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Abstract. We define and analyze several variants of the box method for discretizing elliptic
boundary value problems in the plane. Our estimates show the error to be comparable to a standard
Galerkin finite element method using piecewise linear polynomials.
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1. Introduction. In this work we derive some error estimates for the box method
applied to self-adjoint, positive definite elliptic boundary value problems in regions of
the plane. The “classical” box method, as described in, say, Varga [9], is a finite differ-
ence approximation to an integral formulation of the problem after applying Green’s
Theorem. In the present work, the box method is generalized and cast as a Galerkin
procedure more in the spirit of the finite element method. In this Galerkin formula-
tion, the boxes are constructed as a dual mesh of an underlying triangular grid. The
classical box method is one specific instance of this more general formulation.

In the classical box method, the difference equations are formulated on the dual
mesh of boxes without explicit reference to the underlying triangular mesh. On the
other hand, in our Galerkin procedure, the trial space consists of continuous piecewise
linear polynomials on the triangular mesh, while the test space consists of piecewise
constants on the dual box mesh.

The main result of this paper is that, under reasonable hypotheses, the solution
generated by the box method, uB , is of comparable accuracy to the solution uL gen-
erated by the standard Ritz-Galerkin procedure using piecewise linear finite elements.
In particular, if u of the true solution and ||| · ||| denotes the energy norm, we have, for
Poisson’s equation

|||u− uL||| ≤ |||u− uB ||| ≤ C|||u− uL|||.(1.1)

Our proof of (1.1) follows the strategy of Babuška and Aziz outlined in [2], in
that we show the bilinear form associated with the box method satisfies and inf-
sup condition. Because this bilinear form involves certain line integrals of u, an
additional assumption on u (inequality (2.4)), beyond that imposed by the standard
finite element method, is required. For more general self-adjoint elliptic equations with
zero-order terms there is an additional term on the right hand side of (1.1). Inequality
(1.1) is true for general irregular and nonuniform meshes, which are required to satisfy
a shape regularity property for the triangular elements. Results having the same
flavor, but treating different methods and using different proof techniques, have been
shown for one-dimensional problems and for tensor product-like meshes for higher-
dimensional problems by Kreiss et al. [5] and Manteuffel and White [6]. See also
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Tikhonov and Samarskii [8]. In related work, Nakata, Weiser and Wheeler have shown
certain block centered finite difference schemes on rectangular meshes are equivalent
to a mixed finite element procedure [7].

In the proof of (1.1) it is revealed that the linear system for the box method and
standard linear finite elements are strikingly similar. This is widely known for the
special case of the Laplacian on a uniform square n×n mesh, where both methods re-
duce to the standard 5-point centered finite difference approximation. In fact, the box
method and linear finite elements always produce the same matrix for the Laplacian
when the standard basis functions are used. We first observed this when using the
box method for the system of elliptic partial differential equations used in modeling
semiconductor devices [4, 3], and this served as motivation for the present theoretical
investigation.

This observation has significant practical as well as theoretical importance. For
example, in assembling the sparse linear system, the traditional finite element ap-
proach has been to assemble matrices and right-hand sides triangle by triangle, while
the traditional finite difference approach has been to carry out the assembly process
equation by equation. Armed with the knowledge that the end result will be the same,
one can shift freely between both viewpoints, choosing those algorithms best suited
to exploit parallelism and other facets of the machine architecture.

The remainder of this paper is organized as follows: In Section 2, we establish
notation and prove some preliminary lemmas. In Section 3, we analyze the box
method for Poisson’s equation; and in Section 4, we consider the box method applied
to more general elliptic equations.

2. Preliminaries. Let Ω be a bounded polygonal region in IR2 with boundary
∂Ω. Let T denote a triangulation of Ω. We require triangles t ∈ T to be shape regular
but do not require the mesh as a whole to be quasi-uniform.

