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Abstract

This note proposes embedding a time dependent PDE into a convection-diffusion
type PDE (in one space dimension higher) with singularity, for which two dis-
cretization schemes, the classical streamline-diffusion and the EAFE (edge aver-
age finite element) one, are investigated in terms of stability and error analysis.
The EAFE scheme, in particular, is extended to be arbitrary order which is of
interest on its own. Numerical results, in combined space-time domain demon-
strate the feasibility of the proposed approach.

Keywords: space-time formulation, convection-diffusion problems,
finite-element method, exponential fitting, streamline-diffusion

1. Introduction

The embedding of time-dependent problems into a one space dimension
higher stationary problem is not a new idea. It has many appealing proper-
ties, such as: using already existing tools developed for stationary problems;
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using adaptive methods with reliable and efficient error control; the ability to
use existing efficient solver libraries developed for stationary problems. There
is, however, a drawback: typically, the memory needed to run a simulation us-
ing the combined space-time discretization approach is increased by an order
of magnitude. One way to keep the memory required by such methods under
control is to use time intervals with fixed length. Another, more general, rem-
edy to the extensive use of computer memory in space-time simulations is to
employ accurate dimension reduction algorithms, both in space and in time,
which can lead to coarser problems with fewer degrees of freedom, also known
as upscaled discretizations. Indeed, an accurate coarser problem can replace
the expensive, in terms of memory, fine-grid one and still provide a reliable
discretization tool. For a general dimension reduction approach by coarsening
(in three space dimensions), we refer to [1]. The extension of the technique
proposed in [1] to 4D space-time elements is a work in progress. Another feasi-
ble approach for dimension reduction in space-time discretizations is to exploit
sparse grids, as proposed in [2]. More recently, discrete space-time schemes
using B-splines and Non-Uniform Rational Basis Splines (NURBS) have been
employed (see [3]) to yield stable isogeometric analysis methods for the numer-
ical solution of parabolic PDEs in fixed and moving spatial domains.

We point out that in the present note we do not consider dimension reduction
techniques. Rather, as a first step, we study the accuracy and stability of the
proposed embedding. More specifically, for the discretization of the space-time
formulation of a parabolic problem we exploit two well-known techniques for
convection diffusion equations: the streamline diffusion method [4] (see also
[5], [6]) and the EAFE–Edge Average Finite Element scheme [7] (see also [8]
and [9]). Let us add that the high order EAFE method developed here provides
a novel, high order, exponentially fitted discretization for convection-diffusion
problems with suitable stability and approximation properties.

The structure of the remainder of this note is as follows. In Section 2, we
introduce the space-time formulation of parabolic problems. Then, in Section 3,
we present the streamline diffusion method in our space-time setting. Section 4,
contains the derivation of the high order EAFE scheme on simplicial finite ele-
ment grids in arbitrary spatial dimension. The application details for the lowest
order EAFE discretization to parabolic problems is given in Section 5. Finally,
in Section 6, we present numerical tests showing the optimality and efficiency
of both schemes for space-time formulation of parabolic problems. We conclude
this paragraph with remark on the terminology: as the EAFE scheme may be
viewed as a multidimensional Scharfetter-Gummel discretization [10], in what
follows, we use the terms “EAFE discretization” and “Scharfetter-Gummel dis-
cretization” interchangeably.

2. Space time formulation of parabolic problems

We consider the following parabolic problem:

ut − div(K(x)∇u− β · u) + γu = f, x ∈ Ωs,
u = 0, x ∈ Γ = ∂Ωs; u(x, 0) = u0(x), x ∈ Ωs.

(1)
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Here, β is a vector field (a velocity) and K(x) is, in general, a scalar (or d× d
tensor valued) function. Let Ωt = (0, tmax ) be the time interval of interest.
The space-time domain is Ω = Ωs × Ωt. For convenience we have assumed
homogeneous Dirichlet boundary conditions u = 0 on ∂Ωs × Ωt. In treating
time as a space-like variable, the initial condition at t = 0 becomes a Dirichlet
boundary condition for the (d+ 1) dimensional problem.

In a space-time formulation, introducing a new variable y = (x, t) then gives
the following convection diffusion equation: Find u = u(y) such that

− divy(D∇yu+ b · ∇yu) + γu = f in Ω b = (βt, 1)t : Ω 7→ Rd+1,

u = 0 on Γ = ∂Ω× Ωt; u = u0 on Γ0 = Ωs × {t = 0}.

Without loss of generality we may assume that u0 = 0 and we define H1
E(Ω) as

the subspace of H1(Ω) satisfying these homogeneous Dirichlet boundary condi-
tions.

In the following we consider two schemes for discretization of convection
diffusion problems and apply them to space-time formulations of (1). These are
the Streamline Diffusion and the Scharfetter-Gummel (EAFE) discretizations.

