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Abstract Molecular transport and interaction are of funda-
mental importance in biology and medicine. The spatiotem-
poral diffusion map can reflect the regulation of molecu-
lar interactions and their intracellular functions. To con-
struct subcellular diffusion maps based on bio-imaging data,
we explore a general optimization framework with diffu-
sion equation constraints (OPT-PDE). For the solution of
the spatially piecewise constant and anisotropic diffusion
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tensors, we develop an efficient block solver based on ap-
plying Newton’s method to the first-order necessary condi-
tion for optimality. We characterize the wellposedness of
the OPT-PDE model problem and the convergence prop-
erties of the solver. We also demonstrate the general util-
ity of the solver in recovering spatially heterogeneous and
anisotropic diffusion maps with computer-simulated bio-
images. The results indicate that the solver can accurately
recover piecewise-constant isotropic and anisotropic diffu-
sion coefficients, while exhibiting efficient convergence and
robustness. This work highlights the power of the OPT-PDE
model and the solver in recovering the diffusion map from
imaging data, and demonstrates that it has significant impli-
cations in bio-imaging analysis.
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Methods, Diffusion Coefficients
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1 Introduction

Molecular diffusion and transport is of fundamental impor-
tance in cell biology [9,20]. Diffusion and transport of a
given molecule vary at different subcellular locations and
can represent its local activity and function. Therefore, the
spatiotemporal diffusion map can reflect the regulation of
molecular interactions and their intracellular functions [35,
8,13]. However, the construction of subcellular diffusion
maps based on image data remains a tremendous challenge
[25,7].

Traditional diffusion analysis approaches by fluores-
cence recovery after photobleaching (FRAP) suffers from
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low spatiotemporal resolution, with significant limitations
on the experimental photobleaching protocols [1,21,23]. To
overcome some of these limitations, fluorescence correla-
tion spectroscopy (FCS) methods have been used to analyze
the diffusion process in live cells [7,40]. Nevertheless, the
spatial resolutions remain relatively low, and FCS methods
can only handle images of low molecular density, and es-
timate the diffusion rate of a subpopulation of intracellu-
lar molecules. [7]. In contrast, model-based methods such
as finite difference or finite element methods have the ad-
vantage of being theoretically well-defined, with high spa-
tiotemporal resolution and less limitation on molecular den-
sity. These methods have been applied to study spatially ho-
mogeneous apparent molecular diffusion in live cells and tis-
sues by the authors and others, respectively [25,36]. In this
work, we develop a general optimization framework with
diffusion equation constraints (OPT-PDE) and finite element
discretization, with the goal of solving spatiotemporal het-
erogeneous and anisotropic diffusion maps based on live-
cell FRAP images.

OPT-PDE models are extremely versatile, with applica-
tions ranging from biology, geophysics, aerodynamics, and
finance [15,14,38]. However, the formulation and solution
of OPT-PDE model problems are usually individualized and
dependent on the specific applications involved. Therefore,
it is important to develop the well-posedness theoretical
framework for each application. The analytic optimality the-
ory for OPT-PDE problems is usually posed in terms of op-
erators defined on reflective Banach spaces with Lp norms
and inner products [16,12]. Thus, functional analysis the-
ory on Banach spaces, the existence and stability results of
the PDE constraints, the weak smoothness of the objective
functional, and the weak compactness of the Banach space
of the state and control functions, are essential to guarantee
the existence of optimal solutions and the optimality condi-
tions [16,12,6].

The optimization problem in our application is to min-
imize a quadratic objective functional subject to a PDE
with an unknown piecewise constant diffusion map. With
time-space discretization of the PDE, good estimates of the
first and second derivatives of the discretized problem can
be computed with ease. Therefore, we utilize the modern
discretize-then-optimize approach to solve the optimization
model, with all the finite element unknowns of the PDE as
variables [17,3]. As a result, the discrete optimization prob-
lem has a large number of variables and constraints that can-
not be handled efficiently by conventional general-purpose
optimization algorithms and software [26,11]. In order to
deal with this difficulty, the proposed optimization algorithm
is specifically designed to exploit the special structure in
the derivatives of the differential-equation constraints. The
OPT-PDE model was solved at the outer layer by Newton’s
method applied to the first-order necessary condition for op-

timality. At the inner layer, the large-scale linear system was
solved by block elimination, while the sub-block linear sys-
tem derived from the PDE was iteratively solved by an effi-
cient preconditioner [16,2].

In this work, we formulate a general OPT-PDE model
problem for our applications and examine the theoretical
foundation of the well-posedness of the model problem.
We develop a new OPT-PDE solver algorithm for inversely
recovering spatially heterogeneous diffusion tensors from
concentration maps, and implement different biologically
motivated test problems generated by simulation. With the
numerical solution of these test problems, we demonstrate
that the proposed algorithm converges efficiently and re-
covers the underlying diffusion tensors with high accuracy.
Thus, this general OPT-PDE model and solution framework
can provide a new and important approach to recover spa-
tially different diffusion coefficients and diffusion tensors
from bio-images.

