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Abstract. We present three new a posteriori error estimators in the energy

norm for finite element solutions to elliptic partial differential equations. The
estimators are based on solving local Neumann problems in each element. The

estimators differ in how they enforce consistency of the Neumann problems.

We prove that as the mesh size decreases, under suitable assumptions, two of
the estimators approach upper bounds on the norm of the true error, and all

three estimators are within multiplicative constants of the norm of the true

error. We present numerical results in which one of the estimators appears to
converge to the norm of the true error.

1. Introduction

In this work, we will describe several methods for computing a posteriori error
estimates for finite element calculations. That is, given some piecewise polynomial
approximation U to uH, the solution of an elliptic partial differential equation,
we seek some practical method for computing an estimate of |||uH − U ||| for an
appropriate norm ||| · |||. A priori estimates can give asymptotic rates of convergence
as the mesh parameter h tends to zero, but often cannot provide much practical
information about the actual errors encountered on a given mesh with a fixed h.
A posteriori estimates, on the other hand, attempt to provide the user of a finite
element package with such information, enhancing the robustness of the package,
and the reliability of the approximations it produces.

There has been a great deal of work by Babuška and his coworkers on local
mesh refinement strategies and the a posteriori error indicators necessary for their
success [4, 10, 6, 7, 5, 8, 9]. The indicators in [5], for example, is based on solv-
ing local Dirichlet problems in the patch of elements surrounding each vertex in
the finite element mesh. In this scheme, the Dirichlet boundary conditions insure
well-posedness of the local problems. Error indicators can also be based on the
computation of the norm of the local residual of the elliptic equation and the jump
in the normal derivative of the computed solution at interelement boundaries (e.g.,
[8] [13]). Such schemes as a rule require less computation than the ones involving
the solution of local problems. They also appear to give good results when used
in local mesh refinement algorithms. However, with highly nonuniform triangular
meshes, as arise in the finite element code PLTMG [11], it is sometimes difficult
to weight the residual and boundary terms properly.
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The error indicators described in this paper are based on solving local Neumann
problems in each finite element. Such an approach leads directly to error indicators
defined element by element, and at first seems a simple and natural approach.
However, some care must be taken to insure the Neumann problems are well posed.
As the element diameter tends to zero, the lower order terms in the elliptic operator
lose significance and the problems tend to singularity. To be well posed the data
(right-hand side) for these problems must be consistent in the limit h → 0. The
three procedures we analyze here differ in the method by which this consistency
condition is satisfied. In some respects, our schemes are similar to the local residual
method of Percell and Wheeler [14], but without the penalty terms.

When the approximation U is the finite element approximation, our error indi-
cators ē = ê, ẽ, and ě yield error estimators |||ê|||, |||ẽ|||, and |||ě||| which satisfy the
inequalities

(1.1) (1− ε1)|||uH − U ||| ≤ |||ē||| ≤ (1 + ε2)|||uH − U |||
where ε1 < 1 and ε2 is bounded. When U is an arbitrary function in the finite
element subspace, extra terms in (1.1) are introduced which measure the difference
between U and the finite element solution. Such terms are of significance if the
variational crimes are committed in assembling the finite element stiffness matrix
and right-hand side, or if the resulting linear system is only approximately solved,
say, by an iterative method.

Our theoretical results are for linear, elliptic, selfadjoint, positive-definite prob-
lems. The algorithms and many of our results extend readily to some nonselfadjoint,
indefinite, and quasilinear elliptic problems. Essentially, the linear highest-order
term dominates the process as the element size shrinks, so the lower-order non-
linear terms contribute only perturbations to the basic error bounds of Sections
4-6. Our results also extend with only small modification to the situation where
homogeneous Dirichlet boundary conditions are specified on all or part of ∂Ω. For
elements which intersect the Dirichlet boundary, a local problem with homogeneous
Dirichlet boundary conditions on the Dirichlet portion of the element boundary and
Neumann conditions on the remaining edges is solved. The analysis of these local
problems is easier than the pure Neumann case because the consistency condition
need not be satisfied.

Our error indicators are based on local computations for efficiency reasons. That
is, they are calculated using computations which involve only one or a few neigh-
boring elements at a time. Assembling a global stiffness matrix and right-hand
side, and solving the resulting linear system, would generally be more expensive
than computing the original solution U . For example, if the finite element solu-
tion U is a continuous piecewise polynomial of degree r, a reasonable choice for
an error indicator might be a discontinuous piecewise polynomial of degree r + 1.
Although the assumptions of our analysis, in particular, inequality (2.8), require
the error indicators to be of higher degree than U , we have had practical success
using continuous piecewise linear triangular basis functions for U and discontinuous
piecewise linear basis functions for the error indicators.

We can prove a local analogue of the right-hand inequality of (1.1) under some
circumstances, if we replace |||uH − U |||τ with |||uH − U |||Nτ , where Nτ is a small set
of elements in the neighborhood of triangle τ .

The remainder of the paper is organized as follows: Section 2 gives definitions
and establishes notation. In Section 3, we give some preliminary results to be used
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in the analyses of our error indicators ê, ẽ, and ě, which are analyzed in Sections
4, 5, and 6, respectively. In Section 7, we present numerical results indicating the
behavior of our error indicators on several model problems.

For the error indicator ê presented in Section 4, we show that ε1 in (1.1) tends
to zero for arbitrary U in the finite element space. However, we can bound ε2 only
when uH − U exactly satisfies a subset (2.9) of the orthogonalities satisfied by the
the finite element error, and in this case, our method for insuring a well-defined
error indicator in an element requires some computations involving quantities from
neighboring elements.

For the error indicator ẽ presented in Section 5, we can only prove that ε1 in
(1.1) tends to zero when uH − U satisfies the orthogonality conditions (2.9). We
can always bound ε2, with somewhat stronger bounds if uH−U satisfies (2.9). The
computation of ẽ in an element requires only quantities from within that element.

