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Abstract Sufficient conditions are provided for establishing equivalence between best ap-
proximation error and projection/interpolation error in finite-dimensional vector spaces for
general (semi)norms. The results are applied to several standard finite element spaces, modes
of interpolation and (semi)norms, and a numerical study of the dependence on polynomial
degree of constants appearing in our estimates is provided.
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1 Introduction

It is a well established technique in finite element analysis to use interpolation error to bound
the error of finite element approximations to the solutions of partial differential equations.
Such scenarios also arise in other contexts, for example L2 and other projection schemes.
Let W = {w ∈ C(Ω)∩H : w|T ∈W (T ) ∀T ∈ T } ⊂ H denote a finite element space and
H an appropriate Sobolev space. Here T is a partition of the domain Ω into simplicial or
tensorial cells T , and W (T ) is a polynomial space defined on T . Let uh ∈W be a finite
element approximation to u ∈H that satisfies the a priori error estimate

||u−uh|| ≤C inf
χ∈W
||u−χ|| (1)

for an appropriately chosen norm. Let P : H→W denote an interpolation operator, usually
local, typically with error estimates that are relatively easy to compute. In [3], Bank and
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Yserentant were able to show for a variety of finite element spaces and a variety of norms
that

||u−Pu|| ≤C inf
χ∈W
||u−χ|| , (2)

||u−Pu||T ≤C inf
χ∈W
||u−χ||T , (3)

where || · ||T denotes the given norm restricted to a single element T in the finite element
space. Using (1)–(3), we see that

C1||u−Pu|| ≤ ||u−uh|| ≤C2||u−Pu|| .

One may also deduce from such results that the global best approximation error is equivalent
to a sum of local best approximation errors,

C1 inf
χ∈W
||u−χ||2 ≤

∑
T∈T

inf
χ∈W (T )

||u−χ||2T ≤ inf
χ∈W
||u−χ||2 ,

as was also done by Veeser [11] in the case of the H1 semi-norm for Lagrange finite elements
by different techniques—see also [10] for a similar analysis in an energy norm associated
with singularly-perturbed reaction-diffusion problems. It is the lower bound that is notewor-
thy. In the context of linking local interpolation with local or global best approximation, we
also mention the work of Demkowicz [6], who considered various types of projection-based
local interpolation schemes for several standard finite element spaces.

In this work we generalize the results (2)–(3) to include a wider class of finite elements
spaces and modes of interpolation, in particular those based on integral moments as well as
simple pointwise interpolation. Additionally, we provide some numerical calculations of the
stability constant θ (defined below) associated with our lower bound estimates for standard
families of simplicial finite elements in one and two space dimensions. Here we consider
the usual nodal interpolation at both uniform and Chebyshev nodes, and a moment-based
interpolation. While these calculations are restricted to the reference element, they illustrate
how the stability constant θ depends on the polynomial degree m of the finite element space
for the important cases || · ||0 and | · |1. We also briefly explore extensions to interpolation in
vector fields for the cases of Raviart-Thomas and Nedelec spaces. Here a technical difficulty
prevents the direct application of our Theorem 1 for the semi-norms | · |div and | · |curl, but
the overall conclusions of that theorem are proven to hold anyway. A numerical study of the
stability constant θ with respect to || · ||0 for Raviart-Thomas spaces in 2D is also provided.

2 Main Result

Lemma 1 Let V be a finite dimensional vector space, and let | · | j, j = 1,2, be two semi-
norms on it. We define the subspaces N j = {v ∈ V : |v| j = 0}. If N2 ⊂ N1, then there is a
constant θ > 0 such that |v|1 ≤ θ |v|2 for all v ∈V .

Proof We consider the quotient space V/N1, where [v] = {v+w : w ∈ N1} ∈ V/N1 for
v ∈V . On V/N1 we define the norms

‖[v]‖ j = min
w∈N1
|v−w| j .
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It is clear that ‖[v]‖ j ≤ |v| j, but in fact ‖[v]‖1 = |v|1 because |v−w|1 ≥ ||v|1−|w|1| = |v|1
for w ∈ N1. Finally, using the equivalence of norms on V/N1,

|v|1 = ‖[v]‖1 ≤ θ‖[v]‖2 ≤ θ |v|2 ,

which completes the proof.

