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Abstract We develop a simple semi-algebraic 2-level
solver built on traditional multigrid ideas. It is designed to
be easily incorporated into existing simulation software. It
exhibits good convergence for many classes of challeng-
ing problems including discontinuous diffusion, convection-
diffusion, and Helmholtz equations. It has built-in structure
that makes it simple to generalize in several interesting di-
rections.
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1 Introduction

Multilevel iterative methods for solving sparse linear sys-
tems of equations arising from discretizations of partial dif-
ferential equations use a smoothing iteration in combina-
tion with a coarse space correction to achieve a method that
quickly damps error components across the entire spectrum
of eigenvalues of the system matrix A. A common scenario,
especially in the algebraic multigrid (AMG) setting, is to
select a relatively simple smoother such as Gauss-Seidel or
damped Jacobi, and combine it with a sophisticated multi-
level coarse space correction. See for example [14,12,10,
19] and the references therein. In this work we take an alter-
native approach, where we choose a sophisticated smoother
such as incomplete LU used in combination with a very
simple coarse space correction, and then accelerate the re-
sulting 2-level preconditioner with some Krylov method
such as conjugate gradients. We hope that such an approach
will simplify introducing multilevel approaches into exist-
ing simulation codes that lack multilevel solvers. One can
use the already existing preconditioner as the smoother, and
add our simple coarse space correction to create a solver that
exhibits multilevel convergence rates.

We construct our coarse space correction using classical
multilevel techniques. Thus in many ways there is nothing
“new” about the algorithms that we employ, although their
use in this particular context might be viewed as unusual.
On the other hand, we do demonstrate that a very simple
and inexpensive coarse space correction coupled with a so-
phisticated smoother can have a large positive impact on its
convergence rate.

Construction of our coarse space correction matrix is
semi-algebraic, requiring certain information beyond just
the system matrix and right hand side. In particular we re-
quire
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– (x,y) (2D) or (x,y,z) (3D) coordinates for each degree
of freedom (DOF).

– Each class of DOFs needs to be labeled.
– Different physical variables as in a PDE system

(pressure, velocity, etc).
– Different derivatives of the same variable, as in a

mixed method (u, σ = ∇u, etc).

Such information is likely to be easily available in typical
simulation packages. For example, it is necessary input for
a graphics package to be used to display images of the so-
lution. Similar information is also used by the HY PRE soft-
ware package [15,13,1,16] For simplicity in this work, we
will restrict attention to the case of a single unknown func-
tion, as in the general case we can apply the same procedures
to each individual variable.

Our method can be briefly summarized as follows. We
embed the physical domain of the partial differential equa-
tion in a square (2D) or cube (3D). We create an adaptive
quadtree (2D) or octree (3D) with approximately Ne or fewer
unknowns in each leaf element. Ne is a user selected param-
eter. We then create a coarse space of dimension Nc using
continuous piecewise bilinear (2D) or trilinear (3D) nodal
basis functions as a guide. However this coarse space is gen-
erally not a space of piecewise bilinear or trilinear functions,
but rather is a formal subspace of the approximation space
used to discretize the underlying partial differential equa-
tion.

In Section 2, we present the quadtree and octree re-
finement algorithms. These were strongly influenced by the
quadtree used in early versions of the PLT MG software
package, and described in detail in [18,8]. In Section 3, we
describe the construction of the restriction, prolongation and
coarse space system matrices. In Section 4, we present a se-
lection of examples in 2D and 3D that demonstrate the ef-
fectiveness of this approach. Finally, in Section 5, we make
some concluding remarks. This includes a discussion of how
this approach could be applied to systems of partial differen-
tial equations. Also, several remarks describe how the tech-
niques here could be extended to create more sophisticated
coarse space corrections, including multilevel solvers.

2 Quadtrees and Octrees

Quadtrees and octrees are widely used in adaptive mesh
generation, computer graphics, and other areas of scientific
computation. Multi-level solvers have been developed mak-
ing use of the quadtree or octree level structure. The early
versions of the PLT MG software package used a quadtree
forest based on triangles (called “triangle tree” at that time)
for both adaptive meshing and multilevel solver. Our brief
summary below is largely based on this early work. See

Weiser [18], and Bank, Sherman, and Weiser [8] for a more
complete discussion.

Our setup phase employs a quadtree (2D) or octree (3D)
to partition the degrees of freedom into blocks of approxi-
mate size Ne. To accomplish this, we embed all unknowns in
a square (2D) or cube (3D) based on their coordinates. We
then create an adaptive quadtree (2D) or octree (3D) by re-
finement until each leaf element in the tree contains at most
approximately Ne degrees of freedom. Ne is a user specified
parameter. In the case of a quadtree, a given square element
is refined into four smaller squares in the usual way by con-
necting opposing pairs of midpoints. In the case of an octree,
a cube is refined into eight smaller cubes in the usual way us-
ing three mutually perpendicular bisecting planes. We note
that Ne is only a target, and some leaves may have more than
Ne degrees of freedom; if a given element t has Nt > Ne un-
knowns, it is not refined if Nt/4� Ne (2D) or Nt/8� Ne
(3D).