For the error indicator ě presented in Section 6, we bound ε1 and ε2. The
computation of ě requires only quantities from within that element, and requires
even less work than the computation of ẽ.

In Section 7, we find that, except on very coarse grids, on several model problems
our error estimators are upper bounds on the norm of the true error, and that our
estimators are always within a factor of three of the norm of the true error. The
simplest and cheapest error indicator, ě, also performs the best for fine grids, with
its norm appearing to converge to the norm of the true error as the mesh size
decreases.

2. Notation

Consider the linear, selfadjoint, positive definite Neumann problem

L(u) = −∇a∇u+ bu = f in Ω ⊂ IR2,

a
∂u

∂n
= g on ∂Ω,(2.1)

with Ω a bounded domain, a ∈ C1(Ω̄), b ∈ C0(Ω̄). We assume there exist constants
a, ā, b, b̄ such that

0 < a ≤ a(x) ≤ ā
for x ∈ Ω̄.

0 ≤ b ≤ b(x) ≤ b̄

The boundary of Ω is assumed piecewise smooth. The weak form of (2.1) is: find
u ∈ H1(Ω) such that

(2.2) a(u, v) = (f, v) + 〈g, v〉 for all v ∈ H1(Ω),

where

a(u, v) =

∫ ∫
Ω

(a∇u∇v + buv) dx, (f, v) =

∫ ∫
Ω

fv dx, 〈g, v〉 =

∫
∂Ω

gv ds.

Hk(Ω) for nonnegative integer k will denote the usual Sobolev space equipped with
the norm

||u||2k =
∑
|β|≤k

||Dβu||20 =
∑
|β|≤k

(Dβu,Dβu).
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Negative and nonintegral spaces will not be used. We will set H1(Ω) = H and
|| · ||0 = || · ||. We will also use the energy norm associated with the bilinear form
a(·, ·)

|||u|||2 = a(u, u).

We will consider the solution of (2.2) using a standard Rayleigh-Ritz-Galerkin
procedure based on C0 triangular finite elements. Specifically, let F = {T } denote
a family of triangulations of Ω, where T ∈ F is a collection of closed triangles such
that, for distinct τ1, τ2 ∈ T , τ1 ∩ τ2 is either empty, a single vertex or a common
edge. Triangles will normally have straight edges, although triangles with edges
coincident with some part of ∂Ω will be allowed one curved boundary edge. Such
an edge must be a smooth arc.

For τ ∈ T , let hτ denote the diameter of τ and let

h = max
τ∈T

hτ .

Let E be the collection of curves which form an edge of a triangle in T . The set of
edges may be decomposed as the union of two disjoint sets EB ∪EI where EB is the
set of boundary edges and EI the set of (straight) interior edges. We denote by Eτ
the set of three edges of the triangle τ ∈ T . We define the neighbors of τ , Nτ by

Nτ = {τ ′ ∈ T | τ ′ ∩ τ 6= ∅}.

For ε ∈ E , let hε denote the length of ε.
Let δ0 be a fixed positive constant independent of T and F . We require each

triangle τ ∈ T to be star-shaped with respect to a circle of diameter δ0hτ contained
in τ . The constant δ0 is a measure of the shape regularity of the triangles in T .
Shape regularity does not require the triangulations to be globally quasi-uniform,
although it does imply a small angle condition and a local quasi-uniformity of the
mesh. In particular, there exists a positive constant δ1 = δ1(δ0) independent of T
such that for ε ∈ Eτ , τ ′ ∈ Nτ , and τ ∈ T ,

δ−1
1 hτ ≤ hε ≤ δ1hτ .

For T ∈ F , let S ⊆ S ⊂ S̄ denote three finite-dimensional spaces of C0 piecewise
polynomials associated with T . The space S is the space in which we will seek
an approximate solution of (2.2), while S̄ will be associated with a larger space in
which we seek an approximation to the error. The space S will be a (possibly)
smaller space, which contains at least the C0 piecewise linear functions on T ; we
allow S = S.

For Q = H, S̄, S, or S, we define uQ ∈ Q by

(2.3) a(uQ, v) = (f, v) + 〈g, v〉 for all v ∈ Q.

If b ≡ 0, we impose the additional requirement

(2.4) (uQ, 1) = 0.

uH is therefore the weak solution of (2.2), while uS , uS̄ , and uS are finite element
approximations of uH. Let U ∈ S denote the computed approximation of uH, and
define eQ = uQ − U , Q = H, S, S̄. Normally one has U − uS so that eS = 0,
but our analysis does not require it. Thus our error estimates will allow for the
inclusion of effects due to roundoff errors, variational crimes, or the approximate
solution of the linear equations by an iterative method.
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To facilitate the introduction of the local function spaces and inner products
required for our analysis, let ω be an open set in IR2 and γ a simple piecewise-
smooth curve in IR2. Let (·, ·)ω and || · ||ω denote the L2(ω) inner product and
norm, a(·, ·)ω and ||| · |||ω denote the energy inner product and norm restricted to ω,
and 〈·, ·〉γ and | · |γ denote the inner product and norm on L2(γ).

Let T ∈ F be a fixed triangulation and let

HT =
∏
τ∈T
H1(τ) =

{
φ |φ|τ ∈ H1(τ), τ ∈ T

}
denote the space of piecewise H1 functions. For v, w ∈ HT we define broken L2

and energy inner products and norms by

(v, w) =
∑
τ∈T

(v, w)τ , ||v||20 = (v, v),

a(v, w) =
∑
τ∈T

a(v, w)τ , |||v|||2 = a(v, v).

