) such that a(x) ≥ α > 0 for all x ∈ Ω.
(However, the coefficient a need not be smooth.)

The variational boundary value problem that we wish to approximate takes the
following form. Given a continuous linear functional f on V, find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V.(2.3)
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In view of assumptions (2.1) and (2.2), this problem has a unique solution (cf. Ciarlet
[3]). We approximate this problem via the Galerkin method in the usual way. Let VN
be a subspace of V of dimension N , and let uN ∈ VN be defined by

a(uN , v) = f(v) ∀v ∈ VN .(2.4)

Existence and uniqueness of the solution, uN , again follows from the assumptions
(2.1) and (2.2) (cf. Ciarlet [3]). However, explicit calculation of the solution frequently
requires a constructive approach involving the conversion of the variational equation
(2.4) into a matrix equation utilizing a particular basis for VN . Specifically, suppose
that {ψi : i = 1, . . . , N} is a given basis for VN , and define the matrix A, and a
vector, F , via

Aij := a(ψi, ψj) and F i := f(ψi) ∀i, j = 1, . . . , N.

Then (2.4) is equivalent to solving

AX = F

where uN =
∑N
i=1 xiψi and X = (xi). We now given conditions on VN and the

basis {ψi : i = 1, . . . , N} that will guarantee that the condition number of A is well
behaved.

To begin with, we suppose that associated with the space VN is a subdivision of
Ω, by which we mean a collection, TN , of nonoverlapping, nonempty open subsets, T ,
of IRn, such that

Ω̄ =
⋃

T∈TN

T̄ .

We suppose that TN contains at most α
n/2
2 N members, with α2 a fixed con-

stant. We assume that there are constants α3 and α4 such that the following inverse
estimates hold:

α−1
3 ||v||2H1(T ) ≤ h

n−2
T ||v||2L∞(T ) ≤ α4||v||2L2n/(n−2)(T ) ∀T ∈ TN , v ∈ VN ,(2.5)

where hT denote the diameter of T . In the special case of two dimensions (n = 2), the
latter inequality a tautology, and we supplement it with the following assumption:

||v||L∞(T ) ≤
√
α4 h

2/p
T ||v||Lp(T ) ∀T ∈ TN , v ∈ VN , 1 ≤ p ≤ ∞.(2.6)

For piecewise polynomials, these properties are standard (cf. Ciarlet [3] and the ex-
amples in the next section).

Concerning the basis {ψi : i = 1, . . . , N} on VN , we make the following assump-
tions. First of all, we assume that it is a local basis:

max
1≤i≤N

cardinality {T ∈ TN , : supp(ψi) ∩ T 6= ∅} ≤ α5.(2.7)

Finally, we come to the most important assumption, concerning the scaling of the
basis. We assume that there are finite constants α6, α7 such that for all T ∈ TN

α−1
6 hn−2

T ||v||2L∞(T ) ≤
∑

supp(ψi)∩T 6=∅

x2
i ≤ α7 h

n−2
T ||v||2L∞(T )(2.8)
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where v =
∑N
i=1 xiψi and (xi) is arbitrary.

In order to derive our results, we must make a slight regularity assumption on
the domain Ω, namely that it is Lipschitz in the sense of Stein [10]. (For example,
in two dimensions, this rules out “slit” domains.) In this case, there is a continuous
extension operator H1(Ω)→ H1(IRn). Therefore, the Sobolev embedding

H1(Ω) ⊂ Lp(Ω)

follows from its validity (cf. Stein [10] for the case Ω = IRn, or Ω = a sufficiently large
domain with smooth boundary.) When n ≥ 3, we thus have Sobolev’s inequality,

||v||L2n/(n−2)(Ω) ≤ CS ||v||H1(Ω) ∀v ∈ H1(Ω).

In two dimensions (n = 2), since we have assumed that Ω is bounded, the Sobolev
embedding H1(Ω) ⊂ Lp(Ω) holds for all p <∞. Moreover, it has a norm, σ(p), that
is bounded by a constant times the norm of the Sobolev embedding H1

0(B) ⊂ Lp(B)
for a sufficiently large ball B, namely, σ(p) ≤ CS

√
p (cf. Gilbarg and Trudinger [4],

especially the proof of Theorem 7.15). Thus for n = 2 we have the following Sobolev
inequality

||v||Lp(Ω) ≤ CS
√
p ||v||H1(Ω) ∀v ∈ H1(Ω), p <∞.