2 Optimization model with partial differential equation
constraints

2.1 The Model Problem

An OPT-PDE model was formulated to estimate diffusion
maps based on fluorescence images. The time-evolution of
fluorescence images of live cells are usually recorded by
microscope to represent the spatiotemporal distribution of
molecular concentration u(x, t). The concentration maps at
given time points t1 and t2 are known functions u1(x) and
u2(x) of space. It is assumed that the time-evolution of se-
quential fluorescence images is caused by the diffusion of
fluorescent molecules with an unknown diffusion coefficient
map d(x), which is a piecewise constant tensor function of
space. The system of differential equations is given by

∂u(x, t)
∂ t

= ∇ · (d(x)∇u(x, t))

u(x, t1) = u1(x)

u(x, t2) = u2(x),

for all x ∈Ω ⊂ R2 or R3, and t ∈ [t1, t2].
The inverse problem for the diffusion map d(x) is for-

mulated as a PDE-constrained optimization problem, where
the objective function includes the L2 norms of u− u2 and
d − d0. The initial value problem is imposed as an equal-
ity constraint. This gives a problem in which the objective
function

Φ(u(·, t2),d) =
∫

Ω

(u−u2)
2 + γ(d−d0)

2dx (Eq 2.1)

is minimized subject to the constraints u(x, t1) = u1, and

∇ · (d(x)∇u) =
∂u
∂ t

, for x ∈Ω and t1 < t ≤ t2, (Eq 2.2)
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with the homogeneous Neumann boundary conditions

d(x)∇u ·~n = 0, for x ∈ ∂Ω , and t1 < t ≤ t2.

Here the unit vector ~n is the outward normal on the bound-
ary ∂Ω . The diffusion coefficient map function is piecewise
constant and bounded above and below by the box con-
straint,

0 < dmin ≤ d(x)≤ dmax. (Eq 2.3)

In the objective function (Eq 2.1), the Tikhonov regulariza-
tion term γ(d−d0)

2 is needed to ensure the well-posedness
of the optimization problem, and to allow the efficient solu-
tion of the linear system defined by the numerical discretiza-
tion [37,33]. The scalar γ is chosen as a small constant of
order 10−5 to provide the needed regularization while not
forcing the diffusion coefficient to the initial guess d0. A dis-
advantage of the regularization term is that it can limit the
accuracy of the solution by forcing the diffusion coefficients
to converge to a point near d0. However, a more accurate
solution is possible if a sequence of problems are solved
in which the solution of one problem is used for the regu-
larization term d0 of the next. This method with modified
Tikhonov regularization terms is similar to the proximal-
point method for nonlinear optimization (see, e.g., [29,34]).
The benefits of this approach are illustrated in Section 4.

The PDE constraint (Eq 2.2) is approximated in time us-
ing the backward difference

∇ · (d∇u) =
u−u1

∆ t
,

or, equivalently,

−∇ · (d∇u)+(∆ t)−1u = (∆ t)−1u1.

This gives the weak form of the PDE constraint as: find u ∈
H1(Ω) such that

a(u,v)≡
∫

Ω

d∇u ·∇v+(∆ t)−1uvdx

=

∫
Ω

(∆ t)−1u1vdx≡
(
(∆ t)−1u1,v

)
for all v∈H1(Ω). Let Sh⊂H1(Ω) denote the finite element
space consisting of continuous piecewise linear polynomials
associated with a shape regular triangulation Th of Ω . The
discrete bilinear form can be written as: find uh ∈ Sh such
that

a(uh,vh) = ((∆ t)−1u1,vh) for all vh ∈ Sh. (Eq 2.4)

Several observations may be made regarding the dis-
cretization process. Although the test examples are gener-
ated through simulation, in practice the data comes from live
cell images, in which case the solutions u1, u2, the shape
of the domain Ω as well as its internal geometric details

will be limited by the image resolution. As these data are
derived from point (pixel) values of the images, the use of
low-order finite elements is natural and appropriate in this
setting. The use of simple backward difference for the time
discretization is also appropriate for the same reason. Here
∆ t is a constant bounded below and away from zero such
that (∆ t)−1 remains bounded above. Practical problems will
likely have more than two data points in time; in anticipation
of this, we note that the objective function can be general-
ized by summing over multiple time steps. The time dis-
cretization can also be extended to cover the case of multi-
ple time steps. However, in this study, our main goal is to
validate the convergence and efficiency of the overall opti-
mization approach, and thus we present a simplified version
of the time evolution problem.

2.2 The well-posedness of the PDE

As the bilinear form a(·, ·) is symmetric, uniformly bounded
above and below (i.e., uniformly elliptic, see (Eq 2.3)),
the Riesz representation theorem gives the existence and
uniqueness of the solution [16,6]. In this case, the right-hand
side function f (x) = (∆ t)−1u1(x) is in L2(Ω). The theory
allows that the function f (x) be discontinuous at an internal
interface between subdomains within Ω [16,6].

Elliptic problems with discontinuous piecewise constant
diffusion coefficients are also called Laplace-interface prob-
lems or transmission problems. The solutions of these prob-
lems possess characteristic singularities, with decreased reg-
ularity and low-order approximation errors in finite element
applications [31]. The discontinuity of the diffusion coeffi-
cients implies that the solution u will not have the piecewise
regularity H2(Ωi) implied by the piecewise L2 property of
the right-hand side.

In the numerical examples of Section 4, the domain Ω

contains several subdomains, with discontinuous piecewise
constant diffusion coefficients. Therefore, Ω = ∪K

k=1Ωk,
and the diffusion map function d(x) = dk for x ∈ Ωk, and
k = 1,2, . . . ,K. The dk’s are either positive constants in R,
or symmetric positive-definite diffusion tensor matrices in
R2×2. The weak form of the elliptic problem is to find u,
such that for every test function v, the trilinear form satisfies
T (d,u,v) = 0 [12], where

T (d,u,v)≡
K∑

k=1

∫
Ωk

∇u · (dk∇v)dx+
∫

Ω

1
∆ t

uvdx

−
∫

Ω

1
∆ t

u1vdx = 0. (Eq 2.5)

Similar to the case of continuous constant diffusion coeffi-
cients, if dk is uniformly bounded above and below (see (Eq
2.3)), or if dk is a symmetric tensor matrix with eigenval-
ues that are uniformly bounded above and below, the weak
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forms of elliptic problems with discontinuous diffusion co-
efficients have a unique solution [12,6].