Note that HT ⊂ L2(Ω), so the broken L2 inner product is just the usual L2 inner
product. Also, H = H1(Ω) ⊂ HT , and the above definitions reduce to the usual
ones whenever v, w,∈ H. Similarly, for Γ = E , EI , EB , Eτ , or some other subset of
E , let

〈v, w〉Γ =
∑
ε∈Γ

〈v, w〉ε, |v|2Γ = 〈v, v〉Γ.

Let Sτ denote the restriction of S to τ ∈ T and let

ST =
∏
τ∈T
Sτ .

Similarly, define S̄τ , Sτ , S̄T , and ST . The space ST (and S̄T , ST ) is a space of
discontinuous piecewise polynomials locally defined in each element τ ∈ T . Note
the inclusions ST ⊆ ST ⊂ S̄T ⊂ HT .

For each edge ε ∈ E , we define a normal direction n = nε. If ε ∈ EB , this will be
the usual outward normal. If ε ∈ EI , the choice is arbitrary. Since we are dealing
with discontinuous spaces, it is useful to have notation describing the jump and
average of functions along edges. We denote two triangles sharing an edge ε ∈ EI
as τin and τout, where the normal is outward from τin (see Figure 2.1). Then for x
on ε,

[v]J(x) = v(x)|out − v(x)|in
is the jump of v across ε, and

[v]A(x) =
1

2
{v(x)|out + v(x)|in}

is the average of v on ε. Note that the quantity [∂v/∂n]J is independent of the
direction of n.

Let I : S̄T → ST denote a local polynomial interpolation operator. For example,
for each τ ∈ T , we can let I be the usual Lagrange interpolant for triangular
elements. We assume that I satisfies

(i) if v ∈ ST , Iv = v (I behaves like the identity on ST : in particular, on
piecewise constant functions);

(ii) if v ∈ S̄, Iv ∈ S (I preserves continuity);
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Figure 2.1

(iii) there exists a constant C0, depending on δ0, δ1, a, b, the maximum de-
gree of polynomials in S, and the particular interpolation operator, but
independent of h, such that

sup
v∈S̄T ,v 6=0

|||Iv|||
|||v|||

≤ C0.

In Lemma 4 and Section 6, we will use the space

Šτ =
{
v | v ∈ S̄τ and Iv = 0

}
and the product space

ŠT =
∏
τ∈T
Šτ .

Note that any function v̄ ∈ S̄T can be written uniquely as v̄ = v+ v̌, where v ∈ ST
and v̌ ∈ ŠT .

Let τ ∈ T and ε ∈ Eτ . In our analyses, we will use the following inequalities

|v|2Eτ ≤ C2
1

{
h−1
τ ||v||2τ + hτ ||∇v||2τ

}
, v ∈ H1(τ),(2.5) ∣∣∣∣ ∂v∂n

∣∣∣∣2
Eτ
≤ C2

1

{
h−1
τ ||∇v||2τ + hτ ||∇2v||2τ

}
, v ∈ H2(τ),(2.6)

||∇pv||τ ≤ C2h
q−p
τ ||∇qv||τ , v ∈ S̄T , 0 ≤ q ≤ p ≤ 2.(2.7)

The trace inequalities (2.5)-(2.6) follow from results in Agmon [1]; the constant
C1 = C1(δ0, δ1). Inequality (2.7) is a local inverse inequality; the constant C2

depends on δ0 and on the maximum degree of polynomials contained in S̄T . Both
C1 and C2 are independent of h.

We require some notion of convergence of the finite element solutions uS and
uS̄ to the weak solution uH of (2.2) as a function of h. In particular, we make the
saturation assumption

(2.8) |||uH − uS̄ |||2 +

∣∣∣∣h1/2
ε

[
a
∂(uH − uS̄)

∂n

]
A

∣∣∣∣2
EI
≤ β2|||uH − uS |||2,

where β = β(h) and limh→0 β = 0 (Babuška [2], Babuška and Luskin [3]). This
assumption is reasonable, since S̄ contains polynomials of higher degree than S.

Finally, some of our results will hold only when U satisfies

(2.9) a(eS , χ) = a(uS − U, χ) = 0 for all χ ∈ S,
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i.e., the elliptic projection of the error on S is zero. Note that (2.9) holds if U is
the finite element solution uS or if U = uS . It may also hold when U is computed
using certain two-level iterative schemes, where the coarse level corresponds to S.
If the iteration terminates on a coarse subspace correction, then the approximate
solution U will automatically satisfy (2.9).

3. Preliminary Results

In this section we present some results which are useful in analyzing the error
estimation procedures to be discussed in Sections 4-6. Let eQ = uQ−U for Q = H,
S, S, S̄. Then for v ∈ Q, using (2.3) and integration by parts in each element,

a(eQ, v) = (f, v) + 〈g, v〉 −
∑
τ∈T

〈
a
∂U

∂nτ
, v

〉
Eτ
− (L(U), v)

= (r, v) + 〈rB , v〉 −
∑
τ∈T

〈
a
∂U

∂nτ
, v

〉
Eτ∩EI

.(3.1)

Here nτ is the outward normal for τ , r = f − L(U) is defined elementwise with
possible discontinuities on EI , and rB = g − a ∂U/∂n is defined edgewise on EB .

Noting that the outward normal for τ is the inward normal for a neighbor sharing
a common edge, we may write the last term in (3.1) as

−
∑
τ∈T

〈
a
∂U

∂nτ
, v

〉
Eτ∩EI

=

〈[
a
∂U

∂n

]
J

, v

〉
EI
.