We employ typical definitions of parent, child, and level.
The original square or cube is the root of the tree. A given
refined element t in the tree has 4 (2D) or 8 (3D) children.
Typically the children appear as consecutive members of an
ordered list of elements, so the first child is denoted by the
pointer st ; st = 0 for leaf elements. The parent of a given ele-
ment t is denoted ft , another pointer into the list of elements.
ft = 0 if t is the root element. The level of and element `t is
defined inductively as follows. `t = 1 if t is the root element.
The children of an element t with `t = k all have level k+1.

A vertex v in the quadtree/octree mesh is called regular
if it is a corner vertex of each unrefined element it touches;
all other vertices are called irregular or hanging nodes.

For quadtree meshes, a given element t has 4 neighbors
η

j
t , 1 ≤ j ≤ 4. η

j
t = 0 if the corresponding edge is a on

the boundary. Otherwise, η
j

t points at the smallest element
with an edge that completely overlaps the given edge of t.
Note this implies `

η
j

t
≤ `t ; thus the neighbor relation is not

symmetric and is time dependent.

For octree meshes, there are two types of neighbors.
First, there are 6 face neighbors η

j
t , 1 ≤ j ≤ 6. Face neigh-

bors are analogous to neighbors in the 2D case, η
j

t = 0 if
face j of t is on the boundary. Otherwise, η

j
t is a pointer to

the smallest cube in the octree with a face that completely
overlaps face j of element t. Element t also has 12 edge
neighbors η̂

j
t , 1 ≤ j ≤ 12. For each of the 12 edges of el-

ement t, generally there are 2 face neighbors of t that also
share the given edge. Additionally there is a fourth element,
besides t and the 2 face neighbors, that shares the given
edge. As usual η̂

j
t = 0 if edge j is on the boundary, and

otherwise is a pointer to the fourth element sharing edge j.
We remark that in the case of more general forests of less
structured octrees it is possible to have more than one edge
neighbor for a given edge. As in the case of 2D neighbors,
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the face and edge neighbors relations are not symmetric and
are time dependent.

It is advantageous to sometimes refine additional ele-
ments in order for the quadtree or octree mesh to achieve
certain properties. This was shown in [8] for the quadtree
case, where we imposed the following additional refinement
rules.

– 1-irregular rule. Refine any unrefined element t that has
more than one irregular vertex on any edge.

– 3-neighbor rule. Refine any unrefined element t that has
one irregular vertex on three or more of its edges.

These refinement rules are illustrated in Figure 1.

ts ss
→

3-neighbor rule

t ss →

1-irregular rule

s

Fig. 1 Top: element t has two irregular vertices (marked in red) on one
edge, and thus is refined due to the 1-irregular rule. Bottom: element t
has one irregular vertex on three of its edges and thus is refined due to
the 3-neighbor rule.

The 3-neighbor rule mainly addresses the issue of irreg-
ular nodes. In particular, if three edges of element t have
irregular nodes, refining t changes them to regular nodes,
adds a regular node at the center, but creates one new po-
tentially irregular node on the fourth edge; however, if the
fourth edge is a boundary edge, it will be a regular node.
Thus there is a net reduction of at least 2 irregular nodes,
and the addition of at least 4 regular nodes. If all edges of
t contain irregular nodes, there is net reduction of 4 irregu-
lar nodes, and the addition of 5 regular nodes. In the case of
continuous piecewise bilinear finite elements, regular nodes
stand in correspondence with the degrees of freedom, and
thus it is beneficial to have as few irregular nodes as possi-
ble.

In some sense the 1-irregular rule is more critical. For
continuous piecewise bilinear finite elements, the 1-irregular
rule guarantees that there are at most 4 nodal basis functions
with support in any leaf element t, and the support of nodal
basis functions centered on the regular nodes intersect the
support of at most 12 other basis functions. This guaran-
tees the sparsity of the finite element stiffness matrix and
makes element assembly comparatively simple. Finally, the

1-irregular rule ensures that all nodes of non-leaf tree ele-
ments (st 6= 0) are regular. See [8] for further discussion of
these points and for additional properties.

In the octree case we impose similar refinement rules:

– 1-irregular rule. Refine any unrefined element t that has
more than one irregular vertex on any edge, or more than
one irregular vertex in the interior of any face.

– 4-neighbor rule. Refine any unrefined element t that has
one irregular vertex on four or more of its face interiors.