In particular, for t ∈ T , let ht denote the diameter of the circumscribing circle for
t and kt denote the diameter of the inscribing circle. We assume there is a positive
constant δ0 such that

δ0 ≤
kt
ht

for all t ∈ T .(2.1)

Let vi, 1 ≤ i ≤ n denote the vertices of the triangulation. With each vertex vi
we associate a region Ωi consisting of those triangles t ∈ T which have vi as a vertex.
(See Figure 2.1.)
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We now construct a dual mesh B for T . The elements in the dual mesh are called
boxes, and are constructed as follows (see Figure 2.2): for each triangle t ∈ T , select
a distinguished point p ∈ t̄. Connect p by straight-line segments (e1, e2, e3, in Figure
2.2) to the edge midpoints of t (m1, m2, m3, in Figure 2.2). This partitions t into
three subregions (with areas a1, a2, a3).
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With each vertex vi, we will associate a box bi ∈ B, bi ⊂ Ωi, which consists of the
union of the subregions in Ωi which have vi as a corner (see Figure 2.3). Boxes need
not be convex, but are star-shaped. Also, since the boundary on bi must pass through
the midpoints of the triangles sides, (2.1) implies there exists a positive constant
δ1 = δ1(δ0) such that

δ−1
1 max

t∩Ωi 6=∅
ht ≤ hbi ≤ δ1 min

t∩Ωi 6=∅
ht(2.2)

where hbi = diam(bi).
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For most of our results, we do not require p to lie in the strict interior of t; p can
be on ∂t and even coincide with a vertex. This could result in some boxes having zero
area but nontrivial perimeters. In other cases, notably Lemma 2.2 and Theorem 4.1
that follow, we require boxes to have nontrivial area. There we assume there exists a
constant α > 0 such that

α ≤ |bi|
|Ωi|

for all bi ∈ B.(2.3)
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In the classical box method, p is chosen as the intersection of the perpendicular
bisectors of the three edges. This choice requires max θi ≤ π/2 in order that p ∈ t̄. A
second natural choice for p is the barycenter, in which case a1 = a2 = a3 = |t|/3.

Let E denote the set of edges generated by this process. Three (unique) members
of E can be associated with each t ∈ T . A box b ∈ B corresponding to a boundary
vertex (on lying on ∂Ω) has a boundary with nontrivial intersection with ∂Ω. However,
the notation ∂b will refer only to that part of the actual boundary consisting of edges
in E.

We now define the function spaces which are relevant to our analysis. Let L2(R)
and H1(R) denote the usual Sobolev spaces equipped with the norms

||u||2L2(R) =

∫
R

u2 dx, ||u||2H1(R) = ||∇u||2L2(R) + ||u||2L2(R)

where ||∇u||2L2(R) =
∫
R
∇u · ∇u dx. Other Sobolev spaces are not used. Let P1(T ) ⊂

H1(Ω) denote the space of C0 piecewise linear polynomials associated with T . We
will denote by S0(B) the space of piecewise H1 functions with respect to B.

S0(B) = {v ∈ L2(Ω)|v ∈ H1(b) for all b ∈ B}.

Let e ∈ E and u ∈ S0(B). We denote the jump in u across e at x ∈ e by

uJ(x) = u(x+ 0)− u(x− 0)

where u(x ± 0) are the two limit values of u(x) along the normal directions for e.
(The normal can have either sign, but once chosen, will be used consistently.) We let
P0 ⊂ S0(B) denote the space of discontinuous piecewise constants with respect to the
boxes.

We let S1(T ) ⊂ H1(Ω) denote the class of functions u ∈ H1(Ω) which satisfy(∑
t∈T

h2
t ||∆u||2L2(t)

)1/2

≤ γ inf
χ∈P1(T )

||∇(u− χ)||L2(Ω)(2.4)

for γ(δ0) independent of maxht. Generally speaking, S1(T ) is that set of functions in
H1(Ω) which can be well approximated by piecewise linear polynomials on T . Finally,
we denote byH1

0(Ω), P1
0 (T ), S1

0 (T ), P0
0 (B), and S0

0 (B) those subsets ofH1(Ω), P1(T ),
S1(T ), P0(B), and S0(B), respectively, whose elements are zero on ∂Ω.

