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Abstract. The multilevel iterative technique is a powerful technique for solv-

ing systems of equations associated with discretized partial differential equa-
tions. We describe how this techniques can be combined with a globally con-

vergent approximate Newton method to solve nonlinear partial differential

equations. We show that asymptotically only one Newton iteration per level is
required; thus the complexity for linear and nonlinear problems is essentially

equal.

1. Introduction

In this discussion we present an extension of a multilevel iterative method for
linear elliptic equations to nonlinear elliptic boundary value problems. In particular,
we show how to use an approximate-Newton multilevel scheme to solve discrete
nonlinear systems of equations which arise from a standard weak formulation of
the nonlinear partial differential equation.

The framework of our analysis combines the multilevel iterative methods for lin-
ear finite element equations discussed in Bank and Dupont [3] and Bank [2] with
the global approximate Newton setting of Bank and Rose [5, 4]. Under appropri-
ate conditions of elliptic regularity, we show that both the continuous and discrete
solutions exist and that our scheme converges to an approximation within the dis-
cretization error of the continuous problem in time (and also space) proportional
to the largest discrete problem. That is, we can compute in time O(Nj) an ap-

proximation which is O(N−qj ) accurate, where q is the appropriate exponent for
the Nj-dimensional finite element space Mj .

In Section 2, we set up the weak (variational) for of the nonlinear boundary
value problem. Using this formulation, we then specify, in Section 3, our regularity
assumptions on the smoothness of the nonlinear operator. These assumptions are
motivated by the generalized Lax-Milgram analysis presented in Babuška and Aziz
in [1] and our previous analysis in [5]. Our main result here is that, asymptotically,
we need compute only one approximate Newton iteration per level (refinement),
provided that the approximate Newton and exact Newton steps agree to some
tolerance which is independent of the level. This implies that the total cost of
solving a nonlinear problem of size Nj is bounded by C · F (Nj), where F (Nj) is
the cost of solving a linear problem of size Nj and C ≈ 1. F (Nj) = O(Nj) for the
linear multigrid methods described in [3, 2].
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In Section 4, we consider the case where the linear approximate-Newton equa-
tions are solved by the j-level scheme of [3, 2], and we complete the analysis for
the time bound cited above. We illustrate our analysis with an example boundary
value problem of the form

L(u) = 0 in Ω ⊆ IR2,(1.1)

∂u

∂n
= 0 on ∂Ω,

where

(1.2) L(u) = −∇(a∇u) + f(x, u,∇u).

A numerical example is given in Section 5.
Our approach for extending multilevel methodology to nonlinear problems using

an approximate-Newton iterative scheme differs in several respects from other ap-
proaches recently reported or under investigation. We discuss briefly the relation of
our scheme to those of Brandt and McCormick [8], Hackbusch [10], and Mansfield
[12].

A common thread in our approach, and those of [8, 10] is the consideration
of a sequence of discrete nonlinear problems, say, Lj(u

∗
j ) = 0, where the u∗j are

successively more accurate approximations of the solutions of the nonlinear operator
L(u) = 0. As a consequence, the representation of u∗j in the space containing u∗j+1

is such that Lj+1(u∗j ) is relatively small. This motivates the choice of taking u
sj
j ,

for some iteration index sj , as the initial guess in an iterative method to solve
Lj+1(u∗j+1)=0. The integer sj is chosen such that the error ||u∗j − u

sj
j || is accurate

to within the discretization error. Thus Lj+1(u
sj
j ) will also be relatively small, and

consequently the iterative method should require sj ≤ s steps (independent of j)
for each mesh level j.

Usually the iterative method selected to compute the ukj , 1 ≤ k ≤ sj , is subtle
and recursively winds its way through a sequence of coarse mesh levels; the details
need not concern us here. However, each choice of such an iterative method leads
to a different “j-level” strategy. The j-level strategy can be based on a nonlinear
iteration, such as nonlinear Gauss-Seidel advocated in [8], or a nonlinear Picard
type iteration used in [10]. These schemes make no use of Jacobian information.