3. Examples Satisfying the Assumptions. Suppose that Ω has a simplicial
(e.g., polygonal if n = 2) boundary ∂Ω. We consider the case when TN is a triangu-
lation of Ω, but we make no assumption concerning the relative sizes of simplices in
the triangulation.

Definition 3.1. A family, F , of triangulations {TN : N ∈ N} is said to be
nondegenerate if there exists a constant ρ > 0 such that for all N ∈ N and for all
T ∈ TN there is a ball of radius ρ diam(T ) contained in T , where diam(T ) denotes the
diameter of T .

In practice we have only a finite number of (finite) triangulations to deal with,
and any finite family is nondegenerate. However, all constants discussed below will
be bounded in terms of the parameter ρ in the definition above. The “chunkiness” of
a triangulation can be defined as the largest possible such ρ for a given triangulation.

Example 1: Let VN denote the space of C0 piecewise polynomials of degree k on
the mesh TN that are contained in the subspace V. We denote by {φi : i = 1, . . . , N}
the standard Lagrangian nodal basis for VN consisting of functions that equal one at
precisely one nodal point in the triangulation (cf. Ciarlet [3]). We also introduce a
scaled basis that is of interest in three (and higher) dimensions. For each node (i.e., for
each basis function) we may introduce a notion of local mesh size near that node, say
hi. This can be defined as the average diameter of all elements in TN whose closure
contains that node. (note that the nondegeneracy assumption of the mesh implies
that all such elements will be of comparable size, i.e.,a nondegenerate mesh is locally
quasi-uniform, in two or higher dimensions. This is because neighboring elements are
all connected to each other via a sequence of elements with common faces.) Define a
new basis {ψi : i = 1, . . . , N} by

ψi = h
(2−n)/2
i φi

where n is the dimension of Ω. (Note that this basis does not differ from the original
one if n = 2.)
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Clearly (2.7) holds for the Lagrange space, e.g., in two dimensions, α5 is a bound
on the number of triangles that can meet at a vertex, and this can be bounded in terms
of ρ. Standard homogeneity arguments show (2.5) holds, and our choice of scaling
similarly yields (2.8), with α6 depending only on ρ and k, since C−1

ρ hi ≤ hT ≤ Cρhi for
all T ∩ suppψi 6= ∅ (and α7 = 1). The inverse estimate (2.6) in the two-dimensional
case also follows by homogeneity for the case p = 1, and then Hölders inequality
implies it holds for the remaining cases with the constant independent of p.

Example 2: A commonly used element in two dimensions is the Hermite fam-
ily (cf. Ciarlet [3]). To obtain (2.8) for Hermite elements in two dimensions, one
chooses the basis functions corresponding to derivative nodes to have the correspond-
ing derivative of order O(h−1

i ), with the remaining basis functions scaled as in the
Lagrangian case. The other assumptions for this element follow as in the Lagrangian
case.

Example 3: At this point it would be useful to know that Definition 3.1 does
not exclude radical mesh refinements, as we have already observed that it does imply
local quasi-uniformity. Let Ω0 denote the square of side one centered at the origin,
i.e.,

Ω0 =

{
(x, y) ∈ IR2 : |x| < 1

2
, |y| < 1

2

}
.

Let T0 denote the triangulation of Ω0 generated by its diagonals and the two axes,
i.e., consisting of eight isosceles, right triangles (each having two sides of length 1/2).
We subdivide to construct TN1

as shown in Figure 3.1 by adding the edges of the
square Ω1, of side 1/2 centered at the origin together with eight more edges running
parallel with the diagonals. We obtain 24 similar triangles in this way. We also note
that TN1 restricted to the square Ω1 is a triangulation similar to TN0 . Thus we may
repeat the process above to this part of the domain to define a triangulation TN2

,
consisting of isosceles, right triangles. Continuing in this way, we obtain a sequence
of triangulations, TNi

, consisting of similar triangles. (Figure 3.1 shows the cases
i = 0, 1, 2, 3.) The ratio of largest to smallest side length is 2i yet only 16i+8 triangles
were used. (There are 8i interior vertices in TNi , so Ni = 8i in the case of Lagrange
piecewise linear approximation of the Dirichlet problem.) Such geometric refinement
is far more severe than is often used to resolve boundary or interface singularities,
but it shows that the assumption of nondegeneracy in Definition 3.1 need not restrict
mesh refinement.