There is a natural correspondence between the spaces P1(T ) and P0(B) (which
have equal dimension) that we shall exploit. Let {φi} denote the usual nodal basis
for P1(T ), satisfying

φi(vj) = δij

where vj is a vertex in the triangulation. Note support(φi) = Ω̄i. Let {φ̄i} denote
the basis for P0(B) consisting of the characteristic functions for bi.

φ̄i(x) =

{
1 x ∈ bi,
0 otherwise.

Let χ ∈ P1(T ) be expressed in terms of {φi} as

χ =
∑
i

aiφi(x).
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We associate (via and invertible map G) with χ and element χ̄ ∈ P0(B) defined by

G(χ) = χ̄ =
∑
i

aiφ̄i(x).

Note χ and χ̄ have common values at the vertices of T .
Lemma 2.1. Let u ∈ P1(T ), ū = G(u) ∈ P0(B). Then there exists a constant

C0 = C0(δ0) such that

C−1
0 ||∇u||L2(Ω) ≤

(∑
e∈E
|ūJ |2

)1/2

≤ C0||∇u||L2(Ω).(2.5)

Proof. Let t ∈ T have side lengths `i (1 ≤ i ≤ 3) as in Figure 2.2, and let u and
ū have node values ui, 1 ≤ i ≤ 3 at the vertices of t. Let

di =
`j`k cos θi

4|t|
(2.6)

where (i, j, k) are cyclic permutations of (1, 2, 3). Then by a direct computation the
element stiffness matrix for t is

Kt =

 d2 + d3 −d3 −d2

−d3 d3 + d1 −d1

−d2 −d1 d1 + d2


and

||∇u||2L2(t) = d1(u2 − u3)2 + d2(u3 − u1)2 + d3(u1 − u2)2.(2.7)

Furthermore

3∑
1

|ūJ |2 = (u2 − u3)2 + (u3 − u1)2 + (u1 − u2)2(2.8)

with corresponding “jump” matrix

K̄t =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Both (2.7) and (2.8) are zero when u is constant on t. We may thus restrict attention
to any two-dimensional subspace not containing the constant function (for example,
vectors of the form (u1 u2 0)T ) and directly compute the minimum and maximum of
the generalized Rayleigh quotient involving Kt and K̄t. From this computation we
find

C−||∇u||2L2(t) ≤
3∑
1

|ūJ |2 ≤ C+||∇u||2L2(t)(2.9)

where

C± = {d1 + d2 + d3 ± 2−1/2((d1 − d2)2 + (d2 − d3)2 + (d3 − d1)2)1/2/3.
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Note C± = C±(δ0) > 0. The lemma now follows by summing (2.9) over t ∈ T .
Lemma 2.2. Let u ∈ P1(T ), ū = G(u) ∈ P0(B). Then there exists a constant

C1 = C1(δ0) such that

||ū||L2(Ω) ≤ C1||u||L2(Ω).(2.10)

Furthermore, if (2.3) is satisfied then there exists a constant C2 = C2(δ0,Ω) such that

||u||L2(Ω) ≤ C2||ū||L2(Ω).(2.11)

Proof. The proof is analogous to that of Lemma 2.1. Let t ∈ T be as in Figure
2.2. Then

||u||2L2(t) =
|t|
12
{u2

1 + u2
2 + u2

3 + (u1 + u2 + u3)2},

||ū||2L2(t) = a1u
2
1 + a2u

2
2 + a3u

2
3(2.12)

Inequality (2.10) follows immediately from (2.12) by summing over t ∈ T . Inequality
(2.11) is only modestly more complicated to show (since some ai may be zero even if
(2.3) is satisfied).