Theorem 1 Let H be a vector space with seminorm | · |H, and let W ⊂ V ⊂ H be finite
dimensional subspaces, with

N .
= {v ∈H : |v|H = 0} ⊂W .

Let P : H→W and Q : H→V be linear operators such that

1. Pv = v for all v ∈W, and
2. PQv = Pv for all v ∈H.

There is a constant θ ≥ 1 such that, for any u ∈H we have

|u−Pu|H ≤ θ |u−Qu|H+(1+θ) inf
χ∈W
|u−χ|H . (4)

Furthermore, if θ |u−Qu|H ≤ β |u−Pu|H for some β = β (u) ∈ [0,1), then

|u−Pu|H ≤
1+θ

1−β
inf

χ∈W
|u−χ|H . (5)

Proof Because P= I on W and W ⊃N, we have N⊂{v∈H : |Pv|H = 0}. So the seminorms
v 7→ |v|H and v 7→ |Pv|H satisfy the conditions of Lemma 1 on V , and we have the (restricted)
stability result,

|Pv|H ≤ θ |v|H for all v ∈V , (6)

for some constant θ > 0. For u∈H and χ ∈W , we combine (6) and the fact that Qu−χ ∈V
to obtain

|Pu−χ|H = |P(Qu−χ)|H ≤ θ |Qu−χ|H .

Therefore, it follows that

|u−Pu|H ≤ |u−χ|H+ |Pu−χ|H ≤ |u−χ|H+θ |Qu−χ|H
≤ (1+θ)|u−χ|H+θ |u−Qu|H ,

and (5) is a direct consequence of the additional assumption.

Remark 1 The restricted stability result (6) and the “saturation assumption”,

θ |u−Qu|H ≤ β |u−Pu|H for some β = β (u) ∈ [0,1) , (7)

are the essential ingredients of the bound (5); the containment N ⊂W is merely a conve-
nient, and typical, condition that guarantees (6). We note that, if the stability result (6) were
unrestricted in the sense that it held for all v ∈H, instead of just all v ∈ V , we would have
the bound

|u−Pu|H ≤ (1+θ) inf
χ∈W
|u−χ|H
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immediately, without any need to make a saturation assumption. Theorem 1 replaces this
much stronger stability requirement, which does not hold for many operators of interest
(certainly not those considered in Section 3), with a milder stability requirement, at the
cost of a saturation assumption that depends on the function u under consideration. Some
justification of saturation assumptions in the context of finite element computations can be
found in [5, 7], for example.

We decompose V as a direct sum in two ways,

V = R⊕N , V =W ⊕Z where Z = {v ∈V : Pv = 0} . (8)

We note that R is not uniquely determined in the first decomposition (unless N = {0}), but
that does not affect the discussion below. We see that the optimal stability constant θ in (6)
may be expressed as

θ = max
v1∈W ,v2∈Z

|v1|H
|v1 + v2|H

= max
v1∈W∩R ,v2∈Z

|v1|H
|v1 + v2|H

(9)

One often considers the case where the seminorm | · |H is induced by a semi-inner-
product (·, ·)H, |v|2H = (v,v)H. In this case, the optimal stability constant θ in (6) may be
determined from the largest eigenvalue of a generalized eigenvalue problem. Given bases
W ∩R = span{ψ1, . . . ,ψm} and Z = span{φ1, . . . ,φM}, we have

θ
2 = max

x∈Rm+M

xT M1x
xT M2x

, M1 =

(
A 0
0 0

)
, M2 =

(
A C

CT B

)
, (10)

where the matrices A,B and C are given by

ai j = (ψ j,ψi)H , bi j = (φ j,φi)H , ci j = (φ j,ψi)H . (11)

The generalized eigenvalue problem (10) may be reduced in size by using the Schur com-
plement S = A−CB−1CT ,

θ
2 = max

x∈Rm

xT Ax
xT Sx

. (12)

Remark 2 In all examples provided in Section 3, the matrices A and S are computed exactly
(typically as matrices with rational entries) using Mathematica [12]; and the eigenvalue
problems are solved, approximately but with high accuracy, in that environment.