We now give bounds on the condition number of the matrix A := (a(ψi, ψj)),
where {ψi : i = 1, . . . , N} is the (scaled) basis for VN specified by our assumptions
(and defined explicitly in the previous examples). Applications of these results to
convergence rates for the conjugate-gradient methods for solving AX = F will be
given in section 6.

4. The General Case n ≥ 3. Theorem 4.1. Suppose that the subspace VN
satisfies assumption (2.5) and that the basis {ψi : i = 1, . . . , N} satisfies (2.7) and
(2.8). Let A denote the matrix corresponding to the inner product a(·, ·), i.e., Aij =
a(ψi, ψj). Then the `2-condition number K2(A), of A is bounded by

K2(A) ≤ CN2/n

where C = C2
S

∏7
i=0 αi depends only on the constants αi in the assumptions and the

constant in Sobolev’s inequality.
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Fig. 3.1.

Proof. First note that is we set v =
∑
i xiψi then

a(v, v) = XtAX(4.1)

where X = (xi), because a(·, ·) is bilinear. Observe that

a(v, v) ≤ α0 ||v||2H1(Ω) (2.1)

= α0

∑
T∈TN

||v||2H1(T ) (TN is a subdivision)

≤ α0α3

∑
T∈TN

hn−2
T ||v||2L∞(T ) (2.5)

≤ α0α3α6

∑
T∈TN

∑
supp(ψi)∩T 6=∅

x2
i (2.8)

≤ α0α3α6α5X
tX (2.7)

Here hT denote the diameter of T . A complementary inequality can be derived as

XtX ≤
∑
T∈TN

∑
supp(ψi)∩T 6=∅

x2
i

≤ α7

∑
T∈TN

hn−2
T ||v||2L∞(T ) (2.8)

≤ α7α4

∑
T∈TN

||v||2L2n/(n−2)(T ) (2.5)

≤ α7α4

( ∑
T∈TN

1

)2/n

||v||2L2n/(n−2)(Ω) (Hölder’s ≤)

≤ α7α4α2N
2/n||v||2L2n/(n−2)(Ω)

≤ C2
Sα7α4α2N

2/n||v||2H1(Ω) (Sobolev’s ≤)
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≤ C2
Sα7α4α2α1N

2/na(v, v) (2.2)

Using these estimates we show

C1N
−2/nXtX ≤XtAX ≤ C2X

tX

where C1 = (C2
Sα1α2α4α7)−1 and C2 = α0α3α5α6 < ∞ depend only on the αi and

the constant in Sobolev’s inequality. This proves that

C1N
−2/n ≤ λmin(A) and λmax(A) ≤ C2

where λmin(A) and λmax(A) denote, respectively, the smallest and largest eigenvalues
of A. Recall (cf. Issacson and Keller [5]) that the `2-condition number, K2(A), of A
satisfies

K2(A) = λmax(A)/λmin(A).

Thus the previous two estimates yield the stated result.
As a corollary to this result, we have the following in view of Example 1.
Theorem 4.2. Suppose that the mesh family {TN : N ∈ N}, is nondegenerate,

and let A denote the matrix corresponding the the inner product a(·, ·), i.e., Aij =
a(ψi, ψj) where {ψi : i = 1, . . . , N} is the scaled Lagrange basis for VN . Then the
`2-condition number, K2(A), of A is bounded by

K2(A) ≤ CN2/n

where C depends only on the nondegeneracy constant ρ (cf. Definition 3.1) and the
degree k of the piecewise polynomials in VN .

5. The Special Case n = 2. A similar result can be given in n = 2 dimensions
as follows.

Theorem 5.1. Suppose that the subspace VN satisfies assumptions (2.5) and
(2.6), and that the basis {ψi : i = 1, . . . , N} satisfies (2.7) and (2.8). Let A denote
the matrix corresponding to the inner product a(·, ·), i.e., Aij = a(ψi, ψj). Then the
`2-condition number K2(A), of A is bounded by

K2(A) ≤ CN(1 + | log(Nhmin(N)2)|)

where hmin = min{hT : T ∈ TN}, and C depends only on the αi in the assumptions
and the constant in Sobolev’s inequality.