We define the local right-hand side of (3.1) by

(3.2) Fτ (v) = (r, v)τ + 〈rB , v〉Eτ∩EB +
1

2

〈[
a
∂U

∂n

]
J

, v

〉
Eτ∩EI

for v ∈ Qτ . Summing over triangles, we obtain the linear functional F (v), where

(3.3) F (v) =
∑
τ∈T

Fτ (v) = (r, v) + 〈rB , v〉+

〈[
a
∂U

∂n

]
J

, [v]A

〉
EI

for v ∈ QT .
In terms of this linear functional, (3.1) can be written as

(3.4) a(eQ, v) = F (v) for all v ∈ Q.

Equation(3.4) gives a useful characterization of the error. Noting eH−eQ = uH−uQ
(Q = S, S, S̄), (3.4) implies the orthogonality relations

(3.5) a(eH − eQ, v) = 0 v ∈ Q = S, S, S̄,

normally associated with the error in the finite element method, as well as

a(eS̄ − eQ, v) = 0 v ∈ Q = S, S,(3.6)

a(eS − eS , v) = 0 v ∈ S.(3.7)

The orthogonality relations (3.5)-(3.7) imply

|||eH|||2 = |||eQ|||2 + |||eH − eQ|||2, Q = S, S, S̄;(3.8)

|||eS̄ |||2 = |||eQ|||2 + |||eS̄ − eQ|||2, Q = S, S;(3.9)

|||eS |||2 = |||eS |||2 + |||eS − eS |||2.(3.10)
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Equation (3.4) characterizes the inner product a(e−Q, v) when v ∈ Q. For eH,
we also need to characterize the inner product a(eH, v) for v ∈ HT . To do so, we
start from the elementwise version of (3.1). Suppose eH ∈ H2(τ); then, integrating
by parts,

(3.11) a(eH, v)τ = (r, v)τ + 〈rB , v〉Eτ∩EB +

〈
a
∂eH
∂nτ

, v

〉
Eτ∩EI

for all v ∈ H1(τ). In summing over elements, the third term is somewhat more
complicated than in (3.1), since [v]J 6= 0. In particular,∑

τ∈T

〈
a
∂eH
∂nτ

, v

〉
Eτ∩EI

=

〈[
a
∂U

∂n

]
J

, [v]A

〉
EI

+

〈[
a
∂eH
∂n

]
A

, [v]J

〉
EI

This gives the global equation

(3.12) a(eH, v) = F (v) +

〈[
a
∂eH
∂n

]
A

, [v]J

〉
EI

for all v ∈ HT .

Note that (3.12) reduces to (3.4) whenever v ∈ H.
In the course of analysis in Sections 4-6, there are several basic estimates that

will be used often. We summarize them in Lemmas 1-3.

Lemma 1. Assume (2.6), (2.7), and (2.8) hold. Then∣∣∣∣h1/2
ε

[
a
∂eH
∂n

]
A

∣∣∣∣
EI
≤ C3|||eH|||,

where C3 = C3(a, ā, C1, C2, δ1, β).

Proof. First note∣∣∣∣h1/2
ε

[
a
∂eH
∂n

]
A

∣∣∣∣
EI
≤
∣∣∣∣h1/2
ε

[
a
∂eS̄
∂n

]
A

∣∣∣∣
EI

+

∣∣∣∣h1/2
ε

[
a
∂(uH − uS̄)

∂n

]
A

∣∣∣∣
EI
.

The second term can be bounded using (2.8)

(3.13)

∣∣∣∣h1/2
ε

[
a
∂(uH − uS̄)

∂n

]
A

∣∣∣∣
EI
≤ β|||uH − uS ||| ≤ β|||eH|||.

To bound the first term, let ε ∈ EI and τin ∩ τout = ε. Then∣∣∣∣h1/2
ε

[
a
∂eS̄
∂n

]
A

∣∣∣∣2
ε

≤ hε
2

{∣∣∣∣a∂eS̄∂n |τin
∣∣∣∣2
ε

+

∣∣∣∣a∂eS̄∂n |τout
∣∣∣∣2
ε

}
.

Using (2.6)-(2.7) we obtain

hε

∣∣∣∣a∂eS̄∂n |τ
∣∣∣∣2
ε

≤ ā2C2
1hε

{
h−1
τ ||∇eS̄ ||2τ + hτ ||∇2eS̄ ||2τ

}
≤ ā2C2

1δ1(1 + C2
2 )||∇eS ||2τ

≤ ā2a−1C2
1δ1(1 + C2

2 )|||eS |||2τ
Summing over edges, and using the fact that each triangle has at most 3 edges, we
obtain

(3.14)

∣∣∣∣h1/2
ε

[
a
∂eS̄
∂n

]
A

∣∣∣∣2
EI
≤ 3

2
ā2a−1C2

1δ1(1 + C2
2 )|||eS |||2.

Combining (3.13), (3.14), and (3.8) proves the lemma. �
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Lemma 2. Let v ∈ HT , and suppose

||v||τ ≤ C4hτ |||v|||τ for all τ ∈ T ,
where C4 is independent of τ and v. Then∣∣∣h1/2

ε [v]J

∣∣∣
EI
≤ C5|||v|||,

where C5 = C5(C1, C4, a, δ1).

Proof. As in the proof of Lemma 1,∣∣∣ [v]J

∣∣∣2
ε
≤ 2

(∣∣∣ v|τin ∣∣∣2
ε

+
∣∣∣ v|τout∣∣∣2

ε

)
.

Using (2.5) and the hypothesis of the lemma, we obtain∣∣∣ v|τ ∣∣∣2
ε
≤ C2

1

(
h−1
τ ||v||2τ + hτ ||∇v||2τ

)
≤ C2

1 (1 + C2
4 )a−1δ1hε|||v|||2τ .

Thus, summing over the edges,∣∣∣h1/2
ε [v]J

∣∣∣2
EI
≤ 6C2

1 (1 + C2
4 )a−1δ1|||v|||2,

and the lemma follows. �

Lemma 3. Assume (2.8) holds and β < 1. Then

(1− β2)1/2|||eH||| ≤ |||eS̄ |||.