Remark 3 In the context of the discussion above, suppose that a strong Cauchy inequality
holds between W and Z for (·, ·)H, i.e. there is a constant γ ∈ [0,1) for which

(v1,v2)H ≤ γ|v1|H|v2|H for all v1 ∈W and v2 ∈ Z . (13)

It follows that, for any v1 ∈W and v2 ∈ Z, −2(v1,v2)H ≤ γ2|v1|2H+ |v2|2H, so we see that
(1− γ2)|v1|2H ≤ |v1 + v2|2H. In other words, a strong Cauchy inequality implies the stability
result (6),

|v1|H ≤ θ |v1 + v2|H for θ
−2 = 1− γ

2 .

We note that (·, ·)H is an inner-product on R, and Z⊂R. Now assume that there is a θ ≥ 1 for
which |v1|H ≤ θ |v1+v2|H for all v1 ∈W and v2 ∈ Z. Given v1 ∈W and non-zero v2 ∈ Z∩R,
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let vz = −(v1,v2)H v2/|v2|2H, so −vz is the orthogonal projection of v1 onto v2. It follows
that

|v1|2H ≤ θ
2|v1 + vz|2 = θ

2

(
|v1|2H−

(v1,v2)
2
H

|v2|2H

)
.

From this, it is clear that

(v1,v2)H ≤ γ|v1|H|v2|H for γ
2 = 1−θ

−2 .

We see, then, that (6) and (13) are essentially the same notion in this context. A saturation
assumption related to (7) and a strong Cauchy inequality are the key ingredients in the
traditional analysis of hierarchical basis error estimates for finite element discretizations
(cf. [2]).

3 Several Examples

We indicate below how Theorem 1 might be applied in terms of schemes for interpolating
sufficiently regular scalar or vector fields for a few families of finite element spaces. In this
context, V and W ⊂ V will be members of the same finite element family, and Q and P
will denote interpolation into V and W , respectively, by a scheme that is fixed for the finite
element family.

We use the following notation in most of the examples below. Let T ⊂ Rd be a closed
simplex with vertices {z1, . . . ,zd+1}, and let S`(T ) denote the set of its subsimplices of
dimension `, 0 ≤ ` ≤ d. So Sd(T ) = {T}, Sd−1(T ) is the set of “faces” of dimension d−
1, S1(T ) is the set of “edges” of dimension 1, and S0(T ) = {z1, . . . ,zd+1} is the set of
vertices, for example. For faces F ∈ Sd−1(T ), we use nF to denote the outward unit normal
to that face. For edges e ∈ S1(T ) we use te to denote a unit tangent parallel to that edge.
By Pm(S) we denote the polynomials of degree ≤m on S ∈ S`(T ), and by P̃m(S) we denote
the corresponding homogeneous polynomials of degree m. In R3 we will also use the spaces
Sm(T ) = {v ∈ [P̃m(T )]3 : x ·v = 0}. In the examples below, we consider the (semi-)norms

‖v‖0 =

(∫
T
|v|2 dx

)1/2
, |v|1 =

(∫
T
|∇v|2 dx

)1/2
,

|v|div =

(∫
T
(∇ · v)2 dx

)1/2
, |v|curl =

(∫
T
|∇× v|2 dx

)1/2
.

Here | · | denotes the Euclidean norm of a vector field or the absolute value of a scalar field.

3.1 Nodal Interpolation of Scalar Fields in Polynomial Spaces

Let Im = {α = (α1, . . . ,αd+1) ∈ Nd+1
0 : α1 + · · ·+ αd+1 = m}. The nodal interpolation

Pm : C(T )→ Pm(T ) is uniquely defined by

(Pmv)(xα) = v(xα) for all xα =
1
m

d+1∑
k=1

αkzk , α ∈ Im .