The regularity properties for elliptic problems with dis-
continuous coefficients have been studied by Petzoldt in
his thesis and two related papers [31,30,32]. The major-
ity of regularity results depend on the so-called “quasi-
monotonicity condition” [31,10], which requires that the
diffusion coefficients around each singular point be traced
in a monotonic order. In particular, the solution u is in
H1+1/4(Ωi) if and only if quasi-monotonicity is satisfied,
with the bound shown to be optimal [31,30,19]. All the
piecewise constant diffusion coefficients in our numerical
examples are quasi-monotone.

The ratio between the upper and lower bounds of the dif-
fusion coefficients may be regarded as a measure of problem
“stiffness”. If this ratio is bounded above and below by the
uniform elliptic condition on the PDE operator, an iterative
multigrid solver can achieve a convergence rate independent
of the jumps in the diffusion coefficients [39,28,42], which
is the case for the PDE solver used here.

2.3 The PDE-constrained optimization problem

Based on (Eq 2.1), the optimization problem is formulated
with a PDE equality constraint, i.e.,

min
(u,d)∈Uccs×Dccs

Φ(u,d) =
∫

Ω

(u−u2)
2 + γ(d−d0)

2dxdy,

subject to e(u,d)≡ ∇ · (d∇u)− u−u1

∆ t
= 0, (Eq 2.6)

where Uccs = H1(Ω), and Dccs = {d ∈ L∞(Ω), and 0 <

dmin ≤ d ≤ dmax}.
In weak form, the PDE constraint is the trilinear func-

tional given by (Eq 2.5). The discrete OPT-PDE problem is
then

min
(uh,dh)∈RN×RN

Φ(uh,dh) = (uh−uh
2)

T M(uh−uh
2)

+ γ(dh−dh
0)

T M(dh−dh
0)

subject to T (d,uh,vh)≡

(
K∑

k=1

dkAk

)
uh +

M(uh−uh
1)

∆ t
= 0.

(Eq 2.7)

Here N is the number of nodes in the triangulation, which
represents the degrees of freedom in the discrete linear sys-
tem, and K is the number of non-overlapping subdomains
Ωk ⊂ Ω with distinct diffusion coefficients. M is the finite
element mass matrix, and Ak is the stiffness matrix corre-
sponding to the subdomain Ωk.

Based on the theory of invertible functions in Banach
spaces [16,18,41], this optimization problem has a unique
solution. In particular, it has been shown that the solution

of an elliptic boundary-value problem is an infinitely dif-
ferentiable functional of the diffusion coefficients d, with
a bounded d-derivative, and subsequently a bounded d-
inverse [12]. When the objective function for the optimiza-
tion is chosen as an energy norm that is dependent on the
diffusion coefficients, it is a smooth and convex functional
of the coefficients [12,43,22]. With this objective function
the discontinuous coefficients are estimated from measured
interior fluorescent intensity or molecular concentrations, by
approximating the optimal solution in both continuous and
discrete settings [12].

For the optimization of an objective function with PDE
constraints in the setting of our bioimaging applications, the
minimization problem

min
(u,d)∈Uccs×Dccs

Φ(u,d), such that e(u,d) = 0,

has an optimal solution if three conditions are satisfied [16].

1. Dccs is bounded, convex, and closed. Uccs is convex and
closed.

2. Φ(u,d) is sequentially weakly lower semi-continuous.
3. The PDE constraint e(u,d) = 0 is continuous under

weak convergence and has a bounded d-inverse opera-
tor e−1

d : d ∈ Dccs 7→ u(d) ∈Uccs.

For the continuous problem, Uccs is the set of concentration
functions, which is a closed subset of the Hilbert space H1

with norm and inner product. Dccs is the set of diffusion co-
efficients, which is a bounded, convex, and closed subset of
L2. Both Uccs and Dccs are Hilbert spaces and thus reflex-
ive Banach spaces. It follows that condition (1) holds. In
addition, Φ is quadratic in both u and d, so it is obviously
continuous, and hence condition (2) is satisfied. Conditions
(1) and (2) guarantee that Φ has an achievable infimum Φ∗,
i.e., there is a minimizing sequence {(uk,dk)} ⊂Uccs×Dccs,
such that Φ(uk,dk)⇀Φ∗. As the convex and closed set Dccs
is bounded, the sequence {dk} has a weakly convergent sub-
sequence {dki}, such that dki ⇀ d∗. The equality constraint,
e(u,d) has a bounded d-inverse, which implies that condi-
tion (3) holds. It follows that if uki = e−1

u (·,dki) and u∗ =
e−1

u (·,d∗) then it can be shown that uki ⇀ u∗. In addition,
the objective function is quadratic, i.e., Φ(uki ,dki) ⇀ Φ∗.
Therefore, our continuous OPT-PDE problem has an opti-
mal solution (u∗,d∗).

Similarly, for the discrete problem, Uccs is the set of dis-
crete concentration, which is the finite element discretiza-
tion of a bounded, convex, and closed subset of the Hilbert
space H1, or RN . Dccs is the set of discrete diffusion coef-
ficients, which is a convex, and closed subset of RN . This
implies that both Uccs and Dccs are reflexive. In addition,
Z = RN . Φ is quadratic in both uh and dh, so it is obviously
weakly continuous. Because of the well-posedness and the
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stability of the discrete PDE, the condition (3) is also sat-
isfied. Therefore, the discrete OPT-PDE model problem has
an optimal solution (uh,∗,dh,∗).