Proof. Using (3.8) for the cases Q = S and Q = S̄, and (2.8), we have

|||eH|||2 ≤ β2|||eH − eS |||2 + |||eS̄ |||2 ≤ β2|||eH|||2 + |||eS̄ |||2,
and the result follows. �

In Section 6, we will use the following strengthened Cauchy-Schwarz inequality,
proved in Bank and Dupont [12].

Lemma 4. There exists a constant γ < 1, depending on δ0, δ1, a, b, the maximum
degree of polynomials in S̄, and the particular choice of interpolation operator I,
but independent of h, such that

|a(v, v̌)| ≤ γ |||v||| |||v̌|||
for any v ∈ S and v̌ ∈ Š.

4. An Error Estimator

Let θ ∈ L2(E) be a function defined on each edge ε with θ|EB = 0. If ε = τin∩τout,
define

θτout = θ, θτin = −θ.
so that ∑

τ∈T
〈θτ , v〉Eτ = 〈θ, [v]J〉EI

for all v ∈ S̄T .
Given θ, we can formulate equations in each τ for the error indicator ê ∈ S̄T as

follows:

(4.1) a(ê, v)τ = Fτ (v) + 〈θτ , v〉Eτ∩EI
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for all v ∈ S̄τ . For the moment assume θ is chosen so that (4.1) makes ê well defined.
Appropriate choices for θ will be discussed shortly. Summing over triangles, ê
satisfies the global equations

(4.2) a(ê, v) = F (v) + 〈θ, [v]J〉EI
for all v ∈ S̄T .

We immediately have the following:

Theorem 1. If ê exists,

(1− β2)1/2|||eH||| ≤ |||ê|||.

Proof. Since eS̄ ∈ S̄, [eS̄ ]J ≡ 0, and by (3.4) and (4.2),

a(eS̄ , eS̄) = F (eS̄) = a(ê, eS̄)

so |||eS̄ ||| ≤ |||ê|||. The theorem now follows from Lemma 3. �

There are several ways to choose θ such that ê is well defined. If b > 0, we
can simply choose θ ≡ 0. Unfortunately, this may allow |||ê||| to be much larger
than |||eH|||. Another possibility is to let θ be an approximation to [a ∂eH/∂n]A (see
equation (4.8)).

If b ≡ 0, since a(v, 1)τ = 0 for any v ∈ S̄τ , we will require θτ to satisfy

(4.3) 〈θτ , 1〉Eτ∩EI = −Fτ (1).

Then (4.1) will be consistent and ê will be well-defined. Summing over an arbitrary
set of triangles T 0, (4.3) implies

(4.4)
∑
τ∈T 0

〈θτ , 1〉Eτ∩EI = −
∑
τ∈T 0

Fτ (1).

By (2.4) and (3.4), F (1) = 0, so (4.4) holds holds for T 0 = T . Now suppose
T 1 = T 2 ∪T 3 is a set of triangles, T 2 ∩T 3 = ∅, and we have chosen θ on ∂T 1 such
that (4.4) holds for T 0 = T 1. Then on ∂T 2−∂T 1, we can choose θ such that (4.4)
holds for T 0 = T 2. For example, we could choose θ to be the constant

θτ |∂T 2−∂T 1 =

∑
τ∈T 2 Fτ (1)− 〈θτ , 1〉∂T 2−∂T 1∑

ε∈∂T 2−∂T 1 hε
.

The best choice for θτ |∂T 2−∂T 1 is an open question. Then (4.4) automatically holds
for T 0 = T 3. Continuing in the manner insures (4.4) holds for all triangles; always
choosing T 2 to be a single triangle allows local computation of θ. Unfortunately,
this manner of choosing θ may also allow |||ê||| to be much larger than |||eH|||.

We now show a way of choosing θ when (2.9) holds, which insures both that ê
is well-defined, and that |||ê||| is not too much larger than |||eH|||. Let {xi} be the
vertices of the triangulation T and let {bi} be the usual Lagrange basis for the C0

piecewise linear functions on T , with bi(xj) = δij .
Recall S contains {bi}. We will choose θ to be a linear function on each edge ε,

such that

(4.5) 〈θτ , bi〉Eτ∩EI = −Fτ (bi)

for all bi and τ . In particular, since
∑
i bi = 1, (4.3) will hold, and ê will always be

well-defined.
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Let ν(ε, j) be an indexing function such that edge ε connects vertex xν(ε,0) and
xν(ε,1), and define

σε,j =
4bν(ε,j)(x)− 2bν(ε,1−j)(x)

hε
, j = 0, 1,

for x ∈ ε. By construction

〈σε,j , bν(ε,k)〉ε = δkj j, k = 0, 1.

Expressing θ as a linear combination of the σε,j ’s,

θ =
∑
ε∈E

∑
j=0,1

θε,jσε,j .

Equations (4.5) decouple into sets of equations for each bi,∑
ν(ε,j)=i

Rτ,εθε,j = −Fτ (bi)

for all τ ∈ supp(bi), where

Rτ,ε =

{
1 if τ = τout(e),
−1 if τ = τin(e).