This is the interpolation scheme considered in [3], for which we have Pm = I on Pm(T ),
and PmP2m = Pm on C(T ) because {xα : α ∈ Im} ⊂ {xα : α ∈ I2m}. For the L2-norm we
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have N = {0} ⊂ Pm(T ), and for the H1-seminorm we have N = span{1} ⊂ Pm(T ), so the
assumptions of Theorem 1 are satisfied in both cases.

To gain some intuition about how the stability constant θ in (6) may depend on m, we
first numerically approximate θ 2 for ‖ ·‖0 and | · |1, and 1≤m≤ 12, in the one-dimensional
case. We lose no generality by taking T = [−1,1]. In addition to the uniformly-spaced nodes,
x(m)

k =−1+2k/m, we also consider the Chebyshev nodes, x(m)
k = cos(kπ/m), although the

Chebyshev nodes do not have a natural analogue in higher dimensions in this context. It is
convenient in this case to use Lagrange bases Pm(T ) = span{`(m)

k : 0≤ k ≤ m},

`
(m)
k (x) =

m∏
j=0 , j 6=k

x− x(m)
j

x(m)
k − x(m)

j

, 0≤ k ≤ m .

A basis for Z is {`(2m)
k : 0≤ k≤ 2m , k 6= 2 j}. The computed values of θ 2 are given in Table 1

for both uniform and Chebyshev nodes. We recall that the L∞ Lebesgue constant (cf. [4,
9]) grows essentially exponentially for uniform nodes, and logarithmically for Chebyshev
nodes, and the observed growth in θ 2 is consistent with these rates for both of our norms.

We also consider the optimal stability constant under nodal interpolation in R2, using the
reference triangle T having vertices (0,0), (1,0) and (0,1), and the unformly-spaced nodes
xα described above. A convenient basis, in terms of nodal interpolation, for Pm(T ) is the
standard Lagrange nodal basis {Lα : α ∈ Im}, where Lα(xα ′) = δαα ′ . Letting λ1 = 1−x−y,
λ2 = x, λ3 = y denote the barycentric coordinates of T , we have

Lα =
3∏

j=1

α j−1∏
i=0

|α|λ j− i
α j− i

.

A basis for Z = {v ∈ P2m(T ) : Pmv = 0} is given by {Lβ : β ∈ I2m \ (2Im)}. Using these
bases, we compute the stability constants θ 2 via the generalized eigenvalue problem (10)
for both ‖ · ‖0 and | · |1 in Table 2, for 1 ≤ m ≤ 10. As in the 1D case, the computed values
of θ indicate exponential growth with respect to m.

3.2 Interpolation of Scalar Fields in Polynomial Spaces by Integral Moments

For interpolation by moments, we define Pm : C(T )→ Pm(T ) by∫
S
(Pmv)κ =

∫
S

vκ for all κ ∈ Pm−`−1(S) and all S ∈ S`(T ) , 0≤ `≤ d , (14)

where
∫

S vκ with S ∈ S0(T ) is understood to be evaluation of v at the vertex S. It is shown
in [1], for example, that this interpolation is well-defined, with Pm = I on Pm(T ). We also
see that, for any M > m, PmPM = Pm on C(T ); because, for each S ∈ S`(T ), 0≤ `≤ d,∫

S
(Pm(PMv))κ =

∫
S
(PMv)κ =

∫
S

vκ =

∫
S
(Pmv)κ for all κ ∈ Pm−`−1(S) .

Therefore, as in the case of nodal interpolation, conditions 1)-2) of Theorem 1 are satisfied,
and N ⊂ Pm(T ) for m≥ 0 for standard (semi-)norms such as ‖ · ‖0 and | · |1.

This type of interpolation is more natural than nodal interpolation in the sense that
PmPM = Pm for any M > m; we do not need M to be a multiple of m, as we did in then
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case of nodal interpolation. Also, it has natural analogues for interpolation of vector fields
in Raviart-Thomas and Nedelec spaces, as discussed below.