If 4 faces of element t contain irregular nodes, then 11
or 12 of the edges of element t also contain irregular nodes
at their midpoints, depending on the arrangement of faces
containing irregular nodes. Refining t changes 4 irregular
face nodes to regular, adds a regular node at the center of
t, and creates 2 potentially irregular nodes in face centers,
and possibly 1 potentially irregular edge node. The result is
a net gain of at least 2 regular nodes. Some of the 11 or 12
irregular edge nodes may also become regular as well, but
this is not guaranteed, as this also depends on the state of
the edge neighbors η̂

j
t of t. Refining elements with 5 or 6

irregular face nodes is even more advantageous.
Similar to the quadtree case, for continuous trilinear fi-

nite elements, the 1-irregular rule guarantees sparsity of the
stiffness matrix, as well as 8 nodal basis functions with sup-
port in each leaf element. As in the quadtree case, all nodes
of non-leaf elements are regular.

v v
v

f
f

v

v

f

f
v

t

1

3

2 2′

4

4′

�����

�����

�����

�������
��� v

v

vv

v v

v
f

ff

f f

f v
vv v

vvf
ff f

ff
t

122′

3

3′

4

4′

5
5′

6

6′77′

Fig. 2 A refined 3D cube (left) and 2D square (right). The colored
vertices are relevant for child element t. Black vertices are known to be
regular. The red vertices are possible irregular vertices, depending on
the state of neighboring elements. The green vertices, all corners of the
parent element and known to be regular, are possible “replacements”
for red vertices that are irregular.

In Figure 2, we examine the construction of bilinear (2D)
and trilinear (3D) nodal basis functions in a given leaf ele-
ment t, assuming that the mesh satisfies the 1-irregular rule.
We first consider the 2D case, illustrated in Figure 2 right.
In this case the corner vertex v1 shared with the parent el-
ement ft and the center vertex v3 are known to be regular.
The red vertices v2 and v4 could be irregular, depending on
the neighbor elements of t. Let φ j denote the usual bilinear
nodal basis function restricted to element t associated with
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vertex v j. For simplicity, suppose that v2 is irregular and v4
is regular. Then φ3 and φ4 are just the usual nodal bilinear
basis functions for t. φ1 is modified and φ2′ replaces φ2 as a
basis function for t as follows.

φ2′ ← φ2/2,

φ1← φ1 +φ2/2.

If v4 is irregular then φ1 and φ4′ are modified in a similar
fashion.

In the 3D case, the vertex v1 shared with ft and the cen-
ter vertex v8 (not displayed in Figure 2) are known to be
regular. The other six vertices could be irregular, with three
face center vertices (v3, v5, v7) and three edge midpoints (v2,
v4, v6). Assume that face center v3 is irregular; then all four
edge midpoints on that face of ft are irregular, including v2
and v4. For convenience we assume v5, v6, and v7 are all
regular. With the φ j now representing trilinear nodal basis
functions on t, then φ j, 5 ≤ j ≤ 8 remain unchanged, while
the other four are modified as follows.

φ3′ ← φ3/4,

φ2′ ← φ2/2+φ3/4,

φ4′ ← φ4/2+φ3/4,

φ1← φ1 +φ2/2+φ4/2+φ3/4.

If other face center vertices are irregular, the usual nodal
basis functions would be modified in an analogous fashion.
Even if all three face centers are regular, it is still possible for
an edge midpoint vertex to be irregular, based on the edge
neighbor η̂

j
t of t along that edge. These cases are handled

analogously to the 2D example described above.
As a final remark, imposing the 1-irregular and {3,4}-

neighbor rules does not change the overall complexity of
creating the quadtree or octree. In [8], a one pass algorithm
is described and proven to create quadtree meshes in O(T )
work, where T is the total number of elements in the tree.
As each element t is processed and evaluated for possible
refinement due to the number of degrees of freedom Nt con-
tained in the element relative to Ne, one examines the four
neighbors of t (a fixed bounded number) for possible viola-
tions of the 1-irregular and 3-neighbor rules. Since all oper-
ation at this step are O(1) the overall complexity is O(T ).
Octree meshes are created using the same strategy.

3 Two Level Solver

Consider the linear system

Au = b (1)

where A is the large sparse N ×N stiffness matrix corre-
sponding to the discretization of some partial differential

equation. We begin the development of our 2-level precon-
ditioner for (1) with the restriction matrix R in the 2D case.

We start with the quadtree mesh, and discard (ignore)
any leaf elements that contain zero degrees of freedom from
the fine mesh. The remaining mesh of leaf elements contains
Nc regular nodes, and this becomes the order of our coarse
grid space. Thus the restriction matrix R is Nc×N, and is
sparse, with exactly four nonzeroes in each column. Sup-
pose the k-th fine grid degree of freedom corresponding to
coordinates (xk,yk) is contained in the given leaf element.
We evaluate the four nonzero bilinear nodal basis functions,
as described in Section 2, at the point (xk,yk), and these four
nonzeroes are entered in appropriate rows of column k of
the matrix R. Since the four nodal basis functions on a given
leaf element form a partition of unity, the column sum of
each column of R is one. In terms of implementation, the
array R representing matrix R is a 4×N dense array with
appropriate pointers to indicate the leaf element and corre-
sponding node numbers.

In the 3D case, the matrix R is constructed in a com-
pletely analogous way. The main difference is that each leaf
element has eight nodes, and thus each column of R will
contain eight nonzeroes. The column sums remain one as
the eight nodal basis functions on each cube form a partition
of unity.