In summary, these results for the continuous and discrete
problems imply that the solution of an optimization problem
with a PDE constraint exists when the objective function Φ

is weakly continuous, the domain of the constraint operator
is a compact subset of Banach space, and the equality con-
straint contains a well-posed PDE with bounded d-inverse.

An alternative implementation of the objective function
in the discrete OPT-PDE model is to normalize the diffusion
coefficients by their magnitude in such a way that the con-
vergence of the optimization problem and the error of solu-
tions are independent of the values of diffusion coefficients.
In this case, the discrete objective function becomes

Φh(uh,dh) =
1
2
(uh−uh

2)
T M(uh−uh

2)

+
γ

2

K∑
k=1

(
dk−d0,k

d0,k

)2

Area(Ωk), (Eq 2.8)

and the corresponding discrete OPT-PDE problem remains
well-posed.

3 Description of the algorithm

The discrete OPT-PDE problem given by (Eq 2.7) can be
solved by minimizing the Lagrangian function [26,2,5].

L(u,d,v) =
1
2
(uh−uh

2)
T M(uh−uh

2)

+
1
2

γ(dh−dh
0)

T M(dh−dh
0)

+uh,T

(
K∑

k=1

dkAk

)
vh +∆ t−1(uh−uh

1)
T Mvh,

where Ak is the subdomain stiffness matrix. First, we con-
sider the simple case where dk is a scalar in each subdomain
Ωk, k = 1, 2, . . . , K.

The Lagrangian function is minimized numerically by
applying Newton’s method to the first-order conditions [26,
2]. As the PDEs are solved to an accuracy that is finer than
the convergence tolerance of the Newton iterations, we ex-
pect the usual theoretical rate of convergence of Newton’s
method for a system of nonlinear equations [27]. The gra-
dient of the Lagrangian is J = [ ∂L

∂u ,
∂L
∂v ,

∂L
∂d ]

T . The quadratic
functional of the control variable dh,

q(dh−dh
0)≡

1
2

γ(dh−dh
0)

T M(dh−dh
0),

can be simplified when dh = [d1,d2, . . . ,dK ]
T is a discrete

piecewise constant function in space. In particular,

q(dh−dh
0) =

K∑
k=1

1
2

γS(Mk)(dk−d0)
2,

where S(Mk) is the sum of all entries in the subdomain mass
matrix Mk, for k = 1, 2, . . . , K.

It follows that the gradient of the Lagrangian is

∂L
∂d

=

 γS(M1)(d1−d0)+uh,T A1vh

...
γS(MK)(dK−d0)+uh,T AKvh

 .
The first-order necessary condition implies that the gradient
of the Lagrangian functional is zero, i.e.,

M(uh−uh
2)+Avh = 0

Auh−Muh
1/∆ t = 0

∂L/∂d = 0

where A =
∑K

k=1 dkAk + M/∆ t. The KKT matrix H (see,
e.g., [26]) is given by

H =

M A Cu
A 0 Cv

CT
u CT

v G

 ,
where the submatrices Cu = [A1vh · · ·AKvh],
Cv = [A1uh · · ·AKuh], and the diagonal matrix
G = γ diag[S(M1), . . . ,S(MK)]. Observe that Cu and Cv
may be rank deficient if the discrete Laplacian of uh and vh

are both zero in a certain subregion. In this case, a nonzero
γ is needed to guarantee the non-singularity of the KKT
matrix and the well-posedness of the optimization problem.
This notion will be further illustrated in the numerical
results section.

In the general case, each dk is a symmetric tensor ma-

trix dk =

[
d11,k d12,k
d12,k d22,k

]
in the subdomain Ωk. In this case, the

Lagrangian function is

L(u,d,v) =
1
2
(uh−uh

2)M(uh−uh
2)+q(dh−dh

0)

+uh,T ( K∑
k=1

A(dk)
)
vh +∆ t−1(u−uh

1)
T Mvh.

The quadratic function q(dh−dh
0) is

q(dh−dh
0) =

1
4

γ(dh
11−dh

11,0)
T M(dh

11−dh
11,0)

+
1
2

γ(dh
12−dh

12,0)
T M(dh

12−dh
12,0)

+
1
4

γ(dh
22−dh

22,0)
T M(dh

22−dh
22,0).

This definition of q(dh − dh
0) is consistent with the scalar

case where dk =

[
d11,k 0

0 d11,k

]
.
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The subregion stiffness matrix Ak(dk) can be written as a
linear combination of three terms corresponding to the 2nd-
order derivatives of u in the Laplace operator, i.e.,

Ak(dk) = d11,kA11,k +d12,kA12,k +d22,kA22,k,

where A11,k, A12,k, and A22,k are stiffness matrices corre-
sponding to the respective diffusion tensors[

1 0
0 0

]
,

[
0 1
1 0

]
, and

[
0 0
0 1

]
.

It follows that, the partial derivatives of q and Ak are

∂q
∂di j,k

=

{ 1
2 γM(dh

i j,k−dh
i j,k,0), when i = j;

γM(dh
i j,k−dh

i j,k,0), when i 6= j,

and

∂Ak(dk)

∂di j,k
= Ai j,k.

This gives the first-order derivatives of the Lagrangian as

∂L
∂d

=



...
1
2 γS(Mk)(d11,k−d11,k,0)+uh,T A11,kvh

γS(Mk)(d12,k−d12,k,0)+uh,T A12,kvh

1
2 γS(Mk)(d22,k−d22,k,0)+uh,T A22,kvh

...

 .

The block sub-matrices in the KKT matrix H have 3K
columns, with

Cu =
[
· · · A11,kvh, A12,kvh, A22,kvh · · ·

]
,

Cv =
[
· · · A11,kuh, A12,kuh, A22,kuh · · ·

]
,

and

G = diag
[
· · · 1

2 γS(Mk), γS(Mk),
1
2 γS(Mk) · · ·

]
.