For the latter we need a non-singular D, while above D =

[
K 0
0 0

]
is actually

degenerate. To remedy this, we perturb it to make it invertible, i.e., we let

D =

[
K 0
0 ε

]
for a small parameter ε > 0.

3. Streamline Diffusion

We first consider a simple case when K = αI, α > 0, γ ≥ 0, and β are
constant. Then equation (1) has the form:

Lu ≡ ut − α∆u+ β · ∇u+ γu = f (2)

The results below generalize to the variable coefficient case in a straightforward
and well-studied fashion. Here we consider the constant coefficients case only in
an attempt to keep the focus on the important aspect of time discretization. In
allowing for different sizes of α, β and γ, our analysis covers several scenarios
of interest. For simplicity we assume the initial condition u0 = 0.

The weak form of (2) is given by: find u ∈ H1
E such that

(ut, v) + α(∇u,∇v) + (β · ∇u, v) + γ(u, v) = f(v)

for all v ∈ H1
E . The space-time bilinear for B(u, v) is given by

B(u, v) =

∫ T

0

(ut, v) + α(∇u,∇v) + (β · ∇u, v) + γ(u, v) dt

where

(u, v) =

∫
Ωs

uv dx
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is the usual L2 inner product on Ωs. The right hand side is given by the linear
functional

F (v) =

∫ T

0

f(v) dt.

We assume that the space-time domain Ω is covered by a shape regular
quasiuniform tessellation Th of elements of size h. The energy norm for this
problem is given by

|||u|||2 = ||u(T )||2 +

∫ T

0

α||∇u||2 + hpν||β · ∇u+ ut||2 + γ||u||2 dt

where

ν =
1√
|β|2 + 1

.

For technical reasons made clear below, we set p = 1 for the important case of
continuous piecewise linear approximation, or the special case α = 0; otherwise
we choose p = 2.

We make a standard Petrov-Galerkin streamline diffusion discretization for
this d+1 dimensional problem. Let Vh ⊂ H1

E denote a C0 conforming piecewise
polynomial finite element space. The space Vh itself is the trial space. In our
Petrov-Galerkin formulation, the test functions are given by v+θhpν(β ·∇v+vt)
for v ∈ Vh, where θ is a parameter to be characterized below. The discrete
problem is: find uh ∈ Vh such that

Bh(uh, v) ≡ B(uh, v)+

∫ T

0

(Luh, θh
pν(β ·∇v+vt)) dt = F (v+θhpν(β ·∇v+vt))

for all v ∈ Vh. Because Vh is only C0, the term (Luh, θhν(β · ∇v + vt)) is
formally interpreted elementwise due to possible discontinuities on inter-element
boundaries.

We begin with a basic stability result.

Lemma 1. Let Vh be the space of continuous piecewise linear polynomials or
α = 0. For v ∈ Vh, and θ sufficiently small, there exists C > 0, independent of
h, such that

Bh(v, v) ≥ C|||v|||2. (3)

Proof We first note the term (α∆v, θhν(vt + β · ∇v) = 0.
The term ∫ T

0

(vt + β · ∇v, v) dt =
||v(T )||2

2

and

α(∇v,∇v) = α||∇v||2

(vt + β · ∇v, θhν(vt + β · ∇v) = θhν||vt + β · ∇v||2.
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Finally

(γv, v + θhν(vt + β · ∇v)) ≥ γ||v||2 − γθhν||v||||vt + β · ∇v||

≥ γ||v||2
(

1− γθhν

2

)
− θhν

2
||vt + β · ∇v||2

Combining all these estimates, and taking θ sufficiently small proves (3).
The orthogonality-like relation for the error e = u−uh in our approximation

is given by
Bh(e, v) = 0 (4)

for all v ∈ Vh.
For χ ∈ Vh, let

φ = uh − χ
η = u− χ.

Our error relation can be expressed in terms of φ and η as

Bh(φ, v) = Bh(η, v)

for all v ∈ Vh. We take v = φ ∈ Vh and use Lemma 1. Then we have

|||φ|||2 ≤ CBh(φ, φ) ≤ CBh(η, φ) (5)

Let δ be a sufficiently small parameter to be characterized below. We now
estimate all the terms on the right hand side of (5). First,

α(∇η,∇φ) ≤ Cα||∇η||2 + δα||∇φ||2

(ηt + β · ∇η, θhν(φt + β · ∇φ)) ≤ Cθhν||ηt + β · ∇η||2 + δθhν||φt + β · ∇φ||2

(γη, φ+ θhν(φt + β · ∇φ)) ≤ Cγ||η||2 + δ(γ||φ||2 + θhν||φt + β · ∇φ||2)