Lemma 2.3. Let u ∈ P1(T ), v ∈ P1(T ), v̄ = G(v) ∈ P0(B). Then

−
∑
b∈B

∫
∂b

∂u

∂n
v̄ ds =

∫
Ω

∇u · ∇v dx(2.13)

where n is the outward pointing normal.
Proof. It is sufficient to show (2.13) for v = φi, v̄ = φ̄i, where φi and φ̄i are the

basis functions for P1(T ) and P0(B) defined above. For this choice (2.13) reduces to

−
∫
∂bi

∂u

∂n
ds =

∫
Ωi

∇u · ∇φi dx(2.14)

This equality will be shown triangle by triangle for t ∈ T such that t ⊆ Ωi; each such
triangle contains two edges e ∈ E lying on ∂bi. Without loss of generality, assume
that vertex 1 in Figure 2.2 corresponds to vertex i. Then∫

Ωi∩t
∇u · ∇φi dx =

(
1 0 0

)
Kt

 u1

u2

u3


= d2(u1 − u3) + d3(u1 − u2).

Next, note that since u is a linear polynomial on t, ∆u = 0 in t, and by Green’s
theorem ∫

∂bi

∂u

∂n
ds

depends only on the endpoints of the integration path (in this case, midpoints m2 and
m3 in Figure 2.2) and not on the location of p. One can choose a simple integration
path (the straight line connecting m2 and m3, or the perpendicular bisectors of sides
2 and 3 of t, for example) and directly compute

−
∫
∂bi

∂u

∂n
ds = d2(u1 − u3) + d3(u1 − u2)

=

∫
t

∇u · ∇φi dx,
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which completes the proof.

3. The box method for Poisson’s equation. In this section we consider the
model problem

−∆u = f in Ω, u = 0 on ∂Ω,(3.1)

where f ∈ L2(Ω). The standard weak form of (3.1) is: Find u ∈ H1
0(Ω) such that

a(u, v) = (f, v) for all v ∈ H1
0(Ω),

a(u, v) =

∫
Ω

∇u · ∇v dx,(3.2)

(f, v) =

∫
Ω

fv dx.

The energy norm ||| · ||| is defined for u ∈ H1
0(Ω) by

|||u|||2 = a(u, u) = ||∇u||2L2(Ω).(3.3)

The standard finite element approximation using the space P1
0 (T ) is given by:

Find uL ∈ P1
0 (T ) such that

a(uL, v) = (f, v) for all v ∈ P1
0 (T ).(3.4)

The solution uL is known to be the best approximation of the solution u of (3.2) in
the energy norm, i.e.,

|||u− uL||| = inf
χ∈P1

0 (T )
|||u− χ|||.(3.5)

In order to formulate the box method we must generalize (3.2). Let v ∈ S0(B);
multiply (3.1) by v and integrate by parts to obtain

a(u, v) + ā(u, v) = (f, v)(3.6)

where a(u, v) is interpreted as the “broken” inner product

a(u, v) =
∑
b∈B

∫
b

∇u · ∇v dx(3.7)

and the bilinear form ā(u, v) is given by

ā(u, v) = −
∑
b∈B

∫
∂b

∂u

∂n
v ds.(3.8)

The box method is defined by: Find uB ∈ P1
0 (T ) such that

ā(uB , v̄) = (f, v̄) for all v̄ ∈ P0
0 (B).(3.9)

For v̄ ∈ P0
0 (B), we define the “energy norm” |||v̄||| by setting |||v̄||| = |||v||| v = G−1(v̄).

By Lemma 2.1, |||v̄||| is comparable to(
∑
e |v̄J |2)1/2. The main result of this section is

the following theorem.

7



Theorem 3.1. Let u, uL, uB be defined by (3.2), (3.4), and (3.9). Assume (2.1)
and u ∈ S1

0 (T ). Then

|||u− uB ||| ≤ C inf
χ∈P1

0 (T )
|||u− χ|||(3.10)

where C = C(δ0, γ).
Proof. Our proof follows the general strategy given by Babuška and Aziz in [2], in

that we prove the bilinear form (3.8) satisfies a discrete inf − sup condition. However,
our bound is somewhat weaker in that it (necessarily) depends on the constant γ.