�
�
�
�
�
�
�
�
�
�
�

@
@
@
@
@
@
@
@
@
@
@

@R
��

�	
@I

xi

τ3

τ1

τ0τ2

nε2

nε3

nε1

nε0

Figure 4.1

For example, for the vertex xi depicted in Figure 4.1, the resulting system of
linear equations is

1 0 0 −1
−1 1 0 0

0 −1 1 0
0 0 −1 1



θε0,j0
θε1,j1
θε2,j1
θε3,j3

 =


−Fτ0(bi)
−Fτ1(bi)
−Fτ2(bi)
−Fτ3(bi)

 ,
where i = ν(ε0, j0) = ν(ε1, j1) = ν(ε2, j2) = ν(ε3, j3). The matrix has exactly
one eigenvector [1, 1, 1, 1]t with eigenvalue zero. However since bi ∈ S, a(eH, bi) =
F (bi) = 0, and thus

−
3∑
k=0

Fτk(bi) = 0,

so the system is consistent. One solution of the system is

θεm,jm = −
m∑
k=0

Fτk(bi),



12 Randolph E. Bank and Alan Weiser

so that we can choose θ such that

(4.6) |θε,j | ≤
∑

τk∈supp(bi)

|Fτk(bi)|

where i = ν(ε, j).

@
@
@
@
@
@

�
�
�
�
�
�

@R

?
xi

τ0

τ1

τ2

nε0

nε1

Figure 4.2

Inequality (4.6) holds in a like manner for all other coefficients, including the
ones associated with boundary vertices. For example, for the vertex xi depicted in
Figure 4.2, the resulting system of linear equations is 1 0

−1 1
0 −1

[ θε0,j0
θε1,j1

]
=

 −Fτ0(bi)
−Fτ1(bi)
−Fτ2(bi)

 .
Again, the system is consistent because F (bi) = 0, and this time the unique solution
is

θεm,jm = −
m∑
k=0

Fτk(bi).

With these choices for the coefficients of θ, we have

Theorem 2. If uH ∈ H2(τ) for all τ ,∣∣∣h1/2
ε

∣∣∣
E
≤ C8|||eH|||,

where C8 = C8(ā, b̄, δ0, C3).

Proof. On any edge ε, since |σε,j |ε = 2h
−1/2
ε , by the definition of θ and (4.6)

(4.7)
∣∣∣ h1/2

ε θ
∣∣∣
Eτ
≤ 4

∑
xi∈τ

∑
τ ′∈supp(bi)

|Fτ ′(bi)|.

By (3.2) and (3.11), since

a
∂eH
∂nτ

=

[
a
∂eH
∂nτ

]
A

+
1

2

[
a
∂U

∂nτ

]
J

,

Fτ (bi) = a(eH, bi)τ −
〈[
a
∂eH
∂nτ

]
A

, bi

〉
Eτ∩EI

.

Since ∣∣∣ bi∣∣∣
ε

=

(
hε
3

)1/2

and |||bi|||τ ≤ C6 ≡
(

2ā

δ2
0

+ b̄h2

)1/2

,
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then

|Fτ (bi)| ≤ C6|||eH|||τ + 3−1/2

∣∣∣∣ h1/2
ε

[
a
∂eH
∂nτ

]
A

∣∣∣∣
Eτ∩EI

.

By (4.7) and Lemma 1∣∣∣h1/2
ε θ

∣∣∣2
EI

=
1

2

∑
τ ∈ T

∣∣∣h1/2
ε θ

∣∣∣2
Eτ∩EI

≤ 1

2
(12C7)2

∑
τ∈T

sup
xi∈τ
|Fτ (bi)|2

≤ (12C7)2

{
C2

6 |||eH|||2 +
1

3

∣∣∣∣ h1/2
ε

[
a
∂eH
∂n

]
A

∣∣∣∣2
EI

}
≤ (12C7)2(C2

6 + C2
3/3)|||eH|||2,

where C7 = C7(δ1) is the maximum number of triangles sharing a vertex. �

We are now ready to bound |||ê|||.

Theorem 3. If uH ∈ H2(τ) for all τ ∈ T , and θ is chosen such that (4.5) and
Theorem 2 hold, then

|||ê||| ≤ (1 + Cê)|||eH|||,

where Cê ≤ (C3 + C8)|h−1/2
ε [ê]J |EI/|||ê||| ≤ C9.

Proof. By (3.12) and (4.2), we have

(4.8) a(ê, v) = a(eH, v) +

〈
θ −

[
a
∂eH
∂n

]
A

[v]J

〉
EI

for all v ∈ ST . Taking v = ê, we obtain, using Lemma 1 and Theorem 2,

|||ê|||2 ≤ |||eH||| |||ê|||+ Cê|||eH||| |||ê|||.

To see that Cê is bounded, note that by (4.5), in each element τ , a(ê, v)τ = 0 for
any linear polynomial v. A standard duality argument the implies

||ê||τ ≤ C4(a, b, δ1)hτ |||ê|||τ .

Thus, by Lemma 2

Cê ≤ (C3 + C8)C5 ≡ C9.

�

The term Cê measures a discontinuity of ê; in particular, if ê is continuous,
Cê = 0 (i.e., ê = eS̄). We could force ê to converge to eS̄ by penalizing its jumps
in value across the interelement boundaries EI , but the penalties would necessarily
destroy the local nature of the problems (4.1), and thus make the computation of
ê much more expensive.
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5. A Second Error Estimator

One of the prime considerations in choosing the function θ in Section 4 was
to make the problems (4.1) consistent. In this section, we present an alternative
algorithm for computing error indicators ẽ ∈ ST which avoids the computation of
θ. The function ẽ is defined on τ ∈ T as the solution of the local problem

(5.1) a(ẽ, v)τ = Fτ (v − Iv) for all v ∈ S̄τ .

Since 1 = I(1), Equations (5.1) are consistent. If b ≡ 0 on τ , we require∫ ∫
τ

ẽ dx = 0

to insure a unique solution. Summing over τ , we obtain a global definition of
ẽ ∈ S̄T :

(5.2) a(ẽ, v) = F (v − Iv) for all v ∈ S̄T .

Theorem 1.

(1− β2)1/2|||eH||| ≤ |||ẽ|||+ C0|||eS |||.