Proof. As in the proof of Theorem 4.1, it is sufficient to prove that

C1(N(1 + | log(Nhmin(N)2)|))−1XtX ≤XtAX ≤ C2X
tX

where C1 > 0 and C2 <∞ depend only on αi and CS . The proof of these inequalities
is quite similar to the case N ≥ 3. For v ∈ VN we again write v =

∑
i xiψi and recall

from (4.1) that a(v, v) = XtAX. Then

a(v, v) ≤ α0 ||v||2H1(Ω) (2.1)

= α0

∑
T∈TN

||v||2H1(T ) (TN is a subdivision)

≤ α0α3

∑
T∈TN

||v||2L∞(T ) (2.5)

≤ α0α3α6

∑
T∈TN

∑
supp(ψi)∩T 6=∅

x2
i (2.8)

≤ α0α3α6α5X
tX (2.7)
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For the remaining inequality, we have (for p > 2)

XtX ≤
∑
T∈TN

∑
supp(ψi)∩T 6=∅

x2
i

≤ α7

∑
T∈TN

||v||2L∞(T ) (2.8)

≤ α7α4

∑
T∈TN

h
−4/p
T ||v||2Lp(T ) (2.6)

≤ α7α4

( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

||v||2Lp(Ω) (Hölder’s ≤)

≤ C2
Sα7α4

( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

p ||v||2H1(Ω) (Sobolev’s ≤)

≤ C2
Sα7α4α1

( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

p a(v, v) (2.1)

A crude estimate yields( ∑
T∈TN

h
−4/(p−2)
T

)(p−2)/p

≤ hmin(N)−4/p(α2N)(p−2)/p

= α
1−2/p
2 (Nhmin(N)2)−2/pN.

Thus the estimate above can be simplified to

XtX ≤ C2
Sα7α4α

1−2/p
2

(
p (Nhmin(N)2)−2/p

)
N a(v, v).

Choosing p = max{2, | log(Nhmin(N)2)|} in this estimate yields the stated result.
As a corollary, we have the following theorem.
Theorem 5.2. Suppose that the mesh family {TN : N ∈ N}, is nondegenerate,

and let hmin(N) denote the diameter of the smallest triangle in TN . Let A denote
the matrix corresponding the the inner product a(·, ·), i.e., Aij = a(ψi, ψj) where
{ψi : i = 1, . . . , N} is either the standard Lagrange basis or the scaled Hermite basis.
Then the `2-condition number, K2(A), of A is bounded by

K2(A) ≤ CN(1 + | log(Nhmin(N)2)|)

where C depends only on the nondegeneracy constant ρ (cf. Definition 3.1) and the
degree k of the piecewise polynomials in VN .

Remark 1: The above result predicts the correct condition number, O(h−2),
in the case of a regular mesh of size h since N = O(h−2) = O(h−2

min) in this case.
Moreover if we define hmax to be the diameter of the largest triangle in the case of a
general mesh, then N ≥ Ch−2

max because

measure(Ω) =
∑
T∈TN

measure(T ) ≤ CρNh2
max.

Thus we conclude that the condition number of A can be bounded by

K2(A) ≤ CN(1 + | log(hmax/hmin)|).
8



For particular mesh subdivisions, a more precise bound could be attempted for the
key term ( ∑

T∈TN

h
−4/(p−2)
T

)(p−2)/p

in the proof of Theorem 5.1. However, for the special mesh introduced in Example 3,
we can see that the estimate of Theorem 5.2 is sharp, as follows.

Let Ω = Ω0, and let N denote NK for a given K. Suppose that

a(u, v) :=

∫
Ω

∇u · ∇v dx.

Let VN be the set of piecewise linear functions vanishing on the boundary of Ω. By
choosing v ∈ VN to equal one at the origin an zero elsewhere, we find that

λmax ≥ a(v, v)/XtX = a(v, v) = 4.

On the other hand, define

uK(x) :=


|log 2|x|| if 2−K−1 ≤ |x| ≤ 1/2

0 if |x| ≥ 1/2

K log 2 if |x| ≤ 2−K−1

,

and let v be the interpolant of uK . Then it is not hard to see that, on all of the
triangles T ∈ TN , except for the eight smallest and eight largest, the integral of |∇v|2
is a constant independent of T , namely,∫

T

|∇v|2 dx =
5

8
(log 2)2

Further, the integral of |∇v|2 can be computed easily on the remaining triangles as
well, yielding

a(v, v) = 2(log 2)2 + (16K − 8)
5

8
(log 2)2 = (10K − 3)(log 2)2.