The prolongation matrix is taken as Rt , and the course
grid correction matrix Ac is given by

Ac = RARt . (2)

In the following discussion we restrict attention to finite el-
ement stiffness matrices A in 2D, but the discussion has rel-
evance to the 3D case and also to other classes of PDE dis-
cretizations.

We begin by noting that although bilinear finite elements
have played a central role in the development of our coarse
grid matrix Ac, the coarse subspace is not a space of piece-
wise bilinear polynomials. In particular, from (2) it is clear
that the coarse space consists of linear combinations for the
fine grid basis functions, and the coefficients of these linear
combinations are determined by the bilinear finite element
space. Thus this is a classic nested 2-level solver.

The coarse space basis functions do have some rela-
tion to the piecewise bilinear basis. Fine space basis func-
tions associated with (x,y) coordinates close to regular ver-
tex v j will have larger coefficients than those more distant,
so the coarse grid basis function centered at v j may have
some qualitative visual resemblance to the pyramid struc-
ture of the bilinear basis function centered at v j, but this also
strongly depends on the shapes of the fine space basis func-
tions.

The support of a coarse space basis function consists of
the union of the supports of the fine space basis functions
with (x,y) coordinates lying within one of the leaf elements
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forming the support of the corresponding piecewise bilinear
basis function. In particular, if the regular vertex v j associ-
ated with a given coarse space function lies on the boundary
or outside of the physical domain of the PDE, its support
will automatically conform to the boundary as needed.

Because of the 1-irregular rule, the stiffness matrix Âc
arising from the nodal bilinear basis associated with the
quadtree mesh is sparse, with at most 13 nonzeroes in any
row. If the supports of the coarse space basis functions over-
lap in a similar way, then the matrix Ac in (2) will also have
this property. This is most likely to be achieved when the
support of individual fine space functions is small relative
to the size of the quadtree leaf that contains its (x,y) coor-
dinates, and that its support is largely contained within that
leaf. To the extent that this does not occur the density of Ac
will likely increase. In the extreme case that A itself is dense,
Ac will also be dense.

The 2-level cycle is classical, with one pre-smoothing it-
eration using a smoother M, followed by the coarse grid cor-
rection, and one post smoothing iteration. Below we sum-
marize one cycle for solving (1). Let u0 be the initial guess;
normally u0 = 0 and the right hand side b will be the resid-
ual from the previous cycle. The output is the approximate
solution u1,

Mδ0 = b−Au0

p1 = u0 +δ0

Acδ1 = R(b−Ap1) (3)

p2 = z1 +Rt
δ1

Mδ2 = b−Ap2

u1 = p2 +δ2.

In our prototype implementation, we allow a choice of
two smoothers.

– An incomplete LU factorization (ILU) with user spec-
ified drop tolerance δ f . Minimum degree ordering is
used.

– Block symmetric Gauss-Seidel (SGS) with blocks of
size N f ≥ Nc, N f user specified. Diagonal blocks are
solved using sparse LU factorization with minimum de-
gree ordering.

The coarse space solver implemented in our prototype
code is

– ILU with user specified drop tolerance δc. Minimum de-
gree ordering is used. δc = 0 results in sparse LU factor-
ization.

Our 2-level cycle is used as a preconditioner. If A is
symmetric we employ the composite step conjugate gradi-
ent method (CSCG) [4] appropriate for symmetric indefinite
as well as positive definite matrices. If A is not symmetric,

we employ the composite step biconjugate gradient method
(CSBCG) [4].

The theoretical analysis of 2-level methods has a long
and expansive history in the multigrid literature. See [14,
12,19,10,20,17,11,5] and their references for a selection of
theoretical analyses.

4 Numerical Experiments

In this section, we present some numerical illustrations of
this method. For simplicity, we have chosen a mostly uni-
form selection of parameters that apply to all of the exam-
ples. In particular the coarse grid target Ne = 25 is chosen
in all of the experiments. The fine grid smoother is ILU
based on minimum degree ordering and with drop toler-
ance δ f = 10−4. The coarse space solver is sparse Gaus-
sian elimination with minimum degree ordering (ILU with
δc = 0). The 2-level solver is a preconditioner for CSCG
when A is symmetric, and for CSBCG when A is nonsym-
metric. All computations were done on a Apple Mac Pro
desktop (2013). The prototype codes were written in FOR-
TRAN 2003, and compiled using the gcc8 compiler. In all
2D experiments, the sparse linear systems (1) were gener-
ated using the adaptive finite element package PLT MG [2].

In the first experiment, we consider five PDEs that chal-
lenge the solver in various ways. These problems are the
standard Poisson equation, a convection-diffusion equation,
a Helmholtz equation, an anisotropic diffusion equation, and
a discontinuous diffusion equation.

−∆u = 1

−∆u+1000ux = 1

−∆u−1000u = 1

−.001uxx−uyy = 1

−∇(a∇u) = 1 with a = {1, .001}

The domain for all equations is the unit square, and the
finite element discretization in all cases is continuous piece-
wise linear triangular finite elements. Homogeneous Dirich-
let boundary conditions are applied in all problems. The
meshes are uniform n×n with n = 161,321,641,1281, and
N = n2 = 25291,103041,410881,1640961, respectively.
The solutions are shown in Figure 3.