The fourth term is a bit more involved.∫ T

0

(ηt + β · ∇η, φ) dt = (η(T ), φ(T ))−
∫ T

0

(η, φt + β · ∇φ) dt

≤ C

(
||η(T )||2 + (hν)−1

∫ T

0

||η||2 dt

)

+ δ

(
||φ(T )||2 + hν

∫ T

0

||φt + β · ∇φ||2 dt

)
Combining these estimates, and making δ sufficiently small, we have

|||φ|||2 ≤ C

(
|||η|||2 +

∫ T

0

(hν)−1||η||2 dt

)
(6)

Using (6) and the triangle inequality, we obtain
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Theorem 2. Let Vh be the space of continuous piecewise linear polynomials or
α = 0. Then the error e = u− uh satisfies

|||u− uh|||2 ≤ C inf
χ∈Vh

(
|||u− χ|||2 +

∫ T

0

(hν)−1||u− χ||2 dt

)
(7)

Suppose α = O(1) and Vh contains piecewise linear polynomials. Then if u ∈
H2(Ω), (7) yields an O(h1/2) rate of convergence of the space-time gradient in
the streamline direction b = (βt, 1)t, and an optimal O(h) convergence rate for

(
∫ T

0
||∇(u − uh)||2)1/2. If γ = O(1) we have O(h) convergence for the space-

time L2 norm. While not optimal in every norm considered, overall this is
in alignment with well-known behavior for the classical streamline diffusion
method. If α = 0 and Vh contains piecewise polynomials of degree r, we lose
control of the gradient ||∇(u − uh)|| but gain improved O(hr) convergence for
the space-time gradient in the streamline direction, and if γ = O(1) we have
improved O(hr+1/2) convergence for the L2 norm. These again correspond with
classical results for the streamline diffusion method.

If α 6= 0 and Vh contains piecewise polynomials of degree r > 1, terms similar
to α(∆v, vt) become problematic since ∆v contains no time derivatives and at
present forces us to choose p = 2. (One might alternatively consider replacing
the diffusion term ∆u with ∆u + εutt, and then analyzing as in the standard
streamline diffusion scenario, but this dilutes the advantage one obtains through
the use of higher order approximation since we lose consistency with the original
PDE). Here is the analog of Lemma 1.

Lemma 3. Let Vh be the space of continuous piecewise linear polynomials of
degree r > 1 and α 6= 0. For v ∈ Vh, and θ sufficiently small, there exists C > 0,
independent of h, such that

Bh(v, v) ≥ C|||v|||2. (8)

Proof Generally the proof follows the same pattern as Lemma 1. The new
term is (∆v, θh2ν(vt + β · ∇v). On a single element τ ∈ Th we can use a local
inverse assumption

|(−∆v, vt + β · ∇v)τ ≤ Ch−1||∇v||τ ||vt + β · ∇v||τ |

Using this estimate, we have∫ T

0

α(∇v,∇v)− (α∆v, θh2ν(vt + β · ∇v)) dt

≥
∫ T

0

α(1− Cανθ)||∇v||2 dt− θh2ν

4
||vt + β · ∇v||2.

The remaining estimates in the proof of Lemma 1 are the same with h replaced
by h2.
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We analyze the error similar to the proof of Theorem 2. The new term is

α(∆η, θh2ν(φt + β · ∇φ)) ≤ Cα2νh2||∆η||2 + δh2ν||φt + β · ∇φ||2.

The remaining terms are estimated as in Theorem 2 with h replaced by h2,
leading to

Theorem 4. Let Vh be the space of continuous piecewise linear polynomials of
degree r > 1 and α 6= 0. Then the error e = u− uh satisfies

|||u− uh|||2 ≤ C inf
χ∈Vh

(
|||u− χ|||2 +

∫ T

0

(h2ν)−1||u− χ||2 + αh2||∆(u− χ)||2 dt

)
(9)

If α = O(1), Vh is the space of continuous polynomials of degree r > 1, and

u is sufficiently smooth, we have optimal O(hr) convergence for (
∫ T

0
||∇(u −

uh)||2)1/2, but only O(hr−1) convergence for the space-time gradient in the
streamline direction. If γ = O(1) we also obtain O(hr) convergence in the
space-time L2 norm.