In contrast, we use a j-level strategy based on a linear iteration after choosing
a linear system to represent the Jacobian. Since asymptotically sj = 1 for this
procedure, this strategy will usually require substantially fewer function evaluations
of the Lj On the other hand, for problems where the Jacobian is difficult to compute,
our method becomes less attractive.

The recent paper by Mansfield [12] takes a different approach. In order to solve
Lj(u

∗
j ) = 0, for some fixed mesh index j, she considers a one parameter embedding

hj(v, λ) = 0, 0 ≤ λ ≤ 1. such that hj(0, 0) = 0 and hj(u
∗
j , 1) = Lj(u

∗
j ) = 0. The

solution is continued from v = 0 to v = u∗j by solving hj(vi, λi) = 0 where 0 = λ1 <
· · · < λm = 1. The λi are chosen such that vi can be computed by Newton’s method
using vi−1 as the initial iterate. Mansfield proves the error ||u∗j−u||, where L(u) = 0,
is accurate to the discretization order, and that the number of continuation steps si
to obtain the computed vi satisfies si < s, independent of the mesh, and by using
a j-level iterative scheme for the Newton equations, she obtains an O(Nj) time
bound. Assuming that these computed approximations to the u∗j are accurate to
the discretization error, the result is analogous to our theorem in Section 4. Note
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that this method may require m · s linear systems to be solved in the finest mesh.
Our results would suggest an alternative in which on continues from λ = 0 to λ = 1
on the coarsest mesh only, thereby obtaining us11 . One then refines the mesh for
λ = 1 and obtains the sequence u

sj
j on the finer meshes. This would asymptotically

require only one linear system to be solved on the finest mesh.
Multilevel iteration is a general, powerful technique for solving nonlinear operator

equations which can be approximated by an orderly sequence of discrete nonlinear
systems. The linear multigrid schemes of Brandt [7], Hackbusch [9], Nicolaides [13],
and possibly others, could be adapted in a similar manner to the one proposed here
and would yield methods with similar properties. We have found our particular
procedure to be effective on a variety on nonlinear PDE’s; the implementation
was a reasonably straightforward extension of the one described in [6] for linear
problems.

2. Preliminaries

To introduce ideas, we consider the weak form of the example nonlinear elliptic
boundary values problem (1.1)-(1.2): Find u ∈ H1(Ω) such that

a(u, v) = 0 for all v ∈ H1(Ω),(2.1)

a(u, v) =

∫
Ω

a∇u · ∇v + f(x, u,∇u)v dx.

Here H1(Ω) denotes the usual Sobolev space equipped with the norm

(2.2) ||u||21 = (u, u)1, (u, v)1 =

∫
Ω

∇u · ∇v + uv dx.

We will defer our discussion of nonlinear elliptic problems such as (2.1) until Section
4. In this section and the next, we prefer to deal with a more abstract problem for
which (2.1) is a special case.

Let g be a mapping of a Hilbert space H onto itself. Equip H with an inner
product (u, v) and a norm ||u||2 = (u, u). We consider the following problem: Find
u∗ ∈ H such that

(2.3) (g(u∗), v) = 0 for all v ∈ H.

In the example above, g is defined implicitly via the Riesz representation theorem,
H = H1(Ω), and the norm and inner product are given by (2.2),

We shall (formally) apply the approximate Newton method to (2.3). Starting
from some initial guess u0 ∈ H, we compute a sequence of iterates uk ∈ H such
that

(2.4) (Mkxk, v) = −(g(uk), v) for all v ∈ H,

where Mk is a linear mapping from H to H, approximating, in some sense, the
derivative g′(uk). Then we set

(2.5) uk+1 = uk + tkxk,

where t ∈ (0, 1] is a scalar damping parameter. Setting Mk = g′(uk) and tk = 1
corresponds to Newton’s method.