The results are given in Table 1. In Table 1, K is the
number of iterations required to satisfy ||rK ||`2 ≤ ε||r0||`2 ,
where ε = 10−6 and r j is the preconditioned residual, and
Digits = − log(||rK ||`2/||r0||`2). |A|, |Ac| are the number of
nonzeroes in A and Ac, respectively. |ILU | is the number
of nonzeroes in the incomplete LU factorization of A, and
|LcUc| is the number of nonzeroes in the sparse LU factor-
ization of Ac.
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−∆u = 1 −∆u+1000ux = 1

−∆u−1000u = 1

−.001uxx−uyy = 1 −∇ · (a∇u) = 1, a = {1, .001}]

Fig. 3

Table 1 illustrates traditional multigrid-like convergence
independent of N for four of the problems. The excep-
tion is the Helmholtz equation. For multilevel analysis of
such indefinite problems, one typically makes some assump-
tion that requires the coarse grid to be sufficiently fine. In
this example, the coarse grid was not sufficiently fine for
the three smaller vales of N, yet the solver still exhibited
reasonable and largely N independent convergence. When
N = 1640961, the coarse grid was sufficiently fine, and con-
vergence behavior became more like the other four exam-
ples.

For our second example, we consider the problem

−∆u = 0 for x ∈Ω

u = r1/4 sin(θ/4) for x ∈ ∂Ω1

∇u ·n = 0 for x ∈ ∂Ω2

where Ω is unit circle with crack on x-axis for 0 ≤ x ≤ 1.
∂Ω2 is 0 ≤ x ≤ 1 below the crack. ∂Ω1 = ∂Ω −∂Ω2. This
problem was solved in PLT MG using h-refinement for con-

N Nc K Digits |A|
N

|Ac|
N

|ILU |
N

|LcUc|
N

−∆u = 1

25921 1089 2 7.23 6.95 0.98 42.73 2.72

103041 4225 2 7.22 6.98 0.99 46.10 4.50

410881 16641 2 7.47 6.99 0.99 48.02 6.74

1640961 66049 2 7.65 6.99 1.00 48.85 10.14

−∆u+1000ux = 1

25921 1089 1 6.32 6.95 0.98 31.79 2.72

103041 4225 2 11.01 6.98 0.99 42.97 4.50

410881 16641 2 9.07 6.99 0.99 55.05 6.74

1640961 66049 2 7.12 6.99 1.00 64.08 10.15

−∆u−1000u = 1

25921 1089 9 6.87 6.95 0.98 64.04 2.72

103041 4225 15 6.49 6.98 0.99 69.96 4.50

410881 16641 16 6.97 6.99 0.99 50.69 6.74

1640961 66049 4 6.06 6.99 1.00 49.35 10.15

−.001uxx−uyy = 1

25921 1089 2 6.43 6.95 0.98 12.32 2.72

103041 4225 3 7.93 6.98 0.99 12.88 4.50

410881 16641 3 7.23 6.99 0.99 13.23 6.74

1640961 66049 3 7.15 6.99 1.00 13.42 10.14

−∇(a∇u) = 1

25921 1089 3 7.89 6.95 0.98 39.34 2.72

103041 4225 3 6.75 6.98 0.99 44.30 4.50

410881 16641 3 6.49 6.99 0.99 47.06 6.74

1640961 66049 3 6.41 6.99 1.00 48.35 10.14

Table 1

tinuous piecewise linear elements. This required 11 feed-
back loops to move from N0 = 10 to N = 250000. In this ex-
periment we used the same solution algorithm and parame-
ter settings as in the previous example (Ne = 25, δ f = 10−4,
δc = 0). The main difference was the convergence criteria
was reduced from ε = 10−6 to ε = 10−2. This weaker crite-
ria is more reasonable in the context of an adaptive feedback
loop, where very good initial guesses are available for every
solution step after the first.

In terms of the PDE, there are three aspects of this prob-
lem that differ from the previous example. First, the outer
boundary of the domain is a circle, so this boundary does
not align with the quadtree mesh; thus some regular nodes
in the coarse space will lie outside of the boundary. Second,
this mesh is highly nonuniform, with elements that vary in
diameter from 9.42 · 10−3 to 3.36 · 10−13, with the smallest
elements clustered at the crack tip. This is illustrated in Fig-
ure 4. Third, the domain is not convex due the the crack;
this means that coarse space basis functions corresponding
to regular nodes near the crack may be linear combinations
of functions lying on both sides of the crack. As illustrated
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498286 elements colored by size.

Zoom by 1010.

The solution u = r1/4 sin(θ/4).

Convergence history of h-adaptive calculation.

Fig. 4

in Figure 4, these coarse space functions will typically have
a jump discontinuity that coincides with the crack.