Similarly, with xi denoting the nodal values of v,

∑
x2
i = 4

K∑
j=1

| log 2−j |2 + 4

K∑
j=1

| log 2−j
√

2|2 = 5(log 2)2
K∑
j=1

j2.

Therefore

λmin ≤ a(v, v)/XtX ≤ 3K−2

which proves that K2(A) ≥ (4/3)K2.
Recall the N ∼ K for this triangulation, and that hmin ∼ 2−K as well. Thus,

the bound in Theorem 5.2 reads K2(A) ≤ CN(1 + | logN2−2K |) ≤ CNK ≤ CK2.
Therefore the bound in Theorem 5.2 is sharp in this case.
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6. Applications to the Conjugate-Gradient Method. The conjugate-gradient
method for solving a linear system of the form AX = F is an iterative method whose
convergence properties can be estimated in terms of the condition number of A (cf. Lu-
enberger [6]). Specifically, define

||X||A := (XtAX)1/2,

and let X(k) denote the sequence of vectors generated by the conjugate-gradient
method starting with X(0) = 0. Then

||X −X(k)||A ≤ C exp
(
−2k/

√
K2(A)

)
||X||A

where X denotes the solution to AX = F . This can be easily interpreted in terms
of the norms on V. Define the energy norm on V by

||v||a :=
√
a(v, v).(6.1)

Then (4.1) implies that, for v =
∑
i yiψi,

||v||a = ||Y ||A

where Y = (yi). Let uN =
∑
i xiψi and u

(k)
N =

∑
i x

(k)
i ψi, where (xi) = X and

(x
(k)
k ) = X(k). Then the above estimate may be written

||uN − u(k)
N ||a ≤ C exp

(
−2k/

√
K2(A)

)
||uN ||a.

(Recall that the continuity and coercivity assumptions (2.1) and (2.2) imply that
the energy norm || · ||a is equivalent to the norm on H1(Ω).) This estimate says

that to reduce the relative error ||uN − u(k)
N ||a/||uN ||a to O(ε) requires at most k =

O(
√
K2(A)| log ε|) iterations. Suppose that we only require ε = O(N−q) for some

q < ∞. In n ≥ 3 dimensions, the above estimate says that this order of accuracy
will be achieved after only O(N1/n logN) iterations. In two dimensions the above
estimate become slightly more complicated. In typical situations, even with very
severe refinements, we have hmin = O(hpmax) = O(N−p/2) for some p <∞, as we shall
now assume. In this case, the estimate above says that O(ε) accuracy will be achieved
after only O(N1/2(logN)2) iterations.

Each conjugate-gradient iteration requires O(N) operations. Thus the final work
estimates for the conjugate-gradient method on refined meshes as described previously
would be shown in Table 6.1. For the sake of reference, we give the work estimates
for banded Gaussian factorization (and the solution process with the precomputed
factors) assuming a standard (lexicographical) ordering of the basis functions, on a
regular mesh, and Gaussian factorization and solution using “nested dissection,” as
described in Table 7.14 of Axelsson and Barker [1]. The work estimates for nested
dissection for n ≥ 3 follow from arguments similar to those used in the work of Rose
and Whitten [9].

Of course, such work estimates are not competitive with an optimal-order iterative
procedure such as a multilevel method, in which an accurate solution is achieved in
O(N) operations. However, such methods typically involve some alternate technique
of solution on a “coarse grid.” For the latter case we must consider more conventional
methods such as conjugate-gradients or Gaussian elimination.

Acknowledgements. We thank Ricardo Duran and Lars Wahlbin for helpful
discussions.
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Table 6.1
Order of work estimate (number of operations) as a function of the number, N , of unknowns

in the system to achieve an accuracy of O(N−r). “CG” refers to the conjugate-gradient algorithm,
“GE” refers to solution using Gaussian factorization, and “solve” refers to forward- and back-
solution using precomputed factors.

Dimension n = 2 n = 3 n ≥ 3

CG/nondegenerate mesh N3/2(logN)2 N4/3 logN N1+1/n logN
GE/lexicographical order N2 N7/3 N3−2/n

solve/lexicographical order N3/2 N5/3 N2−1/n

GE/nested dissection N3/2 N2 N3−3/n

solve/nested dissection N logN N4/3 N2−2/n
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