Generally, a procedure such as (2.4)-(2.5) is intractable computationally since H
may be infinite dimensional. Thus we seek to discretize (2.3)-(2.5). Let {Mj} be
an indexed family of finite dimensional subspaces dense in H, nested in the sense
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that Mj ⊆ Mk for k > j. Let Nj denote the dimension of Mj . We assume the
dimensions of the spaces increase geometrically,

(2.6) Nj = βNj−1, β > 0,

since this will be the typical situation arising in practice. The discrete analogue of
(2.3) is: Find u∗j ∈Mj such that

(2.7) (g(u∗j ), v) = 0 for all v ∈Mj .

Once a basis for Mj has been chosen, (2.7) can be formulated as a set of Nj

nonlinear algebraic equations.
The analogue of (2.4)-(2.5) proceeds from an initial guess u0

j ∈Mj and computes

ukj ∈Mj such that

(2.8) (Mk
j x

k
j , v) = −(g(ukj ), v) for all v ∈Mj .

Equation (2.8) corresponds to an Nj × Nj linear algebraic system to be solved.
Then set

(2.9) uk+1
j = ukj + tkjx

k
j .

Corresponding to Mj , we define a sequence of seminorms | · |j on H by

(2.10) |u|j = sup
v∈Mj ;v 6=0

|(u, v)|
||v||

In essence, if u ∈ H and Pj is the orthogonal projector from H to Mj , then
|u|j = ||Pj(u)||; furthermore, since the Mj are dense in H,

(2.11) ||u|| = sup
j
|u|j .

Thus | · |j represents a strong norm on Mk, k ≤ j, and |u|j = ||u|| for all u ∈ Mk,
k ≤ j, while | · |j is a seminorm on Mk with k > j. In the solution of (2.7), it is
the seminorm | · |j which is computable, and the solution u∗j satisfies |g(u∗j )|j = 0
while ||g(u∗j )|| > 0 in general.

Suppose that the solutions u∗ and u∗j of (2.3) and (2.7), respectively, exist (this
follows from our assumptions below; see Remark 4). Our central assumption is that
the discrete solutions u∗j are increasingly good approximation of u∗. Specifically, we
assume there exists a fixed constant C1 = C1(u, g, {Mj}) and a positive number q
such that

(2.12) ||u∗ − u∗j || ≤ C1N
−q
j .

Given (2.12), our strategy for computing approximate solutions which satisfy
bounds like (2.12) is to sequentially compute approximate solutions of (2.7), using
(2.8)-(2.9), and using the final iterate of the (j − 1)st problem as the initial guess
for the jth. We summarize this procedure in

Algorithm 1.

(i) For j = 1 carry out s1 iterations of (2.8)-(2.9), starting from initial guess
u0
j ∈M1.

(ii) For j > 1 carry out sj iterations of (2.8)-(2.9), starting from initial guess
u0
j = u

sj−1

j−1 ∈Mj−1 ⊆Mj .
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3. Analysis

We begin by stating the underlying assumptions of our analysis. Our presenta-
tion is chosen to be consistent with our analysis in [5].

Given U0
1 , let Sj be closed subsets of Mj inductively defined as follows:

S1 =
{
u ∈M1| |g(u)|1 ≤ |g(u0

1)|1
}
,(3.1)

Sj =

{
u ∈Mj | |g(u)|j ≤ sup

v∈Sj−1

|g(v)|j

}
.

Define

(3.2) S0 =

{
u ∈ H| ||g(u)|| ≤ sup

v∈Sj ;j≥1
||g(v)||

}
.

Assumption A1: S0 is bounded.
Remark 1. For w ∈Mj , z ∈Mj−1, and v ∈ H,

|(g(v), w)| ≤ |(g(v), Pj−1w)|+ |(g(v)− z, (I − Pj−1)w)|.
Hence

(3.3) |g(v)|j ≤ |g(v)|j−1 + inf
z∈Mj−1

|g(v)− z|j .