In the numerical examples, the diffusion tensor is a 2× 2
diagonal matrix with a known rotation matrix Q, i.e., dk =

QT
[

d11,k 0
0 d22,k

]
Q. In this case, the matrices Cu and Cv have

two columns corresponding to each such diffusion tensor in
a subdomain, and the diagonal matrix G has two correspond-
ing diagonal entries.

For both scalar and tensor diffusion, the Newton direc-
tion p= [δu, δv, δd]T at the jth step can be calculated using
the linear system involving the KKT matrix and the negative
gradient of the Lagrangian evaluated at the jth iterate [26].

H p =−J(u j,v j,d j) =−

M(u j−uh
2)+Av j

Au j−Muh
1/∆ t)

(∂L/∂d) j

≡−
Ju

Jv
Jd

 .

To simplify the notation, we drop the Newton iteration index
j. At each Newton step, the Newton equations may be ex-
pressed in terms of the KKT equations [26], which are given
by the block 3×3 linear system of the formM A Cu

A 0 Cv
CT

u CT
v G

δu
δv
δd

=−

Ju
Jv
Jd

 . (Eq 3.1)

(Normally such KKT systems are expressed in block 2× 2
form with the zero block as the lower-right diagonal.) In this
case, we wish to exploit the special sparse structure of the
mass matrix M and stiffness matrix A, with A being posi-
tive definite. The corresponding equation can be solved effi-
ciently by many standard iterative methods. In addition, the
block matrices Cu and Cv are rectangular sub-matrices con-
sisting of column vectors, and G is a low-dimensional di-
agonal matrix. Each block system is solved using a variant
of block Gaussian elimination that exploits existing efficient
solvers for the linear systems with matrix A. Starting with
block factorization, the matrixM A Cu

A 0 Cv
Ct

u Ct
v G

=

I 0 0
0 A 0
0 0 I

M I 0
I 0 0

Ct
u C̄t

v Ḡ

I 0 C̄v
0 I C̄u
0 0 I

I 0 0
0 A 0
0 0 I

 ,
(Eq 3.2)

where

AC̄v =Cv,

C̄u =Cu−MC̄v,

Ḡ = G−Ct
uC̄v−C̄t

vC̄u.

For each subdomain scalar diffusion coefficient, the compu-
tation of C̄v requires the solution of one linear system with A,
while each 2×2 diffusion tensor requires the solution of two
or three such linear systems. At the right-hand side of (Eq
3.2), each of the two block-diagonal matrices requires the
solution of one linear system with A. It follows that a total
of Ks+2Kr+3Kt +2 elliptic PDE systems must to be solved
at each Newton step, where Ks, Kr, and Kt are the number
of scalars, tensors with a known rotation, and those with an
unknown rotation respectively, such that Ks +Kr +Kt = K.
The block lower-triangular system requires the solution of
one dense linear system with the low-dimensional symmet-
ric matrix Ḡ.

The overall solution procedure given below is similar
to an earlier version of the algorithm described and imple-
mented in the PDE solver package PLTMG [2]. As the linear
systems involving A may be solved approximately by itera-
tion, we introduce the matrix Ĉv ≈ C̄v, which is generally the
approximate C̄v saved from the previous Newton step. This
allows the matrix C̄v to be updated iteratively at each New-
ton step. The matrix Ĉv is initially set to zero, and updated
at every Newton step.
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The first step is to solve

AJ̄v = Jv,

AW =Cv−AĈv,

Ĉv← Ĉv +W,

C̄v = Ĉv.

All the linear systems involving A are solved approximately
using an incomplete LU factorizing (ILU) preconditioned
conjugate-gradient method. Then we form

J̄u = Ju−MJ̄v,

C̄u =Cu−MC̄v,

which requires sparse matrix multiplications with M. The
next step is to compute δd using the Schur complement

Ḡ = G−Ct
uC̄v−C̄t

vC̄u,

Ḡδd =−(Jd−Ct
uJ̄v−C̄t

vJ̄u).

Finally, δu and δv are formed from

δu =−(J̄v +C̄vδd),

Aδv =−(J̄u +C̄uδd).

The second equation requires the linear solver for A. This
solver is implemented in PLTMG, which is applied to three
numerical examples in the next section.

4 Numerical Results

In order to illustrate the numerical stability and computa-
tional efficiency of the OPT-PDE approach, the solver was
applied to four examples arising from three different scenar-
ios of molecular diffusion in live cells, i.e., spot diffusion,
layered diffusion, and filament tensor diffusion. In each of
the examples, the forward numerical simulation functions
in our Fluocell software package were used to generate in-
put concentration maps of known diffusion maps [25,24].
These concentration maps and their finite element triangu-
lations were read into PLTMG as input for the OPT-PDE
model. The diffusion coefficients were then estimated by
solving the optimization problem described in (Eq 2.8) us-
ing the OPT-PDE algorithm of PLTMG, which implements
the method described in Section 3. The computed diffusion
coefficients were compared with the known diffusion map
to determine the accuracy and efficiency of the OPT-PDE
solver. The PLTMG OPT-PDE solver was run on an Apple
Mac Pro Laptop computer with an intel i5 dual-core proces-
sor (2.9 GHz) and 8GB RAM.

a b

Figure 1

Fig. 4.1: The cell model and the photobleaching pattern
used in the simulation. (a) The basic geometry of the cell
model (white) used for the spot diffusion and filament tensor
diffusion simulation. (b) shows the subcellular region to be
photobleached in dark gray.