A Practical Remark

Suppose that the space domain Ωs has a generic length scale L. Since the
time units for Ωt = [0, T ] could be completely unrelated to the space units, the
space-time domain Ω = Ωs × Ωt could be quite anisotropic. It could be very
long if T � L or very short if T � L. Filling such potentially thin domains
with a small number of shape regular elements could be problematic from the
practical point of view. Therefore it could be useful to rescale the time variable
such that it is has a similar scale to the space variables. For example, one could
change variables as in

t̃ =
Lt

T
≡ κt

for 0 ≤ t̃ ≤ L. The modified space time-domain Ωs × [0, L] is more isotropic,
and likely could be tessellated with far fewer shape regular elements. In terms
of the partial differential equation,

∂u

∂t
= κ

∂u

∂t̃

making the convection in the time direction larger or smaller depending on the
value of κ. In terms of our analysis, we could replace

α→ α

κ
≡ α̃

β → β

κ
≡ β̃

γ → γ

κ
≡ γ̃

and directly apply the analysis of the previous section to this modified constant
coefficient equation.
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4. High Order Scharfetter Gummel discretization

In this section we derive a high order Scharfetter-Gummel scheme on simpli-
cial finite element grids in dimension d ≥ 1. The original Scharfetter-Gummel
difference scheme [10] is a method used in simulating 1-dimensional semicon-
ductor equations. After its discovery, it has been generalized and used for the
numerical solution of convection-diffusion equations of the form:

−div J(u) = f, x ∈ Ω ⊂ Rd (10)

J(u) = (D(x)∇xu− bu), (11)

u(x) = 0, x ∈ ΓD, J(u) · n = 0, x ∈ ΓN (12)

Du · n = 0, x ∈ ΓR. (13)

Here, J(u) is the flux variable which plays an important role in approximating
the weak form of the equation. We note that the natural boundary condition
is the one given on ΓN and the boundary condition (13) is of a Robin type for
this problem. The weak form of the equation above is: Find u ∈ V such that

a(u, v) +mR(u, v) = f(v), (14)

a(u, v) =

∫
Ω

J(u) · ∇v, f(v) =

∫
Ω

fv (15)

mR(u, v) =

∫
ΓR

(b · n)uv (16)

The variational form is obtained after integration by parts and using the fact
that on ΓR, Du · n = J(u) · n− b · nu.

The Scharfetter-Gummel scheme was extended to more than 1 spatial di-
mension as the Edge Average Finite Element (EAFE) Scheme. A priori error
estimates in any dimension were shown in [7]. This work only considered scalar
valued diffusion coefficients (although in any spatial dimension); a discretization
for matrix valued diffusion coefficients was proposed and analyzed in [9]. Re-
lated work on exponential fitting in discretizing convection-diffusion equations
via mixed finite element methods is [? ]. More recently, the techniques from [7]
have been utilized to yield a second order gauge invariant discretizations for
Pauli and Schrödinger equations (see [? ]).

Here, we provide a novel approach which gives a Scharfetter-Gummel dis-
cretization for finite element spaces of order r ≥ 1. Our approach follows the
ideas in [7] and [9]. The extension to r ≥ 1, however is not at all straightforward
and requires results from the recently developed Finite Element Exterior Cal-
culus. The rationale of constructing the high order Scharfetter-Gummel scheme
is:

(i) approximate the flux J(u) via the Nédélec elements (discrete differential
1-forms with polynomial coefficients);

(ii) eliminate the flux variable and write the resulting discrete problem in
terms of the scalar valued finite element approximation of the solution
of (1) u (a 0-form).
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To set up the finite element approximation, we let us itemize some of the ingre-
dients and the main assumptions needed for the discretization.

• We assume that Ω is covered by a conforming, simplicial, shape-regular
mesh Th. We have Ω = ∪{T

∣∣ T ∈ Th}.
• The space Vh is the space of conforming Lagrange finite elements of degree
r and for the derivation of the scheme, we also need the 1st-kind-Nédélec
polynomial spaces on a fixed element (cf.eg. [11, 12, 13, 14]). The details
are described below in §4.1.

• We assume that the flux J and u are smooth enough so that all the norms
of functions below make sense. In particular J ∈ W 1,p(T ), for all T ∈ Th
and for some p > d. The solution u is at least continuous, so that its
Lagrange interpolant is well defined.

• We assume that the coefficients D, b are piece-wise constants with dis-
continuities aligned with Th.

Remark 1. The assumption J ∈ W 1,p(Ω) needs some comments. One im-
portant feature of the Scharfetter–Gummel scheme is that the estimates on
‖uI − uh‖1,Ω are in terms of norms of the flux J(u). We thus approximate
more accurately the interpolant uI ∈ Vh of the solution if the flux is smooth,
while both the solution and the coefficients can be rough functions. For example,
if we look at the 1D problem on (0, 1):

−(u′ − βu)′ = 0, u(0) = 0, u(1) = 1,

we observe that J(u) = (u′ − βu) is a constant, i.e. smooth, while the solution
u may exhibit a sharp boundary layer, depending on β. In fact, in this idealized
situation in 1D, the estimate in Theorem 8 implies that uI = uh, i.e. we have
captured the exact solution at the vertices.

Next, we show that (i) and (ii) in the rationale given earlier are computa-
tionally feasible steps.