Typically, the spaces Mj will be such that the second term can be bounded by

CN−qj−1. Thus is

γ1 = |g(u0
1)|1, γj = sup

v∈Sj
|g(v)|j ,

then
γj ≤ γj−1 + CN−qj−1, j > 1.

If(2.6) holds,

γj ≤ γ1 +
CN−q1

1− β−q
≤ C ′.

Using (2.11), we see that S0 is contained in the level set

S′0 = {u ∈ H| ||g(u)|| ≤ C ′}
(cf. A1 of [5]).

Assumption A2: We assume that g is differentiable on S0, and for u ∈ S0 and
v, w ∈ H:

(3.4) |(g′(u)v, w)| ≤ C2||v|| ||w||,

(3.5) inf
||v||=1

sup
||w||≤1

|(g′(u)v, w)| ≥ k−1
3 > 0,

(3.6) sup
v
|(g′(u)v, w)| > 0, w 6= 0

(C2 is finite and C2 and k3 are independent of u).
Remark 2. Equations (3.4)-(3.6) guarantee that a unique solution v ∈ H will

exist to the problem

(g′(u)v, w) = (z, w) for all w ∈ H,
where z ∈ H and

(3.7) ||v|| ≤ k3||z||;
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see Babuška and Aziz [1], Section 5.2.
Assumption A3: For u ∈ Sj , v, w ∈Mj , and Mk

j as in (2.8), assume

inf
||v||=1

sup
||w||≤1

|(g′(u)v, w)| ≥ k−1
6 > 0,(3.8)

inf
||v||=1

sup
||w||≤1

|(Mk
j v, w)| ≥ k−1

1 > 0(3.9)

(k1 and k6 are independent of u and j).
Remark 3. In our particular application (3.8) will follow from A2, and we will

show k1 ≤ 2k6 (see inequality (4.7)).
We embed S0 in the closed, convex ball

(3.10) S1 =

{
u ∈ H| ||u|| ≤ sup

v∈S0

||v||+ k1||g(v)||
}
.

Assumption A4: We assume g′ is Lipshitz on S1 and for u, v ∈ S1,

(3.11) ||g′(u)− g′(v)|| ≤ k2||u− v||.

Since g is differentiable we also have

(3.12) ||g(u)− g(v)|| ≤ k5||u− v||

for u, v ∈ S1 (as in [5], equation 2.28).
Remark 4. Assumption A1 above is analogous to A1 in [5]. Equation (3.9)

implies a bound as in (3.7), which, in turn, implies A2 of [5]. Finally, A4 above
implies A3 of [5]. Thus the argument used to obtain Theorem 1 of [5] implies the
existence of each u∗j ∈Mj and also u∗ ∈ H.

We define the relative residuals αk
j for the solutions of (2.7) by

(3.13) αk
j =
|g′(ukj )xkj + g(ukj )|j

|g(ukj )|j
.

The quantity αk
j is computable and measures how well xkj approximates the true

Newton step (αk
j = 0 for Newton’s method). We will choose the damping parame-

ters tkj of (2.9) according to the formula

(3.14) tkj =
(
1 +Kk

j |g(ukj )|j
)−1

,

where the Kk
j are nonnegative scalars.

The following result applies Proposition 1 of [5] for each j ≥ 1.

Proposition 1. Let δ0 ∈ (0, 1− α0), α0
j ∈ (0, α0), α0 < 1, and let tkj be chosen as

in (3.14), where 0 ≤ Kk
j ≤ K0, and

(3.15) Kk
j ≥

k2
1k2

2(1− αk
j − δ0)

− 1

|g(ukj )|j
.