As with the case of nodal interpolation, we first consider the stability of interpolation by
moments from PM(T ) to Pm(T ) for M > m in 1D, and explicitly determine how the stability
constant θ depends on m and M for the (semi-)norms ‖ · ‖0 and | · |1. Again, we lose no
generality by taking the interval T = [−1,1]. Convenient basis for Pm(T ) and Z are

Pm(T ) = span{pk : 0≤ k ≤ m} , Z = span{pk− pk−2 : m+1≤ k ≤M} ,

where pk is the Legendre polynomial of degree k with normalization pk(1) = 1. We note
that the basis for Z is given in terms of (scaled) integrated Legendre polynomials.

For ‖ · ‖0 in 1D, the eigenvalue problem (10) can be solved explicitly,

θ
2 =

(M+1)(M+1− (−1)M−m)− (m−1)(m−2)
2(2m−1)

. (15)

We note that, for any fixed m, θ grows linearly in M. A pair of functions for which ‖v1‖0 =
‖P(v1 + v2)‖0 = θ‖v1 + v2‖0 is v1 = pm−1 and v2 =

∑M−1
j=m b j(p j+1− p j−1), where

b j =
(M+1)(M+1− (−1)M−m)− j( j+1)

(M+1)(M+1− (−1)M−m)− (m−1)(m−2)
1+(−1)m− j

2
.

For | · |1 in 1D, we determine that θ = 1 as follows. For arbitrary u ∈ C1(T ), we have∫ 1
−1(u−Pmu)κ dx = 0 for all κ ∈ Pm−2(T ), and (u−Pmu)(−1) = (u−Pmu)(1) = 0. There-

fore, ∫ 1

−1
(u−Pmu)′(Pmu)′ dx = (u−Pmu)(Pmu)′

∣∣1
−1−

∫ 1

−1
(u−Pmu)(Pmu)′′ dx = 0 .

From this, we clearly see that

|u−Pmu|1 = min
χ∈Pm(T )

|u−χ|1 , |Pmu|1 ≤ |u|1 for any u ∈C1[−1,1] . (16)

From this it is clear that |Pmv|1 ≤ |v|1 for all v ∈ PM(T ).
The stability constants θ 2 for both ‖·‖0 and | · |1 are given for Pm : P2m→ Pm in Table 1,

for comparison with their counterparts under nodal interpolation.
For the moment-based counterparts of the 2D stability results for nodal interpolation we

consider the same reference triangle T , but begin with bases {λ α = λ
α1
1 λ

α2
2 λ

α3
3 : α ∈ Im}

for Pm(T ), and {λ β : β ∈ I2m} for P2m(T ). It is well-known that∫
T

λ
α dx =

α!2!
(|α|+2)!

|T | ,

∫
e j

λ
α ds =

α!1!
(|α|+1)!

|e j|
{

1 , α j = 0
0 , α j 6= 0

, (17)

where |T | = 1/2 is the area of T and |e j| is the length of edge e j (opposite vertex z j), and
α ∈ Ir for any r ≥ 0. We also have∫

T
∇λ

α ·∇λ
β dx =

2! |T |
|α +β |!

3∑
i, j=1

(∇λi ·∇λ j)αiβ j(α +β − ei− e j)! , (18)

where ei is the multi-index with 1 in its ith position and 0 elsewhere, and σ ! = 0 whenever
any component of σ is negative.
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Table 1 Stability constants θ 2 in L2 and H1 for 1D nodal (uniform, Chebyshev) and moment interpolation
from P2m(T ) to Pm(T ), T = [−1,1].