N Nc K Digits |A|
N

|Ac|
N

|ILU |
N

|LcUc|
N

10 4 0 15.65 4.50 1.70 1.10 1.70

22 4 1 16.19 5.50 0.77 1.86 0.77

53 4 1 15.42 6.19 0.32 5.81 0.32

142 9 1 15.57 6.56 0.58 11.26 0.58

296 21 1 6.99 6.70 1.05 16.67 1.01

670 60 1 4.60 6.79 2.24 21.58 2.52

1526 92 1 3.22 6.86 1.64 26.83 1.87

3696 134 1 2.39 6.89 1.04 32.20 1.19

9935 276 2 3.36 6.93 0.80 38.56 1.47

28447 745 2 2.13 6.96 0.73 43.63 2.32

84645 2266 3 2.60 6.98 0.73 46.93 3.76

250000 6797 2 2.17 6.99 0.71 48.40 5.52

Table 2

The results are shown in Table 2. The smaller values of
N are not so interesting but are included for completeness.
The entries for larger values of N show at most a slight de-
pendence on N. The convergence rate is a bit slower than for
the Poisson equation in the first example, likely due to the
three factors mentioned above.

In our next example, we solve the same problem as in
the second example, but now using the hp-adaptive strategy
in PLT MG. Starting with the same initial mesh, we arrive at
a final mesh with a target of 100000 degrees of freedom in
19 adaptive feedback loops. As illustrated in Figure 5, the
element polynomial degrees varies from one to eight. and
the element diameter varies from 1.4 · 10−1 to 2.2 · 10−22.
As illustrated in Figure 5, there are small linear elements
at the crack trip, that grow in size and degree as distance
to the singularity increases. Thus this problem has a much
wider range of element sizes, and the stiffness matrices have
many more nonzero elements. Elements of degree eight have
45× 45 dense element stiffness matrices. This problem ex-
hibits the exponential convergence that is a hallmark of hp
adaptive methods.

We solved this problem twice, once with the same pa-
rameters as in the h-adaptive case, Ne = 25, δ f = 10−4,
δc = 0, and ε = 10−2. In the second case Ne = 100 and the
other parameters remain unchanged. The results are shown
in Table 3. As before, the results for smaller values of N
are not interesting but are included for completeness. For
the case Ne = 25, the results for larger values of N are a
bit erratic with respect to the growth in N, but are still rea-
sonable given the challenging aspects of this problem. We
think this erratic behavior is a consequence of the support
for the coarse space functions and the support of the high



8 Randolph E. Bank, Robert D. Falgout

11255 elements colored by degree.

Zoom by 1020.

11255 elements colored by size.

Convergence history of hp-adaptive calculation.