Assume A1-A4, and all αk
j ≤ α0

j . Then

(i) all ukj ∈ Sj, the sequence |g(ukj )|j is strictly decreasing, and |g(ukj )|j → 0.
Furthermore

(ii) |g(uk+1
j )|j/|g(ukj )|j → 0 if and only if αk

j → 0, and, for any fixed p ∈ (0, 1],

|g(uk+1
j )|j ≤ C3|g(ukj )|1+p

j
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if and only if
αk
j ≤ C4|g(ukj )|pj

for positive constants C3 and C4.

Note that we may consider K0 as bounded uniformly in j by

(3.16) K0 ≥
k2

1k2

2(1− α0 − δ0)
.

Proposition 1 states that the approximate-Newton method converges and the
the rate of convergence is governed by the parameter αk

j . The parameter δ0 is
a sufficient decrease parameter [5] and can be used in the actual computation to
determine if (3.15) is satisfied. In [5] we prove that, for ukj sufficiently close to u∗j ,
we have

k4||ukj − u∗j || ≤ |g(ukk)|j ≤ k5||ukj − u∗j ||,
showing that the rate of convergence of |g(ukk)|j to zero is also the asymptotic rate
of convergence of ukj to u∗j .

In our case, however, we are interested in computing ukj only insofar as it is an
approximation of u∗ of (2.3), and not as an approximation of u∗j (although the two
are clearly related). Thus we want to avoid wasting iterations by computing “too
good” an approximation of u∗j . In Theorem 2, we indicate the degree to which we
must approximate u∗j in order to obtain error bounds of the form (2.12) for the
computed solutions.

Theorem 2. Let u∗j satisfy (2.7) and let ukj , 0 ≤ k ≤ sj, be computed as in

Algorithm I, using (2.8), (2.9), and (3.14), Let δ ∈ (0, β−q), and suppose

(3.17) ||us11 − u∗1|| ≤ C1εN
−q
1

where ε = δ(1 + βq)(1− δβq)−1,

(3.18) ||usjj − u
∗
j || ≤ δ||u0

j − u∗j ||,

and u0
j = u

sj−1

j−1 , j > 1. Then

(3.19) ||usjj − u
∗|| ≤ C1(1 + ε)N−qj .

Proof. Let ej = ||usjj − u∗j ||. Then by (3.18), (2.12), and (2.6),

ej ≤ δ||u0
j − u∗j ||

≤ δ{||usj−1

j−1 − u
∗
j−1||+ ||u∗j−1 − u∗||+ ||u∗ − u∗j ||}

≤ δ{ej−1 + C1(1 + βq)N−qj }.

Solution of the majorizing difference equation, and the use of (3.17), shows ej ≤
C1εN

−q
j , and thus

||usjj − u
∗|| ≤ ej + ||u∗j − u∗|| ≤ C1(1 + ε)N−qj .

�

Theorem 2 quantifies the advantage of using the strategy embodied in Algorithm
I. For each problem after the first, one must reduce the error by only a fixed amount,
independent of j, in order to obtain a sequence of approximations at the level of
discretization error. The central result of this section is that for j sufficiently
large sj = 1. Thus, the asymptotic cost of solving the nonlinear systems (2.7) is
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essentially the cost of computing approximate solutions of linear systems of the
form (2.8).

To see this, we use a Taylor series expansion as in (2.26) of [5] to obtain, for
v ∈Mj ,

0 = (g(u∗j ), v) = (g(ukj ), v) + (g′(ukj ){u∗j − ukj }, v)

+

∫ 1

0

(
{g′(ukj + s[u∗j − ukj ])− g′(ukj )}{u∗j − ukj }, v

)
ds

= {1− tkj }(g(ukj ), v) + tkj (g′(ukj )xkj + g(ukj ), v)(3.20)

+(g′(ukj ){u∗j − uk+1
j }, v)

+

∫ 1

0

(
{g′(ukj + s[u∗j − ukj ])− g′(ukj )}{u∗j − ukj }, v

)
ds.