‖Pmv‖2
0 ≤ θ 2‖v‖2

0 |Pmv|21 ≤ θ 2|v|21
m uniform Chebyshev moment m uniform Chebyshev moment
1 6.000 6.000 6.000 1 1.000 1.000 1.000
2 4.375 4.375 3.333 2 1.146 1.146 1.000
3 5.477 4.671 5.400 3 1.556 1.176 1.000
4 5.776 4.283 4.714 4 2.728 1.202 1.000
5 7.114 5.026 6.667 5 4.702 1.223 1.000
6 11.64 4.912 6.182 6 9.523 1.267 1.000
7 20.15 5.443 8.077 7 20.58 1.312 1.000
8 40.79 5.394 7.667 8 50.26 1.347 1.000
9 93.97 5.813 9.529 9 130.2 1.380 1.000

10 249.0 5.787 9.158 10 366.8 1.408 1.000
11 682.2 6.137 11.00 11 1062 1.434 1.000
12 1972 6.120 10.65 12 3237 1.457 1.000

Using (17) for ease in computation, we construct a basis for Z by applying the vertex,
edge and volumetric moment conditions

λ
β (z j) ,

∫
e j

λ
β

λ
σ ds for σ ∈ Im−2 with σ j = 0 ,

∫
T

λ
β

λ
σ dx for σ ∈ Im−3 .

to the basis of P2m(T ) to form a matrix Ẑ, whose nullspace indicates how to transform
the given basis of P2m(T ) into a basis for Z, and how to transform the mass and stiffness
matrices for the Pm(T )-P2m(T ) and P2m(T )-P2m(T ) interactions to their Pm(T )-Z and Z-Z
counterparts. In the case of | · |1 a basis of Pm(T )∩R is obtained by omitting (any) one of
the given basis functions for Pm(T ). The optimal stability parameters for ‖ · ‖0 and | · |1 are
given alongside their counterparts for nodal interpolation in Table 2. For both norms, the
computed values are consistent with linear growth of θ with respect to m.

Table 2 Stability constants θ 2 in L2 and H1 for 2D nodal (uniform) and moment interpolation from P2m(T )
to Pm(T ), for reference triangle T .

‖Pmv‖2
0 ≤ θ 2‖v‖2

0 |Pmv|21 ≤ θ 2|v|21
m uniform moment m uniform moment
1 16.000 16.000 1 3.0000 3.0000
2 13.195 18.521 2 3.3333 3.4500
3 14.882 33.424 3 3.7910 4.2162
4 22.521 55.275 4 6.0782 5.0188
5 53.278 79.933 5 11.300 5.8320
6 143.08 124.44 6 23.644 6.6510
7 235.67 162.45 7 54.719 7.4737
8 609.57 236.06 8 136.12 8.2988
9 1391.9 292.58 9 365.85 9.1259

10 5126.2 401.72 10 1055.6 9.9541
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3.3 Interpolation of Vector Fields in Raviart-Thomas Spaces

Let RTm(T ) = [Pm−1(T )]d⊕xP̃m−1(T ) be the Raviart-Thomas space of order m on the sim-
plex T ⊂ Rd , having degrees of freedom

∫
F

v ·nF q for all q ∈ Pm−1(F) and all faces F ∈ Sd−1(T ) , (19)∫
T

v ·q for all q ∈ [Pm−2(T )]d . (20)

Given v ∈ [C(T )]d , we define Pmv ∈ RTm(T ) in terms of the moments (19)-(20). It is clear
again that Pm = I on RTm(T ) and PmPM = Pm on [C(T )]d for M > m.

We begin with the semi-norm | · |div, and note from the outset that N, which contains
gradients of all harmonic functions on T , is not contained in RTm(T ) (for any m), so Theo-
rem 1 can not be applied to guarantee the existence of a stability constant θ . However, we
may use the natural extension of the argument given in the case of 1D scalar interpolation
by moments to show that θ = 1 in this case. Assuming v ∈ [C1(T )]d , for any q ∈ Pm−1(T ),

0 =

∫
∂T

(v−Pmv) ·nq =

∫
T

∇ · ((v−Pmv)q)

=

∫
T
(v−Pmv) ·∇q+

∫
T

∇ · (v−Pmv)q =

∫
T

∇ · (v−Pmv)q .