4.1. Notation and Nédélec spaces

Consider the Nédélec space PN , which restricted to any element T is the
following polynomial space

PN = (Pr−1)
d ⊕ Sr, P dr−1 ( PN ( (Pr)

d, (17)

where Pj , j = (r − 1), r is the space of polynomials of degree ≤ j on T , and
Sr is a subspace of the space Hr of vector valued homogeneous polynomials of
degree r defined as

Sr =
{
s ∈ Hr

∣∣ s · x = 0
}
.

By definition, the inclusion relations given in equation (17) hold on any element
T ∈ Th. From now on we fix this element. We refer to [11], [12], [15], [16], [17],
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for the classical and the modern description of these spaces and studies of their
properties. In what follows we use some of the tools from [15] and [16]. In our
notation, the lowest order of such polynomials corresponds to r = 1.

Further, let M = dimPN be the dimension of the Nédélec polynomial space
on T . The elements of the basis in the dual space of PN are known as degrees
of freedom and we denote them by {ηj}Mj=1. Next, the basis in PN , dual to

the degrees of freedom we denote by {ϕj}Mj=1. For general simplex in Rd, the
explicit form of the degrees of freedom and their dual basis is found in [15]. For
our purposes it is sufficient to note that the functionals ηj can be thought as
integrals of traces of functions over sub-simplicies. For the lowest order case,
we have

〈ηe,v〉 =

∫
e

v · τe, ϕe = λi∇λj − λj∇λi.

for every edge e = (i, j) of T (there are d(d+1)
2 edges). Here, τe is the tangent for

edge e, and {λi} are the usual barycentric coordinates for element T (cf., e.g.,
[18]). Using this notation, we have that any function v ∈ PN can be written as

v =

M∑
j=1

〈ηj ,v〉ϕj(x). (18)

We stress that this representation is unique and provides a canonical interpola-
tion operator, which for sufficiently smooth vector valued v is defined as

ΠNv =

M∑
j=1

〈ηj ,v〉ϕj(x). (19)

The smoothness of v must be such that the linear forms 〈ηj , ·〉 are bounded.
Consider now the space Vh of Lagrange finite elements of order r. The

standard set of the degrees of freedom in such case are point evaluations (see
[18, Theorem 2.2.1]) and we denote them by {µj}. Further, the polynomial
basis, dual to these degrees of freedom, we denote by {ξj}. We then have a
canonical interpolation operator, well defined for any continuous v. The image
of v ∈ C0(Ω) under this interpolation is denoted by vI and we have

vI =

Nh∑
j=1

〈µj , v〉ξj(x). (20)

There is no need to distinguish the global interpolation operator (on Ω) and the
local one (on T ∈ Th) for our considerations and we use the same notation for
both. Let us note, however, that when working on fixed T ∈ Th we will use
N = dimPr =

(
r+d
d

)
, instead of Nh = dimVh.

As is well known [15], we have commutative diagrams linking the Nédélec
elements and the Lagrange elements of matching orders (order r here), and on
every element T we have

ΠN∇v = ∇vI .
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This relation is in fact a relation between degrees of freedom, namely

〈ηj ,∇v〉 = 〈ηj ,∇vI〉. (21)

This is obvious by using the definition of ΠN , the fact that ∇vI ∈ PN , and the
uniqueness of the representation in (18).

4.2. Derivation of a high order Scharfetter-Gummel scheme

Let us fix T ∈ Th and we start with the definition of J and use that D and
b are constant on T .

J(u) = D∇u− bu = exp(q · x)D∇(exp(−q · x)u), q = D−1b.

Hence, we have

exp(−q · x)D−1J(u) = ∇(exp(−q · x)u). (22)

If we apply now 〈ηj , ·〉, j = 1 : M on both sides, and then use (21) we get

〈ηj , e(−q·x)D−1J(u)〉 = 〈ηj ,∇(e(−q·x)u)〉
= 〈ηj ,∇

(
e(−q·x)u

)
I
〉,

= 〈ηj ,∇
(
e(−q·x)uI

)
I
〉,

The latter identity on the right hand side above, uses the fact that the ′′I ′′-
interpolant is based on the functionals µj that are based on nodal evaluation.
As expected, the right hand side is a gradient of a function in Vh and in summary
we have

〈ηj , e(−q·x)D−1J(u)〉 = 〈ηj ,∇
(
e(−q·x)uI

)
I
〉, j = 1, . . . ,M. (23)

Introducing now G(J(u)) ∈ RM and d(u) ∈ RM by

[G(J(u))]j = 〈ηj , e(−q·x)D−1J(u)〉, j = 1, . . . ,m (24)

[d(u)]j = 〈ηj ,∇
(
e(−q·x)uI

)
I
〉, j = 1, . . . ,M. (25)

and we can write (23) as
G(J(u)) = d(u), (26)