Fig. 5

N Nc K Digits |A|
N

|Ac|
N

|ILU |
N

|LcUc|
N

Ne = 25

10 4 0 15.65 4.50 1.70 1.10 1.70

22 4 1 16.19 5.50 0.77 1.86 0.77

53 4 1 15.42 6.19 0.32 5.81 0.32

142 9 1 15.57 6.56 0.58 11.26 0.58

363 36 1 6.20 8.08 2.05 17.10 2.15

921 68 1 4.64 9.72 1.90 23.55 2.16

1549 100 1 3.27 10.33 1.78 27.57 2.05

2461 130 1 2.25 11.36 1.50 32.21 1.75

4012 169 2 4.32 12.94 1.23 35.16 1.43

6072 210 2 3.24 14.43 1.02 38.46 1.20

9053 289 2 2.89 16.83 0.97 41.27 1.29

13097 360 1 2.00 19.60 0.83 43.58 1.21

19674 590 1 2.29 23.05 0.91 46.93 1.92

29352 788 2 2.02 27.33 0.80 50.28 1.96

42173 1161 5 2.25 30.06 0.82 52.36 2.38

51580 1480 3 2.09 31.53 0.86 53.69 2.62

63605 1742 3 2.22 33.36 0.81 55.11 2.74

83863 2249 6 2.33 35.90 0.78 56.90 2.80

99993 2741 8 2.02 39.86 0.79 59.63 3.33

Ne = 100

10 4 0 15.65 4.50 1.70 1.10 1.70

22 4 1 16.19 5.50 0.77 1.86 0.77

53 4 1 15.42 6.19 0.32 5.81 0.32

142 4 1 15.28 6.56 0.12 11.26 0.12

363 9 1 5.99 8.08 0.23 17.40 0.23

921 9 1 3.76 9.72 0.09 24.27 0.09

1549 47 1 2.72 10.33 0.70 28.01 0.79

2461 76 1 2.31 11.36 0.81 31.61 0.93

4012 119 2 4.30 12.94 0.84 35.43 0.97

6072 159 2 3.21 14.43 0.76 37.98 0.88

9053 202 2 2.78 16.83 0.66 41.24 0.77

13097 242 1 2.02 19.60 0.55 43.54 0.65

19674 302 1 2.36 23.05 0.46 47.09 0.56

29352 364 2 2.36 27.33 0.37 50.25 0.48

42173 425 2 2.65 30.06 0.31 52.40 0.41

51580 484 2 2.11 31.53 0.28 53.63 0.39

63605 584 2 2.68 33.36 0.28 54.78 0.43

83863 788 3 2.44 35.90 0.29 56.75 0.59

99993 890 4 2.46 39.86 0.27 59.33 0.58

Table 3
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degree basis functions are comparable. In this case, the ma-
trix Ac becomes denser and its sparsity pattern departs sig-
nificantly from that of the bilinear functions on the same
quadtree mesh. When Ne = 100 the leaf elements are larger
so the supports of the coarse grid basis functions are larger in
comparison with those of the high degree fine grid functions,
and the matrix Ac is sparser. For the case Ne = 100, the con-
vergence behavior is less erratic with the growth of N, and
the convergence is usually better than the case Ne = 25. As a
final remark, we note that the 2-level solver described in [3]
converges faster on this example than either set of parame-
ters. As a geometric method, it had complete knowledge of
each element in the mesh, the shape of the boundary, as well
as the degree of each basis function on the fine grid. Thus
it is not surprising that it outperforms this semi algebraic
method.

In our last example, we consider some 3D PDEs. In par-
ticular, we reprise the Poisson equation and the convection-
diffusion equation of the first example generalized to three
dimensions. The discretization in this case is a 7-point star
finite difference stencil. We considered a unit cube with
16×16×16 = 4096, 32×32×32 = 32768, and 64×64×
64 = 262144 uniform meshes; larger values of N could not
be accommodated due to space constraints of our computer.
For these octree meshes, we initially chose the same param-
eters as in the first experiment, Ne = 25, δ f = 10−4, δc = 0,
and ε = 10−6. We then repeated the experiment three more
times, with Ne = 1000, δ f = 10−4,10−2,1, and the other pa-
rameters unchanged. The results are given in Table 4. The
convergence varies depending on the choice of parameters.
As expected, it is quite good in the first case. In the case
Ne = 1000, δ f = 10−4, the convergence is not quite as good
as the case Ne = 25, but the dimension of the coarse space
Nc is much smaller. Then as δ f is further increased, the con-
vergence rate is more severely impacted. In the final case
where δ f = 1, the ILU factorization is reduced to a sim-
ple Jacobi-like smoother. This is combined with a relatively
weak coarse space correction, placing much reliance on the
CSCG and CSBCG algorithms to speed convergence.

5 Concluding Remarks

In this section, we make several remarks related to this study,
and present some possible directions for future research.
First we remark on our choice of parameters. Our goal in
choosing parameters was to have one set that produced rea-
sonable results for all of the example problems. With broad
ranges of parameters, on any given problem certain com-
binations of parameters can produce very poor convergence,
while others will exhibit the type of convergence one expects
from a good 2-level solver. For all of the example problems
here, different choices of parameters will produce faster con-
vergence rates and/or less computational cost per iteration.

N Nc K Digits |A|
N

|Ac|
N

|ILU |
N

|LcUc|
N

Ne = 25, δ f = 10−4 −∆u = 1

4096 125 2 9.68 6.63 1.67 69.32 2.33

32768 729 2 6.53 6.81 1.81 106.80 6.48

262144 4913 3 8.85 6.91 1.88 130.39 19.27

Ne = 1000, δ f = 10−4 −∆u = 1

4096 27 2 8.46 6.63 0.18 74.54 0.18

32768 125 3 8.27 6.81 0.21 110.65 0.29

262144 729 3 7.62 6.91 0.23 131.85 0.81

Ne = 1000, δ f = 10−2 −∆u = 1

4096 27 5 6.42 6.63 0.18 16.88 0.18

32768 125 6 6.54 6.81 0.21 18.13 0.29

262144 729 6 6.32 6.91 0.23 18.82 0.81

Ne = 1000, δ f = 1 −∆u = 1

4096 27 9 6.18 6.63 0.18 1.00 0.18

32768 125 14 6.34 6.81 0.21 1.00 0.29

262144 729 15 6.16 6.91 0.23 1.00 0.81

Ne = 25, δ f = 10−4 −∆u+1000ux = 1

4096 125 1 7.27 6.63 1.67 26.50 2.33

32768 729 1 6.00 6.81 1.81 44.33 6.48

262144 4913 2 10.28 6.91 1.88 81.65 19.27

Ne = 1000, δ f = 10−4 −∆u+1000ux = 1

4096 27 1 7.07 6.63 0.18 28.10 0.18

32768 125 2 11.96 6.81 0.21 46.55 0.29

262144 729 2 9.97 6.91 0.23 84.09 0.81

Ne = 1000, δ f = 10−2 −∆u+1000ux = 1

4096 27 2 8.18 6.63 0.18 14.32 0.18

32768 125 3 8.10 6.81 0.21 16.71 0.29

262144 729 4 6.01 6.91 0.23 19.42 0.81

Ne = 1000, δ f = 1 −∆u+1000ux = 1

4096 27 18 6.43 6.63 0.18 1.00 0.18

32768 125 28 6.10 6.81 0.21 1.00 0.29

262144 729 40 6.01 6.91 0.23 1.00 0.81

Table 4

However, better or optimal parameter choices would likely
be different for each example. One can see a bit of this effect
in the different choices of Ne and δ f that we made in the the
last two examples in Section 4. Thus like many multi-level
methods, one should not view this method as a black box,
but rather as an effective approach that requires tuning for
each environment in which it is used.