Recalling that ∇ ·RTm(T ) = Pm−1(T ), we deduce that
∫

T ∇ · (v−Pmv)∇ ·Pmv = 0, so

|Pmv|div ≤ |v|div for all v ∈ [C1(T )]3 ⊃ RTM(T ) . (21)

Therefore, we have θ = 1 for (6) for this choice of interpolation and semi-norm. In fact,
since Pmv is already the best approximation of v in the Hdiv seminorm, there is no need to
establish (5) in this case.

We now turn to stability with respect to ‖ · ‖0. In this case, N = {0} ⊂ RTm(T ), so we
are guaranteed a finite stability constant,

‖v‖0 ≤ θ
div,0
mM ‖Pmv‖0 . (22)

A convenient basis of RTm(T ) for our computations is

{(λ α ,0) : α ∈ Im−1}
⋃
{(0,λ α) : α ∈ Im−1}

⋃
{(λ α+e2 ,λ α+e3) : α ∈ Îm−1} , (23)

where Îm = {α ∈ Im : α1 = 0}. In Table 3 we see the optimal stability constant for m ≤
10 when M = m+ 1 and M = 2m. In the latter case, there is modest linear growth in m
throughout; but in the former case, θmM decreases up to m= 5 before exhibiting very modest
linear growth.
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Table 3 Stability constants (θ div,0
mM )2 in L2 for 2D Raviart-Thomas interpolation from PM(T ) to Pm(T ), for

M = m+1 and M = 2m on reference triangle T .

m M = m+1 M = 2m
1 5.6129 5.6129
2 4.6222 6.6839
3 4.1060 9.4377
4 4.0581 11.166
5 4.0249 14.841
6 4.0309 18.596
7 4.0509 21.998
8 4.0727 25.950
9 4.0940 29.074

10 4.1139 33.423

3.4 Interpolation of Vector Fields in Nedelec Spaces

Let Rm(T ) = [Pm−1(T )]3⊕Sm be the (first-kind) Nedelec space of order m on the tetrahe-
dron T ⊂ R3. A function v ∈Rm(T ) is uniquely determined by the values∫

e
v · teq for all q ∈ Pm−1(e) and all edges e , (24)∫

F
(v×nF) ·q for all q ∈ [Pm−2(F)]3 and all faces F , (25)∫

T
v ·q for all q ∈ [Pm−3(T )]3 . (26)

Given v ∈ [C(T )]3, we define Pmv ∈ Rm(T ) in terms of the moments (24)-(26). It is clear
again that Pm = I on Rm(T ) and PmPM = Pm on [C(T )]3 for M > m.

We only consider the seminorm | · |curl in this case. Again we see that N 6⊂Rm(T ) (for
any m), so we are not guaranteed a stability constant θ by the considerations given in the
proof of Theorem 1. However, we establish (6) by other means, and this gives us the re-
sults (4) and (5). More specifically, it immediately follows from a well-known result (cf. [8,
Lemma 5.40]) that

|Pmv|curl ≤ θ
div,0
mM |v|curl for all v ∈RM(T ) , (27)

and this inequality is sharp.

3.5 Interpolation of Scalar Fields in Tensor Product Spaces

For a final set of experiments, we revisit nodal and moment-based interpolation schemes
for tensor product polynomial spaces on the unit square K = [−1,1]2. We denote the poly-
nomials of degree at most m in each variable on K by Qm(K). As before, we provide a
comparison between the stability constants for the different modes of interpolation from
Q2m(K) to Qm(K). The three modes of interpolation are:

1. Nodal interpolation on the uniform lattice {(2i/m−1 , 2 j/m−1) : 0≤ i, j ≤ m}.
2. Nodal interpolation on the Chebyshev lattice {cos(iπ/m) , cos( jπ/m)) : 0≤ i, j ≤ m}.
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3. Moment-based interpolation v 7→ w = Pmv defined by

w(±1,±1) = v(±1,±1) ,

∫
K

wκ dx =
∫

K
vκ dx for all κ ∈Qm−2(K) .