In the forward simulation, a certain region in an elliptic
cell model is designated as the photobleached region (see
Figure 4.1), which represents the subcellular region with
lower initial concentration at time t = 0s. A diffusion map
on the cell model is designated to be piecewise constant
with assigned values on a given subdomain structure (e.g.,
Figure 4.2a). A computer simulation was then performed
to mimic the fluorescence recovery after photobleaching
(FRAP) process via diffusion (Figure 4.2b) [25].

The OPT-PDE algorithm has a three levels of iterations.
At the top level, a sequence of “rounds” are performed in
which the optimization problem is solved with the regular-
ization term d−d0 defined with d0 the solution of the prob-
lem from the previous round. The next level of iterations are
those of Newton’s method applied to the discretized first-
order optimality conditions. At the lowest level, the itera-
tions are those of the method used to solve the KKT equa-
tions (Eq 3.1).

4.1 Spot Diffusion

Under the assumption that intra-cellular molecules diffuse
more slowly in certain subcellular regions, smaller diffu-
sion coefficients were assigned to four small elliptic or cir-
cular sub-cellular regions within the cell body. The cor-
responding diffusion map and finite element triangulation
were generated accordingly (Figure 4.2a), with the photo-
bleach pattern shown in (Figure 4.1b). The forward diffusion
simulator of Fluocell was used to simulate FRAP, with the
simulated concentration u1, u2, and scaled change of con-
centration u2 − u1 shown in (Figure 4.2b). The change of
concentration u2 − u1, was scaled by multiplying the fac-
tor s = (maxx(u1,u2)−minx(u1,u2))

−1, such that its mag-
nitude is less or equal to 1. The new solver implemented
in PLTMG takes the forward simulation results as an input
and the concentration and diffusion maps are estimated by
multiple rounds of OPT-PDE solving (Figure 4.3)[2]. The
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regularization constant is γ = 10−5 for all three test prob-
lems. Alternatively, it is possible to adjust the values of γ at
each round of OPT-PDE solve, which may potentially speed
up convergence, although this approach was not adopted in
our solver. For all the test problems, the lower and upper
bounds for the diffusion coefficients are dmin = 0.1 µm2/s
and dmax = 500 µm2/s.

For the first round of OPT-PDE solves, the initial guess
of the diffusion coefficients were 10 µm2/s for all subcellu-
lar regions, which was implemented into the solver as d1,0
and d2,0 in the regularization term of the objective function.
It took four steps for Newton’s method to converge to the
optimal solution, with a Newton increment larger than or
equal to 10−2 and the residual decreasing until it was smaller
than 10−5 (Figure 4.3(a)). The PDE was discretized using
finite element method, and the resulting linear system in-
volving the stiffness matrix A was solved using incomplete
LU factorization [2,4]. There were 3882 mesh nodes, and it
took 1.23 s to solve each linear system, with majority (about
69.2%) of time spent on assembling the stiffness and mass
matrices (Figure 4.3b). As there were two different scalar
diffusion coefficients, four solves of the PDE were needed
for each Newton’s iteration. The computing time necessary
to solve a single PDE is estimated to be 0.18s, and the over-
all computing time is 5.15s, which is a 29-fold increase over
the cost of a single solve. The diffusion coefficients con-
verged to d1 = 27.4 µm2/s and d2 = 6.79 µm2/s at the end
of the 1st round of the OPT-PDE solver (see Figure 4.3c).

In the 2nd round of the OPT-PDE solver, the estimates
d1,0 and d2,0 were set to the solutions from the first OPT-
PDE solve, which provide an improved estimation of the
optimal diffusion coefficients (Eq 2.8). By iteratively im-
proving the regularization term in the objective function, the
OPT-PDE solver converges at round 6, when the increments
in the diffusion coefficients were less than 1% of their ini-
tial values (see Figure 4.3c). The solutions of diffusion co-
efficients are recorded as d∗1 and d∗2 . The convergence pro-
cess of the relative diffusion coefficients d1/d∗1 and d2/d∗2
are shown in Figure 4.3d. These results show that the opti-
mized solution of d is accurate, and that both diffusion co-
efficients converged with similar efficiency, as intended by
the normalized regularization terms in (Eq 2.8). In addition,
we can estimate the optimal Lagrange multiplier vh and the
scaled solution of u− u1 (Figures 4.3e and 4.3f). The solu-
tion u− u1 was scaled in the same way as the input change
of concentration, u2− u1, as shown in Figure 4.2b. The re-
sults given in Figures 4.2b and 4.3f) indicate that the scaled
u−u1 approximates the scaled u2−u1 very well.

In order to demonstrate the need for the regularization
term, a model problem was constructed where the KKT ma-
trix is singular, or the discrete Laplacian of the solution is
zero in certain local regions. In this case, a nonzero regu-
larization term is necessary to ensure that the discrete op-

timization problem is well-posed. As in the forward simu-
lation results shown in Figure 4.3, the diffusion map, tri-
angulation, u1, u2, and scaled u1 − u2 are shown in Fig-
ure 4.4. If the regularization constant γ is zero and the
initial estimate of the diffusion coefficients was 10 µm2/s,
Newton’s method was unable to compute a solution. How-
ever, for γ = 10−5, the solver converged successfully to
d1 = 29 µm2/s, d2 = 5 µm2/s. In this case d3 converged to
the initial estimate 10 µm2/s because of the lack of infor-
mation provided by the diffusion equation (see Figure 4.5).
These results show that the regularization term is necessary
to ensure that the optimization problem is well-posed when
the KKT matrix is rank deficient. Regularization can also
be used to improve the rate of convergence and robustness
of the solver when an optimization problem is well-posed,
or when the block Gaussian elimination is too expensive to
compute (see, e.g., [29]). Therefore, the proposed theoreti-
cal and numerical framework can serve as a foundation for
solving a wider class of optimization problems with PDE
constraints.