Moving the third term to the left-hand side, taking (semi) norms, and using (3.8),
(3.11), and (3.13), we have

(3.21) |uk+1
j − u∗j |j ≤ k6

{
(1− tkj )|g(ukj )|j + tkjα

k
j |g(ukj )|j +

k2

2
|ukj − u∗j |2j

}
.

Using Proposition 1 and (3.15), (3.16), and

|g(ukj )|j ≤ k5|ukj − u∗j |j
(an easy consequence of (3.5), noting that |v|j ≤ ||v|| with equality for v ∈Mj), we
obtain

(3.22) |uk+1
j − u∗j |j ≤ k6

{
(K0k

2
k + k2/2)|ukj − u∗j |j + k5α

k
j

}
|ukj − u∗j |j .

Consider the case k = 0. Then, using Theorem 2 inductively,

|u0
j − u∗j |j ≤ ||u

sj−1

j−1 − u
∗||+ ||u∗ − u∗j || ≤ C1 {1 + (1 + ε)βq}N−qj ,

and, from (3.22)

(3.23) |u1
j − u∗j |j ≤

(
C6N

−q
j + C7α

0
j

)
|u0

j − u∗j |j
where

C6 = C1k6(K0k
2
5 + k2/2){1 + (1 + ε)βq}, C7 = k6k5.

For example, suppose that j is sufficiently large that C6N
−q
j < δ/2. Since we

can control α0
j , we may require

(3.24) C7α
0
j < δ/2.

Then (3.18) will be satisfied for sj = 1. Note that C6 and C7 are independent of j,
and thus we have shown

Theorem 3. Let the hypotheses of Proposition 1 hold, and suppose α0
j is sufficiently

small (α0
j satisfies (3.24) for example). Then, for j sufficiently large, we may take

sj = 1 in (3.19).

We will establish (3.24) for the multilevel iterative method in the next section.
Remark 5. In Algorithm I, we obtain linear convergence of u

sj
j to u∗ with the

rate of convergence being roughly β−q. Since Newton’s method is quadratically
convergent, one can ask under what circumstances we can have u

sj
j converge to u∗
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quadratically. Assuming (2.12) is sharp, this can be accomplished if we allow the
dimensions of the spaces Mj to square rather than increase geometrically, i.e.,

(3.25) Nj = βN2
j−1, β > 0,

rather than (2.6). If we repeat of analysis using (3.25) in place of (2.6), the analogue
of Theorem 2, equation (3.18), would indicate that we must reduce the initial error

by δN
−q/2
j rather than by a fixed amount. If we require αk

j ≤ C|g(ukj )|j (which is

consistent with quadratic convergence on the basis of Proposition 1), then (3.22)
implies that the first iteration produces an error reduction of the right order of

magnitude O(N
−q/2
j ), but the constant may be too large. Two iterations, however,

will be more than sufficient; hence sj ≤ 2 for j sufficiently large.

4. A Newton-Multilevel Method

We now return to the example problem (1.1). Let a ∈ C1(Ω̄) be positive and
bounded in Ω̄; i.e.,

0 < α ≤ a(x) ≤ ᾱ for x ∈ Ω̄.

Let ∂f/∂u ∈ C0(Ω̄) and Let ∂f/∂uxi
∈ C1(Ω̄), i = 1, 2. For u ∈ H1(Ω), define

(4.1) b(u; v, w) =

∫
Ω

a∇v · ∇w + b · ∇vw + cvw dx;

where

bi =
∂f

∂uxi

(x, u,∇u) and c =
∂f

∂u
(x, u,∇u).

If we make a correspondence between a(u, v) and (g(u), v) as in Section 2, then
b(u; v, w) corresponds to (g′(u)v, w). Recall that H = H1(Ω) and the norm and
inner product for H are given in (2.2).