Each of these modes of interpolation satisfy PmP2m = Pm. The stability constants are given
with respect to the (semi-)norms ‖ · ‖0 and | · |1, as well as the “energy” norm ||| · |||ε =
‖·‖0+ε| · |1 typically associated with singularly-perturbed reaction-diffusion problems. Let-
ting hK = [−h,h]2 and ṽ(x) = v(hx) for x ∈ [−1,1]2 and v ∈ H1(hK), we note that

‖v‖2
L2(hK)+ ε‖v‖2

H1(hK) = h2‖ṽ‖2
L2(K)+ ε‖ṽ‖2

H1(K) .

So if we choose h =
√

ε , the stability constant for the energy norm on hK is the same as if
we measured it on K with ε = 1. As such, we use only the domain K for the energy norm
results, and use ε = 1,10−2,10−4.

In the case of the L2-norm, the tensorial nature of the spaces imparts a simple Kronecker
product structure to the associated generalized eigenvalue problem (10). A consequence of
this is that the L2 stability constant for a given m is precisely the square of its counterpart
in the 1D case. This simple squaring of the 1D stability constant does not carry over to the
H1-seminorm, or the energy norm. In Table 4 we have the squares of the optimal stability
constants with respect to L2 and H1 for each of the three modes of interpolation, and in
Table 5 we consider the energy norm but use only uniform nodal interpolation and moment
interpolation. n the lowest-order case, m= 1, the three modes of interpolation are equivalent,
and we have

θ
2 = max

{
3(2+11ε)

1+18ε
,

18(2+40ε +25ε2)

1+45ε +450ε2

}

for the energy norm. For ε < 1.47563, the first term in the maximum is dominant. One
observes that the limiting values ε = 0 and ε → ∞ agree with the L2 and H1 values, respec-
tively.

Table 4 Stability constants θ 2 in L2 and H1 for nodal and moment interpolation from Q2m(K) to Qm(K),
for unit square K.

‖Qmv‖2
0 ≤ θ 2‖v‖2

0 |Qmv|21 ≤ θ 2|v|21
m uniform Chebyshev moment m uniform Chebyshev moment
1 36.000 36.000 36.000 1 1.8333 1.8333 1.8333
2 19.140 19.140 11.111 2 1.7861 1.7861 1.9047
3 29.993 21.820 29.160 3 2.9163 2.6031 2.2183
4 33.367 18.346 22.224 4 8.7585 3.0168 2.6004
5 50.608 25.265 44.444 5 23.411 3.4931 3.1032
6 135.40 24.132 38.215 6 83.593 3.6965 3.3990
7 406.01 29.630 65.237 7 349.23 4.0049 3.9638
8 1663.7 29.091 58.778 8 1866.1 4.1406 4.2275
9 8830.8 33.796 90.810 9 11580 4.3785 4.8121

10 61996 33.485 83.867 10 86657 4.4838 5.0615
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Table 5 Stability constants θ 2 in energy norm, |||Qmv|||2ε ≤ θ 2|||v|||2ε , with ε = 1,10−2,10−4 for nodal and
moment interpolation from Q2m(K) to Qm(K), for unit square K.

ε = 1 ε = 10−2 ε = 10−4

m uniform moment m uniform moment m uniform moment
1 2.4314 2.4314 1 28.926 28.926 1 35.910 35.910
2 1.7917 1.9620 2 8.4409 7.1232 2 18.864 11.041
3 2.9315 2.2557 3 7.4385 6.5525 3 28.485 27.727
4 8.7927 2.6149 4 12.027 4.3714 4 31.105 20.491
5 23.441 3.1171 5 26.501 4.4560 5 47.633 34.524
6 83.580 3.4051 6 84.372 4.0549 6 121.80 27.390
7 349.03 3.9699 7 337.35 4.5693 7 377.99 34.022
8 1864.6 4.2303 8 1763.3 4.5526 8 1601.0 27.381
9 11571 4.8155 9 10898 5.1464 9 8809.5 28.839
10 86596 5.0634 10 81693 5.2518 10 61632 23.825
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