4.2 Layered Diffusion

In the second example, the cell model was divided into four
layers in the axial direction, with four different scalar diffu-
sion coefficients (see Figure 4.6a). The photobleach pattern
was defined to allow the bleached region encompass all four
layers (Figure 4.6b). Again, forward simulation of the dif-
fusion process was performed to generate the concentration
maps u1 and u2 at different time points after photobleach-
ing, as well as the scaled change of concentration u2− u1
(Figure 4.6c). These simulation results, but not the diffusion
map, were then used as input for the OPT-PDE solver in
PLTMG to estimate the diffusion map given in Figure 4.7.

Similar to the first numerical example, PLTMG took the
forward simulation results as input and estimated the con-
centration and diffusion maps by multiple rounds of OPT-
PDE solving, with γ = 10−5 and adaptive regularization
terms in the objective functions. For the initial round of
OPT-PDE solve, the initial guess of the diffusion coefficients
were again 10 µm2/s for all subcellular regions. There were
6820 mesh nodes, and it took 2.38 s to solve each PDE prob-
lem (Figure 4.7b). The computing time necessary to solve a
single PDE is estimated to be 0.38s, and the overall comput-
ing time is 6.59s, which is a 17-fold increase over the cost
of a single solve. For each Newton iteration, six solves of
the PDE were needed to compute the four diffusion coeffi-
cients. Each Newton iteration required 4 steps to converge
to the optimal solution of the objective (Figure 4.7(a)). The
OPT-PDE solver converged at round 3 (Figure 4.7c), with
the diffusion coefficients converges to d∗1 , d∗2 , d∗3 and d∗4 .
The convergence of the relative diffusion coefficients di/d∗i
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Figure 2

a b

Diffusion Map
5                    29 µm2/s

u1 at 1.17 s               u2 at 2.17 s           Scaled (u2-u1)
6.0e40 -0.08 0.12

Fig. 4.2: Forward simulation results. (a) The diffusion map for spot diffusion overlaid with the finite element mesh. The
diffusion coefficient of the large cell body area was assigned to be d̄1 = 29 µm2/s, while that of the small elliptic regions
was d̄2 = 5 µm2/s. (b) The left and middle figures depict the simulated concentration maps of the diffusing molecules at
different time points after photobleaching. The right figure gives the scaled concentration map u2−u1 used as the input for
the OPT-PDE solver.
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Fig. 4.3: The OPT-PDE solution for the spot diffusion problem. At the initial round of the OPT-PDE solve, (a) shows the
Newton increments and residuals (logarithmic scale) vs the number of Newton steps; (b) shows the time for each Newton
iteration displayed as a pie graph that gives the percentage of time used by each component of the solver. (c) The optimal
diffusion coefficients after each round of OPT-PDE solves. The exact values of d̄1 and d̄2 used in the forward simulation
are plotted in black/white stripes as the reference. (d) The normalized diffusion coefficients are shown versus the OPT-PDE
solving rounds. d∗1 and d∗2 are the optimal solutions of diffusion coefficients after convergence. (e) The Lagrange multiplier.
(f) The scaled solution of u−u1.
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5                    29 µm2/s

Figure 4

a b

Diffusion Map
0.19- 0.1

u1 at 10.08 s                u2 at 20.08 s        Scaled (u2-u1)
6.0e40

Diffusion	coefficients	=	29,	15,	5.
Does	not	converge	for	gamma=0,	initial	guess	10,	10,	10

Fig. 4.4: Forward simulation results. (a) The diffusion map for spot diffusion overlaid with the finite element mesh. The
diffusion coefficient of the large cell body area was assigned to be d̄1 = 29 µm2/s, while those of the two small elliptic
regions at the right side were each d̄2 = 5 µm2/s. The diffusion coefficients of the two small regions on the left were both
d̄2 = 15 µm2/s. (b) The left and middle figures give the simulated concentration maps of the diffusing molecules at different
time points after photobleaching. The right figure gives the scaled concentration map u2−u1 used as the input for the OPT-
PDE solver.
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Fig. 4.5: The OPT-PDE solution for the spot diffusion problem with necessary Tikohnov regularization. At the initial
round of OPT-PDE solve, (a) shows the Newton increments and residuals (logarithmic scale) vs the number of Newton
steps; (b) shows the computing time of each Newton iteration displayed in the pie graph showing the percentage of time
used by each solver component. (c) The optimal diffusion coefficients after each round of OPT-PDE solve. The exact values
of d̄1, d̄2, and d̄2 used in forward simulation are plotted in black/white stripes as the reference. (d) The normalized diffusion
coefficients are shown versus the OPT-PDE solving rounds. d∗1 , d∗2 , and d∗3 are the optimal solutions of diffusion coefficients
after convergence. (e) The Lagrange multiplier. (f) The scaled solution u−u1.
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Fig. 4.6: Forward simulation results. (a) The diffusion map for layered diffusion overlaid with the finite element mesh.
Moving from the outside to the inside, the diffusion coefficients of the four layers are d̄1 = 5 µm2/s, d̄2 = 20 µm2/s, d̄3 =