Proof. From (5.2) and (3.4) with Q = S̄, v = eS̄ ,

a(ẽ, eS̄) = a(eS̄ , eS̄ − IeS̄).

Using (3.6) and the fact that IeS̄ ∈ S ⊆ S,

|||eS̄ |||2 = a(eS̄ , eS̄)

= a(ẽ, eS̄) + a(eS̄ , IeS̄)(5.3)

≤ |||ẽ||| |||eS̄ |||+ C0|||eS ||| |||eS̄ |||

Theorem 1 follows by dividing by |||eS̄ ||| and using Lemma 3. �

Theorem 2. If uH ∈ H2(τ) for all τ ∈ T ,

|||ẽ||| ≤ (1 + Cẽ)|||eH|||+ C0|||eS |||,

where

Cẽ = [C0 + C3C5(1 + C0)] inf
χ∈S̄

|||ẽ− χ|||
|||ẽ|||

.

Proof. From (3.12) and (5.2)

a(ẽ, v) = a(eH, v − Iv)−
〈[
a
∂eH
∂n

]
A

, [v − Iv]J

〉
EI

for all v ∈ S̄T . Take v = ẽ − φ, where φ is the elliptic projection of ẽ onto S̄, so
that

|||ẽ− φ||| = inf
χ∈S̄
|||ẽ− χ||| and |||φ||| ≤ |||ẽ|||.

Noting that a(ẽ, φ) = a(eH, φ− Iφ), we obtain

a(ẽ, ẽ) = a(eH, ẽ)− a(eH, I(ẽ− φ))− a(eH, Iφ)

−
〈[
a
∂eH
∂n

]
A

, [ẽ− φ− I(ẽ− φ)]J

〉
EI
.(5.4)
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Ww now bound the four terms on the right-hand side of (5.4). The first two are
trivial:

|a(eH, ẽ)| ≤ |||eH||| |||ẽ|||;(5.5)

|a(eH, I(ẽ− φ))| ≤ C0|||eH||| |||ẽ− φ|||.(5.6)

For the third, note Iφ ∈ S. Using (3.5),

(5.7) |a(eH, Iφ)| = |a(eS , Iφ)| ≤ C0|||eS ||| |||ẽ|||.
The fourth term uses Lemmas 1-2. Note that ẽ − φ − I(ẽ − φ) is zero at the
interpolation points, so that the hypothesis of Lemma 2 is satisfied. Thus we
obtain

(5.8)

∣∣∣∣∣
〈[
a
∂eH
∂n

]
A

, [ẽ− φ− I(ẽ− φ)]J

〉
EI

∣∣∣∣∣ ≤ C3C5(1 + C0)|||eH||| |||ẽ− φ|||.

Theorem 2 follows from (5.4)-(5.8). �

If eS satisfies (2.9), the bounds are somewhat stronger.

Theorem 3. If (2.9) is satisfied and uH ∈ H2(τ) for all τ ∈ T , then

(1− β2)1/2|||eH||| ≤ |||ẽ||| ≤ (1 + Cẽ)|||eH|||.

Proof. In this case, the last term in (5.3) and the term bounded in (5.7) are both
zero. �

In analogy with Theorem 3, Cẽ measures the discontinuity of ẽ; if ẽ is continuous,
Cẽ = 0. Except for the global use of (2.8), we could prove a local analogue of
Theorem 2 for each element.

6. A Third Error Estimator

Equations (5.1) define an error indicator ẽ on τ as the solution of a linear system
with size equal to dim(S̄τ ), the dimension of S̄τ . In this section, we present an
alternative algorithm for computing an error indicator ě on τ which is the solution
of a smaller linear system which is automatically positive definite.

The error indicator ě ∈ Š, defined on τ ∈ T as the solution of the local problem

(6.1) a(ě, v)τ = Fτ (v) for all v ∈ Šτ .
Since the constant function 1 /∈ Šτ , the linear system (6.1) is positive definite. Note
that dim(Šτ ) = dim(S̄τ )− dim(Sτ ). By the definition of Šτ and (5.1)

(6.2) a(ě, v)τ = Fτ (v − Iv) = a(ẽ, v) for all v ∈ Šτ .
Equation (6.2) shows that ě is the elliptic projection of ẽ into Šτ .

Theorem 1.
(1− γ2)1/2|||ě||| ≤ |||ẽ|||.

Proof. Let ẽ = ẽ1 + ẽ2, where ẽ1 ∈ ST and ẽ2 ∈ ŠT . By Lemma 4

|||ẽ|||2 = a(ẽ1, ẽ1) + 2a(ẽ1, ẽ2) + a(ẽ2, ẽ2) ≥ (1− γ2)|||ẽ2|||2.
Since ẽ1 = I ẽ1, a(ẽ, ẽ1) = 0. Then by (6.2), with v = ẽ2,

|||ẽ|||2 = a(ẽ, ẽ1) + a(ẽ, ẽ2) = a(ẽ, ẽ2) ≤ |||ě||| |||ẽ2|||,
and the theorem follows. �
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By (6.2) with v = ě, we immediately have

Theorem 2.
|||ě||| ≤ |||ẽ|||.

Using Theorems 1-3 and 1-2, we obtain

Theorem 3.
(1− β2)1/2|||eH||| ≤ (1− γ2)−1/2|||ě|||+ C0|||eS |||.

If uH ∈ H2(τ) for all τ ∈ T ,

|||ě||| ≤ (1 + Cě)|||eH|||+ C0|||eS |||.
If in addition (2.9) is satisfied, then

{(1− β2)(1− γ2)}1/2|||eH||| ≤ |||ě||| ≤ (1 + Cě)|||eH|||.