Let T1 be a quasi-uniform, shape regular triangulation of Ω, and let h1 denote the
diameter of the largest triangle in T1 (for convenience, assume Ω is a polygon). We
inductively construct a nested sequence of triangulations Tj , j = 1, 2, . . . as follows:
for each triangle t ∈ Tj−1, construct four triangles in Tj by pairwise connecting the
midpoints of the edges of t. Each triangulation will then be quasi-uniform and
shape regular, and we will have hj = h121−j ; see [3, 2]. Let Mj denote the space
of C0 piecewise linear polynomials associated with Tj . Then Mj ⊆Mk, k > j and
β ≈ 4 in (2.6).

The central issue to be addressed in this section is the method for solving the
linear systems (2.8) required by Algorithm I. If we were to use Newton’s method
(Mk

j = g′(ukk)), then, in the present context, we would solve the problems: Find

x̄kj ∈Mj such that

(4.2) b(ukj ; x̄kj , v) = −a(ukj , v) for all v ∈Mj .

(In this case αk
j = 0 in (3.13).)

However, rather than solve (4.2) exactly, we will compute an approximate so-
lution, xkj , using a multilevel iterative method, in particular, one of the j-level

schemes described in [3, 2]. In this case Mk
j 6= g′(ukk) in general, but rather Mk

j is
defined implicitly in terms of the iteration; see [5], Section 4.

If r iterations of the j-level iteration are used, starting from an initial guess zero,
then the analysis of [3, 2] shown that under suitable hypotheses

(4.3) ||xkj − x̄kj || ≤ γr||x̄kj ||,
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where γ ∈ [0, 1) is a fixed constant independent of j. Furthermore, the cost of each
iteration is O(Nj) as j →∞.

We assume that for u ∈ S0, the boundary value problem: Find v ∈ H1(Ω) such
that

(4.4) b(u; v, w) = (z, w) for all w ∈ H1(Ω),

and its adjoint: Find v ∈ H1(Ω) such that

(4.5) b∗(u; v, w) ≡ b(u;w, v) = (z, w) for all w ∈ H1(Ω),

have unique solutions for each z ∈ H1(Ω). (This will follow if assumption A2 is
satisfied.)

If one assumes (4.4)-(4.5) and a modest amount of elliptic regularity, then one
can use the argument in Schatz [14] to prove that the problem: Find v ∈Mj such
that

(4.6) b(u; v, w) = (z, w) for all w ∈Mj ,

and its adjoint have unique solutions, provided h1 is sufficiently small.
This in turn can be used to verify assumption A3, equation (3.8) as follows [1]:

Let v ∈ H1(Ω) and choose the scalar λ sufficiently large that

b(u; v, v) + (λv, v) ≥ ||v||2.

Note that λ is independent of v. By arguments given in [14], the problem: Find
z ∈Mj such that

b(u; z, w) = (λv,w) for all w ∈Mj ,

has a unique solutions satisfying ||z|| ≤ C ′||λv||, provided h1 is sufficiently small.
Now let v ∈Mj with ||v|| = 1, and let z be defined as above. Take

w =
v + z

1 + C ′λ
,

and note that ||w|| ≤ 1. Then

b(u; v, w) =
b(u; v, v) + b(u; v, z)

1 + C ′λ

=
b(u; v, v) + (λv, v)

1 + C ′λ

≥ C

1 + C ′λ
≡ k−1

6 .

Finally, note that, on the basis of (4.3),

|(Mk
j )−1|j ≤ |g′(ukj )−1|j + |(Mk

j )−1 − g′(ukj )−1|j
≤ (1 + γr)|g′(ukj )−1|j(4.7)

≤ (1 + γr)k6,

showing that we may take k1 = 2k6 in A3, equation (3.9).
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We want to choose r such that the hypotheses of Theorem 3 will be satisfied and
we can take sj = 1 for large enough j. Observe that

|g′(ukj )xkj + g(ukj )|j = sup
v∈Mj

|b(ukj ;xkj , v) + a(ukj , v)|
||v||

= sup
v∈Mj

|b(ukj ;xkj − x̄kj , v)|
||v||

(4.8)

≤ C2||xkj − x̄kj || ≤ C2γ
r||x̄kj ||

= C2γ
r|x̄kj |j ≤ C2γ

rk6|g(ukj )|j ,

where we have used (3.4), (3.8), and (4.3). Thus, from (3.13),

(4.9) αk
j ≤ C2k6γ

r.