Note that bothG and d are linear operators, mapping vector fields and functions
to RM . We remark that the relation (26) is used later in the definition of the
approximate bilinear form, and, in the proof of the error estimates, and, we
further stress on the fact that d(u) = d(uI), by definition. The advantage
of the exponential weighting in (23) is that it provides a way to accurately
approximate the flux by polynomials. Note that the right side of (23) are the
values of ηj evaluated on a polynomial, while the left side contains the “true”
flux J(u). As we shall see later, it is advantageous to use discretizations schemes
based on (23) when the flux is piece-wise smooth. This not only includes the
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case when u and the PDE coefficients are piece-wise smooth, but also includes
many other cases (see Remark 1 for a simple 1D example on this).

The main idea of the Scharfetter-Gummel and EAFE schemes is to approx-
imate J(u),

J(u) ≈ JT (u) ∈ PN ,
or equivalently, we seek

JT (u) =
∑

cjϕj ,

for some coefficient vector c = (cj). The coefficient c is chosen so that the
relation (23) still holds for the approximation. An important question is whether
this is possible. If r = 1, and we use the lowest order Nédélec elements, this is
definitely the case as shown in the earlier works [7, 9].

A construction of exponentially-fitted discretizations with higher order poly-
nomial spaces is a bit more intricate. In general, we would like to find JT (u) ∈
PN . A key observation is that in order to derive our scheme, we use the weak
form of the equation (10) and we will aim to approximate the weak form as
follows: ∫

T

J(uh) · ∇vh ≈
∫
T

JT (uh) · ∇vh,

for functions vh ∈ Vh and JT (uh) ≈ J(uh). As on T , ∇vh ∈ (Pr−1)
d
, it is

sufficient to look for approximations JT (u) ∈ (Pr−1)d ⊂ PN .
We now explore this observation and look at how it affects the identity (26).

Let P be the matrix representation of the embedding (Pr−1)d ⊂ PN . To define
this matrix, let {ψm}M0

m=1 be a basis in (Pr−1)d, with M0 = dim(Pr−1)d and let
{ϕj}Mj=1 be the basis in PN , dual to the degrees of freedom {ηm}Mm=1. Then

the entries of P are the coefficients in the expansion of ψm in terms of {ϕj}Mj=1,
and we have,

ψk =

M∑
j=1

pjkϕj , with pmk = 〈ηm,ψk〉. (27)

Note that ∇
(

exp(−q · x)uI
)
I

is an element (Pr−1)d, and, as such, it can be

written as a linear combination via {ψk}M0

k=1. Recalling the definition of d(u)
in (25) then leads to the following useful relations:

∇
(

exp(−q · x)uI
)
I

=

M0∑
k=1

d̃kψk, [d(u)]j =

M0∑
k=1

〈ηj ,ψk〉d̃k,

d(u) = P d̃.

As a consequence, to define the approximation JT , we need to find a solution
of the following problem

P ∗ZP c̃ = P ∗P d̃, (28)

where we have set c = P c̃, and, as we have shown, d = d̃. Above the matrix
Z ∈ RM×M has entries

Zjk = 〈ηj , e−b·D
−1xD−1ϕk〉.
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The following remark is in order. In general, we may have tried to solve the
following system of equations for the coefficients c:

Zc = d. (29)

Clearly, if this is a well posed problem, then we can find the approximation
JT (u). However, as it described above, we only need the solution in subspace,
i.e., to solve problem (28). To show that the subspace problem (28) is solvable it
is sufficient to show that ZP is injective, and since P is injective, it is sufficient
to show that Z is injective on the range of P .

We let
Z† = P (P ∗ZP )

−1
P ∗. (30)

In the following, we will simply denote c = P c̃ by c = Z†d, or, by (26), by
Z†G(J(u)).

The following lemma follows by the construction of the approximation JT (u).

Lemma 5. If J(u) is polynomial of degree r− 1, then its approximation JT (u)
defined by Z†G(J(u)) coincides with J(u).

4.2.1. A unisolvence result

Note that, when b = 0, the solvability of such system follows from the fact
that the Nédélec degrees of freedom form a unisolvent set of functionals on
PN ⊃ (Pr−1)d. Multiplying by the exponent changes the game, and, we need
to prove some of the basic results on unisolvence of Nédélec degrees of freedom
for quasi-polynomials which we state in the following lemma.

Lemma 6. The matrix ZP is injective, or, equivalently, if p ∈ (Pr−1)d and

〈ηj , e(−b·D−1x)p〉 = 0, for all j = 1 : M , then p = 0.