From (3.6) and (3.9)

ā(u− uB , v̄) = 0 for all v̄ ∈ P0
0 (B).(3.11)

Let χ ∈ P1
0 (T ) and let v = G−1(v̄). Then from (3.11) and Lemma 2.3,

sup
v̄∈P0

0 (B)

ā(u− χ, v̄)

|||v̄|||
= sup
v̄∈P0

0 (B)

ā(uB − χ, v̄)

|||v̄|||

= sup
v∈P1

0 (T )

a(uB − χ, v)

|||v|||
(3.12)

≥ |||uB − χ|||.

On the other hand, we have

|ā(u− χ, v̄)| =

∣∣∣∣∣∑
e

v̄J

∫
e

∂(u− χ)

∂n
ds

∣∣∣∣∣
≤ C|||v̄|||

(∑
e

|e|
∫
e

(
∂(u− χ)

∂n

)2

ds

)1/2

.(3.13)

We consider the last term in (3.13) on a triangle by triangle basis. By (2.1)-(2.2)
|ei| ≤ Cht if ei ∈ t. Using standard trace inequalities [1], and noting ∆χ = 0 in t, we
have∣∣∣∣∣

3∑
i=1

ht

∫
ei

(
∂(u− χ)

∂n

)2

ds

∣∣∣∣∣ ≤ Cht {ht||∆(u− χ)||2L2(t) + h−1
t ||∇(u− χ)||2L2(t)

}
≤ C

{
h2
t ||∆u||2L2(t) + ||∇(u− χ)||2L2(t)

}
.(3.14)

Summing (3.14) over t ∈ T , then using (2.4) and (3.13) we have

|ā(u− χ, v̄)| ≤ C(δ0, γ)|||v̄||||||u− χ|||.(3.15)

Combining (3.12) and (3.15) we prove the result, since

|||u− uB ||| ≤ |||u− χ|||+ |||uB − χ|||

Corollary 3.2.

|||u− uL||| ≤ |||u− uB ||| ≤ C|||u− uL|||(3.16)
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where C is given by Theorem 3.1.
Proof. Take χ = uB in (3.5) and χ = uL in (3.10).
Theorem 3.1 and its corollary show the box method and the standard finite ele-

ment method for piecewise linear polynomials yield solutions of comparable accuracy,
at least in the energy norm. If we use the standard nodal basis for P1

0 (T ), then (3.4)
corresponds to the linear system

AU = F

where

Aij = a(φj , φi),

Fi = (f, φi) =

∫
Ωi

fφi dx,

uL =
∑
i

Uiφi(x).

The box method leads to the linear system

ĀŪ = F̄

where, by Lemma 2.3

Āij = ā(φj , φ̄i) = a(φj , φi) = Aij

F̄i = (f, φ̄i) =

∫
bi

f dx,

uB =
∑
i

Ūiφi(x).

The stiffness matrices for both linear systems are identical and the solution vectors
are point values for uL and uB at the vertices. The only difference is the right-hand
side, and in an average sense they are close, For particular box methods (e.g. choosing
p in Figure 2.2 to be the barycenter) one can give “natural” interpretations of F̄i in
terms of quadrature rule approximations of Fi. From this point of view, the results
of Theorem 3.1 seem quite reasonable.

4. The box method for self-adjoint problems. In this section, we consider
the more general self-adjoint elliptic boundary value problem of the form

−∇ · a∇u+ σu = f in Ω, u = 0 on ∂Ω,(4.1)

where a (respectively σ) is a smooth positive (nonnegative) function and

a ≤ a(x) ≤ ā, 0 ≤ σ(x) ≤ σ̄ for x ∈ Ω̄.