One could consider using the coordinates of the degrees
of freedom as vertices in a graph of the matrix A; that is, an
edge in the graph connecting vertices vi and v j corresponds
to nonzero off-diagonal elements Ai j and A ji in the matrix
A. This graph provides some indication of the shape of the
physical domain of the PDE, and in some simple cases dis-
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plays exactly the structure of the underlying elements in the
mesh. One can add weights to the edges that correspond to
the size of the corresponding matrix elements. All of this in-
formation could be used in addition to the value of Ne in the
creation of the quadtree or octree mesh. One could imagine
starting from a macro mesh of elements (triangles, quadri-
laterals, tetrahedrons, hexahedras, etc) and create a forest of
trees rather than just a single tree as we did here. All of these
generalizations align this approach more closely with more
traditional algebraic multigrid (AMG) approaches, where
the graph of the matrix A and matrix element size play a
prominent role in the creation of coarse subspaces. For ex-
ample, such information would have revealed the crack in
the second and third examples on Section 4, and thus we
could have avoided creating coarse basis functions with sup-
port on both sides of the crack. While it seems clear that such
enhancements could improve the quality of the coarse sub-
spaces generated by the method, at this point it is unknown
what the effect of such improvements might have on the con-
vergence of the solver. As with other algebraic methods, one
must consider the computational cost and complexity of the
setup phase of the algorithm in relation to possible improve-
ments in the solve phase, and try to achieve an appropriate
balance.

As a related point, one could choose other partitions of
unity to define R, and in the nonsymmetric case, perhaps use
different partitions of unity for restriction and prolongation
matrices. As a simple experiment in this direction, in our
2D code, we implemented an option to choose continuous
piecewise biquadratic finite elements in place of the bilin-
ear elements. On problems with the same quadtree mesh,
the biquadratic elements often outperformed the bilinear el-
ements, but with a coarse space roughly four times as large
and a matrix Ac with more nonzeroes per row. When we
compensated for subspace dimension by choosing coarser
quadtree meshes for the biquadratic case, such that the val-
ues of Nc were comparable, convergence rates were typically
quite similar, but the matrix Ac for the biquadratic case still
had more nonzeroes per row. So while certainly more re-
search is necessary to make a definitive conclusion, at this
point this particular option does not appear to be a promising
direction.

Given that the quadtree and octree both produce a tree
data structure, a natural possibility is to employ this data
structure to construct a multilevel solver to approximately
solve the coarse space system. A particularly attractive op-
tion, at least for 2D for meshes created using adaptive h-
refinement, would be to create a hierarchical basis multigrid
solver (HBMG). Geometric multilevel solvers constructed
from tree data structures in this way are quite common when
a quadtree or octree is used in conjunction with an adaptive
mesh refinement scheme applied to the underling PDE, but

at this point, such an option has not been implemented in
our prototype codes.

Since all of our examples were scalar PDEs, some ad-
ditional remarks on systems seem appropriate. In the case
of a system, we can create a coarse space for each different
function independently using the techniques of Section 2. If
the unknowns of both the fine and coarse spaces are blocked
in a natural way by function, the resulting restriction matrix
R will have a block diagonal structure, with the diagonal
blocks Rii denoting restriction matrices that were generated
for each of the functions in the PDE system. If the matrix
A is blocked in the same way, then the coarse space ma-
trix Ac = RARt will inherit this block structure. Many PDE
systems are solved by some type of inner/outer block Gauss-
Seidel like iteration. In such cases, the 2-level solver could
be used for the inner iterations involving the diagonal blocks
Aii of A, and the corresponding coarse space diagonal blocks
Ac,ii of Ac. One could also apply a coarse space correction to
the outer iteration using the entire matrix Ac, or even apply
coarse space corrections in both the inner and outer itera-
tions. Once again, the choice would likely depend on the
details of the particular PDE system.

Finally, some aspects of the quadtree and octree meshes
generated in Section 2 resemble domain decomposition
(DD). Thus it is natural to ask whether some version of this
solver could be effectively employed as a DD solver in a par-
allel computing environment. An especially intriguing point
to note here is that the tree data structure could be used to
create a solver analogous to the solvers described in [7,9,
6]. In addition to the fine space on the piece of the problem
that it owns, each processor would have a coarse descrip-
tion of the entire problem, with the coarsening graded and
becoming coarser with the distance from the fine region on
that processor. The goal of such algorithms is to trade a little
extra computation on each processor for a hopefully large
reduction in the communication costs in the DD solver. Ad-
ditionally, since each processor has a coarse description of
the entire problem, the separate coarse space correction step
common in many DD algorithms is avoided.
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