Proof This proof follows exactly the lines of the proofs of [16, Lemma 4.5,
Lemma 4.6]. The only modifications needed are that we multiply by an expo-
nential function, which is positive everywhere. The rest of the arguments carry
over without any change. A different proof of this lemma, in terms of vector
proxies, which parallels the proofs of [16, Lemma 4.5, Lemma 4.6] for the specific
case considered here, is found in [? , Appendix A].

4.2.2. Derivation of the discrete problem

Since now the approximation JT (uh), for uh ∈ Vh is well defined, due
Lemma 6, we have a natural approximating bilinear form. For uh ∈ Vh and
vh ∈ Vh we set

ah(uh, vh) =
∑
T

∫
T

JT (uh) · ∇vh

=
∑
T

M∑
j=1

∫
T

[Z†T dT (uh)]j

∫
T

ϕj · ∇vh.
(31)
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The coefficients in JT (uh) are determined by Z†TdT (uh), for all T ∈ Th, which
in turn indeed makes the right side of (31) to depend only on the degrees of
freedom of uh.

We then define the following discrete problem: Find uh ∈ Vh such that

ah(uh, v) = f(v), for all v ∈ Vh. (32)

We note another useful relation which follows from the derivation above and
is used in the error estimates below. It is an analogue of [7, Equation (3.16)],
and [9, Equation (3.8)] and it plays a crucial role in the a priori error estimates.
In particular it is useful to estimate the deviation of the derived discrete scheme
from the standard Galerkin one (with bilinear form a(u, v) =

∫
Ω

(D∇u− bu) ·

∇v).

Lemma 7. For any continuous u, and sufficiently smooth J , such that ΠNJ(u)
is well defined we have:

ah(uI , vh) =
∑
T

M∑
j=1

[Z†TGT (J(u))]jϕj · ∇vh. (33)

Proof Recalling that dT (uI) = dT (u), and substituting (26) in (31) gives the
desired result.

Next, we show that, under certain conditions, this is a well posed problem,
and we also prove an a priori error estimate.

4.3. Stability and error analysis

Error estimates and other properties of such discretization schemes are found
in [7], [9]. Here we give an estimate for higher order Scharfetter-Gummel dis-
cretization and assume for simplicity, and without loss of any generality that
we have Dirichlet boundary conditions. We have the following theorem:

Theorem 8. Assume that a(·, ·) is invertible on Vh. Then, for sufficiently small
h, the discrete variational problem (32) is well posed and the following error
estimate holds:

|uI − uh|1,Ω ≤ chr|J(u)|r,p,Ω. (34)

Proof From the definition of ah(·, ·), for all v ∈ Vh we have

|a(u, v)− ah(uI , v)| =

∣∣∣∣∣∑
T

aT (u, v)− ah,T (uI , v)

∣∣∣∣∣
≤

∑
T

∣∣∣∣∣∣
∫
T

J(u) · ∇v −
M∑
j=1

[Z†TGT (J(u))]j

∫
T

ϕj · ∇v.

∣∣∣∣∣∣ .
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Note that from Lemmas 7 and 5, the right side vanishes for all J(u) that are
polynomials of degree (r−1), and, standard scaling argument shows the estimate

|a(u, v)− ah(uI , v)| ≤ chr|J(u)|r,p,Ω|v|1,q,Ω, p−1 + q−1 = 1. (35)

The solvability of the discrete problem then follows from the fact that by
assumption a(·, ·) provides a solvable problem, and hence it satisfies an inf-sup
condition on Vh. According to (35) a(·, ·) and ah(·, ·) are close when h→ 0, and,
hence, a(·, ·) also satisfies an inf-sup condition for sufficiently small h. This in
turn implies that the discrete problem (32) is well posed. The error estimate (34)
then follows from the inequality (35).

Remark 2. For the case r = 1 our proof here is analogous to the one given
in [7, Lemma 6.2 and Theorem 6.3].

5. Application to parabolic problems

In this section, we recall the parabolic equation (1):

ut − div(K(x)∇xu− βu) = f,
u(x, 0) = u0(x), for t = 0;
u(x, t) = 0, x ∈ Γ = ∂Ω× {[0, tmax )}.

(36)

This equation and the equation discretized by the streamline diffusion method
match, if divx β = 0, which we assume to hold. In general, the divergence
form comes from a material law and many mathematical models of physical
phenomena (if not all) are in divergence form.

The space-time formulation, (written in terms of a flux J0, and with y =
(x, t)) then is:

−divy J0(u) = f, J̃0(u) = D0(x)∇xu− bu
u(y) = 0, x ∈ Γ = ∂Ω× {(0, tmax ]},
u(y) = u0(x), x ∈ Γ0 = Ω× {t = 0}.