The weak form of (4.1) is Find u ∈ H1
0(Ω) such that

a(u, v) = (f, v) for all v ∈ H1
0(Ω),

a(u, v) =

∫
Ω

a∇u · ∇v + σuv dx.(4.2)

Withe this definition for a(·, ·) the energy norm |||u||| is given by

|||u|||2 = a(u, u),
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and the finite element solution satisfies (3.4)-(3.5). In analogy with (3.9) the box
method for (4.1) is defined by: Find uB ∈ P1

0 (T ) such that

ā(uB , v̄) + (σūB , v̄) = (f, v̄) for all v̄ ∈ P0
0 (B),(4.3)

ā(uB , v̄) = −
∑
b∈B

∫
∂b

a
∂uB
∂n

v̄ ds.(4.4)

A natural generalization of the Galerkin formulation of the box method would
use uB instead of ūB in the second term on the left-hand side of (4.3). However, in
the classical formulation of the box method, the σu term in (4.1) would normally be
discretized using a diagonal matrix. The use of ūB allows this when the basis functions
{φi} for P1

0 (T ) and {φ̄i} for P0
0 (B) are used in constructing the stiffness matrix. Using

uB in this term would result in a nondiagonal (and generally nonsymmetric) matrix.
To analyze the error, we begin with the analogue of (3.11):

ā(u− uB , v̄) + (σ(u− ūB), v̄) = 0 for all v̄ ∈ P0
0 (B).(4.5)

Let χ ∈ P1
0 (T ); then. from (4.5) we have

ā(u− χ, v̄) + (σ(u− χ̄), v̄) = ā(uB − χ, v̄) + (σ(ūB − χ̄), v̄)(4.6)

where χ̄ = G(χ).
We consider first the right-hand side of (4.6). In the standard basis, the first

term corresponds to a scalar product of the form WTAV where A is symmetric and
positive definite and W , V are vectors containing the point values of uB − χ and v̄,
respectively, at the vertices. This matrix is not generally equal to the stiffness matrix
for the piecewise linear finite element approximation of the term

∫
Ω
a∇u · ∇v dx but

it is close. In particular, both matrices are comparable to the matrices of section 3
for a(x) ≡ 1 and those matrices are equal by Lemma 2.3. In analogy with (2.13), we
have for t ⊂ Ωi, w ∈ P1

0 (T )

−
∫
∂bi∩t

a
∂w

∂n
φ̄i ds = η(a)

∫
t

a∇w · ∇φi dx.

Note η(a) = 1 +O(ht) for smooth a. Thus, using Lemmas 2.1-2.3, we obtain the
analogue of (3.12)

sup
v̄∈P0

0 (B)

ā(uB − χ, v̄) + (σ(ūB − χ̄), v̄)

|||v̄|||
≥ C|||uB − χ|||(4.7)

where C = C(a, ā, σ̄, α, δ0) and |||v̄||| = |||G−1(v̄)|||.
The left-hand side of (4.6) is treated analogously to the corresponding term in

(3.12). Using Lemmas 2.1 and 2.2 and (2.4), we obtain

ā(u− χ, v̄) + (σ(u− χ̄), v̄) ≤ C
{
|||u− χ||||||v̄|||+ ||u− χ̄||L2(Ω)||v̄||L2(Ω)

}
(4.8)

where C = C(a, ā, σ̄, α, δ0). Since ||v̄||L2(Ω) ≤ C|||v̄|||, we have the next theorem.
Theorem 4.1. Let u, uL, uB be defined by (4.2), (3.4), and (4.3). Assume

(2.1), (2.3) and u ∈ S1
0 (T ). Then

|||u− uB ||| ≤ C inf
χ∈P1

0 (T )
{|||u− χ|||+ ||u− χ̄||L2(Ω)}

10



where C = C(a, ā, σ̄, α, δ0) and χ̄ = G(χ).
Corollary 4.2.

|||u− uL||| ≤ |||u− uB ||| ≤ C
(
|||u− uL|||+ ||u− ūL||L2(Ω)

)
where C is as in Theorem 4.1.
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