30 µm2/s, and d̄4 = 1 µm2/s. Panel (b) shows the photobleach pattern in gray. (c) The left and middle figures give the
simulated concentration maps of the diffusing molecules at different time points after photobleaching. The right figure
depicts the scaled concentration map u2−u1 used as the input for the OPT-PDE solver.
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Fig. 4.7: The OPT-PDE solution for the spot diffusion problem. At the initial round of OPT-PDE solve, (a) shows the
Newton increments and residuals (logarithmic scale) vs. the number of Newton steps; (b) shows the computing time of
each Newton iteration displayed in the pie graph showing the percentage of time used by each solver component. (c) The
optimal diffusion coefficients after each round of the OPT-PDE solve. The accurate values of d̄i, i = 1, 2, 3, 4 used in forward
simulation are plotted in black/white stripes as a reference. (d) The normalized diffusion coefficients are shown vs the OPT-
PDE solving rounds. d∗i , i = 1, 2, 3, 4 are the optimal solutions at convergence. (f) The Lagrange multiplier. (g) The scaled
solution of u−u1.
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is shown in Figure 4.7d, indicating that all diffusion coef-
ficients converged with similar efficiency. In addition, we
estimated the optimal Lagrange multiplier vh and confirmed
that the scaled solution of u− u1 approximates the scaled
change of concentration, u2−u1 (Figures 4.6c and 4.7e-f).

4.3 Filament Tensor Diffusion

In cells, it is possible that anisotropic diffusion can occur
along the long axis of certain filamentous structures. To
study the applicability of our solver to such scenarios, we
designed a diffusion map with two independent filaments,
where the diffusion coefficients were set to be isotropic in
the general cell model and anisotropic on the filaments (Fig-
ure 4.8(a)). The diffusion tensor was calculated using the
transformation matrix based on the known orientations of
the filaments (Figure 4.8a). The same photobleach pattern
from spot diffusion simulation was used (4.1b). As such, we
utilized the known orientation of the filaments to construct
the finite element mesh, simulated locally anisotropic dif-
fusion and the resulting concentration maps. These, but not
the diffusion map, were used as input to test the OPT-PDE
solver in PLTMG.

As in the previous examples, PLTMG took the forward
simulation results as input and were able to estimate the
concentration and diffusion maps by ten rounds of OPT-
PDE solve (Figure 4.9), with adaptive objective functions.
The initial guess of the diffusion coefficients were again
10 µm2/s for all directions and subcellular regions. In the
initial round of OPT-PDE solve, Newton’s iteration took
four steps to converge (Figure 4.9(a)). There were 3919
mesh nodes, and it took 1.31s to solve each PDE problem
(see Figure 4.9b). The computing time necessary to solve a
single PDE is estimated to be 0.21s, and the overall com-
puting time is 12.64s, which is a 60-fold increase over the
cost of a single solve. Each Newton iteration required five
solves of the PDE for the three diffusion components. At
the 10th round of the PDE-OPT solve (Figure 4.9c), the dif-
fusion coefficients converges to d∗1 , d∗2 , and d∗3 . The conver-
gence of the relative diffusion coefficients di/d∗i is shown in
Figure 4.9d, indicating that d1/d∗1 and d3/d∗3 converged at
a similar rate while d2/d∗2 was slower to converge. The dif-
ferent convergence rates may be caused by the small size of
the filaments relative to the cell body, as well as the 20-fold
difference in the diffusion rate along the filament compared
to the cell body. The optimal Lagrange multiplier vh is given
in Figure 4.9e). The scaled solution u− u1, which approxi-
mates the scaled change of concentration u2−u1, is depicted
in Figures 4.8c and 4.9f.

Taken together, the numerical simulation and solution
results demonstrate that the proposed OPT-PDE solver pro-
vides a highly accurate, computationally efficient, and nu-

merically robust tool for estimating the spatial diffusion
maps in both isotropic and anisotropic problems.

5 Discussion and Future Work

In this work, we consider the solution of biologically mo-
tivated inverse problems associated with spatially heteroge-
neous diffusion coefficients based on known concentration
maps. The problem is formulated as an optimization prob-
lem with the diffusion equation as a constraint. The well-
posedness of both the PDE and the optimization model is
established. Newton’s method is used to solve the finite-
dimensional optimization problem obtained by discretizing
the PDE with finite elements in space and finite differences
in time. An efficient OPT-PDE solver is formulated that ex-
ploits the special algebraic structure of the finite-element
stiffness and mass matrices. Finally, numerical examples
are presented that demonstrate the robust and efficient con-
vergence of the solver for three example problems with
spatially discontinuous or anisotropic diffusion coefficients.
These results indicate that the proposed OPT-PDE approach
for finding the diffusion coefficients is accurate and robust,
and it may be used for cellular image-based analysis to re-
construct molecular transport parameters.

The ultimate goal of this work is to develop an OPT-PDE
analysis framework that can be used to reveal the spatiotem-
poral map of molecular diffusion and transport in live cells
with high resolution. Therefore, a future research direction
is to generalize the OPT-PDE solver to imaging problems.
The OPT-PDE solver itself can be developed to allow the
diffusion map to be a piecewise linear function on the do-
main without knowing the specific geometric configuration
of the subdomains. The PDE constraint can be a sophisti-
cated reaction-diffusion system, from 2D to 3D model prob-
lems, or directly from bio-imaging data. In summary, we en-
vision significant bio-imaging applications for this class of
OPT-PDE models and a great potential to explore and de-
velop new functionality for the solver.
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Fig. 4.8: Forward simulation results for filament tensor diffusion. (a) The diffusion map with the magnitudes of the tensor
diffusion vectors overlaid with the finite element mesh. The diffusion coefficients were set to be d̄1 = 5 µm2/s in the general
cell area, d̄2 = 100 µm2/s along the filaments, and d̄3 = 5 µm2/s perpendicular to the filaments. (b) The left and middle
figures give the simulated concentration maps of the diffusing molecules at different time points after photo-bleaching. The
right figure gives the scaled concentration map u2−u1 used as the input for the OPT-PDE solver.
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