To apply Theorem 3, we must have αk
j sufficiently small that an inequality like

(3.24) holds. To insure (3.24), we can require that r be sufficiently large that

(4.10) C7C2k6γ
r ≤ δ/2.

Note that r can be chosen independent of j.
Since sj = 1 asymptotically, the bulk of the work per level consists of construct-

ing the linear system (4.2) and then carrying out r iterations of the j-level scheme.
Since both of these are asymptotically O(Nj) processes, the work per level can be
bounded by, say, C8Nj operations. The cumulative work for levels 1 to j can then
be bounded by∑

k≤j

C8Nk ≤ C8Nj{1 + β−1 + β−2 + . . . } ≤ C8Nj

1− β−1
,

due to (2.6). We summarize in

Theorem 1. Let Algorithm I be implemented using the j-level iteration, and as-
sume that (4.3) and the hypotheses of Theorem 3 hold. Then, for j sufficiently large
and h1 sufficiently small,

||u1
j − u∗|| ≤ C1(1 + ε)N−qj ,

as in equation (3.19). Furthermore, the computation of u1
j ∈ Mj, including all

previous computations in Mk, k ≤ j − 1, requires O(Nj) time.

5. A Numerical Illustration

We consider the mildly nonlinear elliptic equation

−∆u+ u(ux + uy) + f(x, y) = 0 in Ω = (0, 1)× (0, 1),(5.1)

u = g on ∂Ω,

where f and g are chosen such that the solution u∗ = e−10xy.
This problem was solved using the fortran program PLTMG [6]. This package

implements the scheme described in Section 4. The initial grid was the uniform
5× 5 mesh given in Figure 5.1.

Two uniform refinements of T1 we made, giving T2 and T3 as 9× 9 and 17× 17
grids, respectively. The computations were done on a Vax computer. The initial
guess for the level-1 problem was u0

1 = 0, although better initial guesses are easy
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Figure 5.1. T1

to construct. With this initial guess, s1 = 4 was sufficient to reduce the error in
the discrete level-1 system by about 10−6, i.e.,

||u4
1 − u∗1|| ∼ 10−6||u∗1||,

where || · || is the H1(Ω) norm. Thus, for practical purposes, the level-1 problem
was solved exactly.

We solved the problem on the second and third grid using Algorithm I for sj = 1,
j > 1 and sj = 2, j > 1. The relative error was computed from

correct digits = − log

(
||usjj − u∗||
||u∗||

)
,

where u∗ is the solution of the continuous problem. The results of the calculation
are summarized in Table 5.1. Taking sj > 2 does not change the results; also tkj = 1
for all steps.

Table 5.1

level N correct digits
Case 1 Case 2

s1 = 4, s2 = s3 = 1 s1 = 4, s2 = s3 = 2
1 25 .334 .334
2 81 .576 .576
3 289 .859 .859

Since we are comparing the computed solution with the solution of the continuous
problem, the measured error includes both the discretization error u∗j − u∗ and the

error from the solution process u
sj
j −u∗j . The identical results for sj = 1 and sj = 2

indicate that the measured error is essentially all discretization error. Thus, in this
problem, taking sj = 1, j > 1, was sufficient to produce computed solutions at the
level of discretization error (although taking sj > 1 produced better approximations
of the discrete solution u∗j ). Although one cannot expect to have sj = 1 for j > 1
always, this example show that the asymptotic behavior predicted by Theorem 3
can actually be achieved in problems of practical size.

The nonlinear package has also been successfully applied to much more compli-
cated problems of physical interest; see, for example, Hutson [11].
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