7. Numerical Results

In this section, we present some example calculations comparing the error esti-
mators |||ê|||, |||ẽ|||, and |||ě|||, described in Section 4, 5, and 6, respectively. In these
calculations, S = S is the space of C0 piecewise linear triangular finite elements,
and S̄ is the space of C0 piecewise quadratic elements. The test problems are of the
form

−∆u = 0 in Ω,

u = 0 on ∂Ω1,

∂u

∂n
=

2

k
cos

(
2θ

k

)
on ∂Ω2,(7.1)

∂u

∂n
= 0 on ∂Ω3,

where Ω = {(r, θ) : 0 < r < 1, 0 < θ < kπ/4}; ∂Ω1 is the line θ = 0, 0 ≤ r ≤ 1;
∂Ω2 is the are 0 ≤ θ ≤ kπ/4, r = 1; ∂Ω3 is the line θ = kπ/4, 0 ≤ r ≤ 1; (r, θ) are
polar coordinates; and k = 1, 3, 4 and 8. The solution of (7.1) is

(7.2) uH = r2/k sin

(
2θ

k

)
,

the leading term of the point singularity for a corner with interior angle kπ/4, so
that uH ∈ H1+2/k−ε(Ω) for any ε > 0, but not for ε = 0, when k = 3, 4, or 8
[15]. When k = 3, 4, or 8, the analogues to Theorems 2, 3, 2, 3, and 3 must use
weaker bounds on |||ē|||τ in elements touching the origin, and count on adaptive mesh
refinement to make those elements very small.

The problems were solved using the Fortran package PLTMG [11]. This code
used local adaptive mesh refinement and created for each problem a sequence of
meshes of varying degrees of nonuniformity. The meshes for the case k = 8 are
illustrated in Figure 7.1. PLTMG uses a multilevel iterative method for solving the
linear systems and typically generates solutions U ∈ S such that |||eS ||| = |||U − uS |||
is somewhat less than the discretization error.

For each problem and each mesh, we computed the quantities |||eH|||, |||ê|||, |||ẽ|||,
and |||ě|||. For |||eH|||, a numerical quadrature rule using six quadrature points per
element was used. ê, ẽ, and ě were all piecewise quadratic polynomials and their
norms were computed exactly, except for small errors for elements with curved
boundary edges.
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Figure 7.1

The effectivity index [8] or efficiency index [9] for an error estimator ē, ē = ê, ẽ,
or ě is defined as

(7.3) eff(ē) =
|||ē|||
|||eH|||

.

We chose to measure the relative error

(7.4) ρ(ē) = eff(ē)− 1.

Note that if ē satisfies (1.1), we have −ε1 ≤ ρ(ē) ≤ ε2.
Having ρ(ē) near or converging to zero is clearly the most desirable situation.

Positive values of ρ indicate an overestimate of the true error and are acceptable
as long as ρ is not too much larger than one. Negative values of ρ mean the error
estimator has given an erroneously optimistic values of |||eH|||. In Table 7.1, we
tabulate the values of ρ(ē) for each error indicator on each mesh for each test case.
NV is the number of vertices in the mesh.

On the basis of Theorems 1, 1, and 3, we expect ρ(ê) ≥ 0, ρ(ẽ) ≥ 0, and
ρ(ě) ≥ (1− γ2)1/2− 1, since once the initial mesh is appreciable refined, the effects
of β and |||eS ||| are small. For all error indicators, we have ρ(ē) ≤ ε2, where the data
suggest that ε2 ≤ 3 for this problem class.

The apparent convergence of ρ(ě) to zero represents a particularly nice state of
affairs, not only because it means |||ě||| is quite accurate, but also because ě is the
least costly of the three indicators to compute.

The calculation of ê is the most expensive since it involves solving a linear system
like (4.5) for each vertex in order to obtain θ. We must then assemble and solve
a symmetric positive semidefinite 6 × 6 linear system (of rank 5) in each element.
The computation of ẽ also involves assembling and solving a 6× 6 linear system in
each element, but the calculation of θ is avoided. For ě, only a 3 × 3 symmetric,
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k NV |||eH||| ρ(ê) ρ(ẽ) ρ(ě)
1 3 .428 .247 .150 .121

15 .129 .508 .385 .0117
45 .0653 .681 .430 .00366
153 .0328 .974 .452 .00131
561 .0164 1.44 .463 .000480

3 5 .241 .408 .152 -.0960
17 .123 .520 .335 .0591
75 .0522 .998 .625 .196
137 .0379 1.24 .697 .255
480 .0200 1.50 .589 .154
1908 .00946 2.23 .579 .110

4 6 .368 .618 .0166 -.199
27 .181 .579 .335 .0280
119 .0889 .695 .522 .135
501 .0389 .842 .588 .148
1363 .0225 .959 .541 .0963

8 10 .499 1.46 -.230 -.3903
41 .368 1.87 .0545 -.197
161 .208 1.22 .407 .0645
681 .120 1.32 .378 .0263

Table 7.1

positive definite linear system (corresponding to the three edge midpoint Lagrange
basis function) is assembled and solved.

From other tests using square elements [16], we have observed apparent conver-
gence of ρ(ě) and ρ(ẽ) to zero for some test problems. Under suitable assumptions,
Babuška and Miller [4] have recently proved convergence of the error estimators
used in their two-dimensional code (with piecewise bilinear basis functions) to the
norm of the true error.

For problems in one space dimension, when S consists of piecewise linear func-
tions, the formulation leading to ê and ẽ are equivalent. When, in addition, S̄
consists of piecewise quadratic functions, the analogue of ě is only slightly dif-
ferent from an error indicator of Babuška and Rheinboldt (|||ě|||τ is analogous to
η̂j(∆) in [9]), When in addition a(x) = 1 and b(x) = 0, all three indicators are
equivalent. Under suitable assumptions, it can be shown that the corresponding
one-dimensional error estimators converge to the norm of the true error.
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