(37)

Here we have introduced the semidefinite, tensor valued function D0(x), and
more generally, we denote, Dε(x) : Ω 7→ R(d+1)×(d+1):

Dε =

(
K(x) 0

0 ε

)
, Jε = Dε∇yu− bu. (38)

The well known heat equation, ut − ∆u = f , corresponds to K(x) = I and
β = 0 and ε = 0.

The technique described in the previous section does not work in a straight-
forward fashion in the case of space-time formulation, because D0 is a singular
matrix. In fact, there is no obvious construction that works in the case of sin-
gular D0. We consider then a formulation using perturbation of the diffusion
tensor Dε and the flux Jε. Thus, for the parabolic problem we set

Jε(u) = Dε∇yu− bu, b = (βT , 1)T ,
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5.1. Lowest order discretization for parabolic equations

In this section we discuss the Scharfetter-Gummel discretization when ap-
plied to space-time formulation of a parabolic equation, in the lowest order
case. As a simple, but important example, we consider the simple case of heat
equation, i.e. β = 0, which implies that b = ed+1, and ed+1 = (0, . . . , 0︸ ︷︷ ︸

d

, 1)T .

We next compute the action of the local stiffness matrix corresponding to a
parabolic problem on a vector of degrees of freedom u representing a function in
Vh. We fix an element ((d+ 1) dimensional simplex) T ∈ Th and we denote its
barycentric coordinates by {λi}d+2

i=1 and the space-time coordinates of its vertices
are {yi}d+2

i=1 = {(xi, ti)}d+2
i=1 . The degrees of freedom of a linear polynomial u ∈

Vh restricted to T are {ui}d+2
i=1 = {u(yi)}d+2

i=1 and we have u(y) =
∑d+2
i=1 uiλi(y).

For an edge E ∈ T , E = (yi,yj), i = 1, . . . (d+ 2), j = 1, . . . (d+ 2), we denote

τij = τE =
(yi − yj)

|yi − yj |
, |r| =

√√√√d+1∑
l=1

r2
l , for all r ∈ Rd+1.

We note that τij = −τji, but as we shall see, this is of no consequence for the
final form of the local stiffness matrix. To avoid complications in the presenta-
tion coming from unnecessary subscripts we will write D (resp. J) instead of
Dε and (resp. Jε).

For any u ∈ Vh, as D and J(u) are constants on T , we have the following
obvious identities from the definition of J :

D−1J · τE = et/ε∇y
(
e−t/εu

)
,∫

E

e−t/εD−1J · τEdE =

∫
E

∇y
(
e−t/εu

)
· τEdE,

(D−1J · τE)

∫
E

e−t/εdE = [e−ti/εu(xi, ti)− e−tj/εu(xj , tj)].

Computing the integral on the left side gives∫
E

e−
t
ε dE = |E|

∫ 1

0

exp

(
− tj + s(ti − tj)

ε

)
ds

=
|E|ε
tj − ti

∫ −ti/ε
−tj/ε

eξdξ = |E|εe
−ti/ε − e−tj/ε

tj − ti

=
|E|e−ti/ε

B(
ti−tj
ε )

=
|E|e−tj/ε

B(
tj−ti
ε )

,

where B(s) = s
es−1 is the Bernoulli function (B(0) = 1). Note that, B(s) =

e−sB(−s) and B(s) > 0 for all s ∈ R. We then conclude that on every edge E
in T we have:

|E|(D−1J · τE) = B

(
ti − tj
ε

)
u(yi)−B

(
tj − ti
ε

)
u(yj). (39)
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In the derivation for general order of polynomials we needed the Nédélec basis
and spaces. In the lowest order case, we can take a route that does not use
these spaces explicitly. In the evaluation of the stiffness matrix entries, we need
to compute integrals of the form∫

T

(J · ∇yλj) = |T |(J · ∇yλj).

We note that since D−1J is a constant on T , we can write it as a gradient of a
linear function, namely

J = D(D−1J) = D∇y(D−1J · y) =

d+2∑
i=1

(D−1J · yi)D∇yλi. (40)

Since
∑d+2
i=1 ∇yλi ≡ 0 on T , we have that

0 = (D−1J · yj)(D
d+2∑
i=1

∇yλi · ∇yλj) =

d+2∑
i=1

(D−1J · yj)(D∇yλi · ∇yλj)

Hence,

|T |(J · ∇yλj) =

d+2∑
i=1

(D−1J · yi)(D∇yλi · ∇yλj)

=
∑
i6=j

(D−1J · (yi − yj))(D∇yλi · ∇yλj)

=
∑
i6=j

|E|(D−1J · τij)(D∇yλi · ∇yλj).

We have computed earlier (see (39)) the quantity |E|(D−1J ·τij) for all E ⊂ ∂T .
Therefore,

|T |(J · ∇yλj) =
d+2∑

i=1;i6=j

dTji

[
B

(
ti − tj
ε

)
ui −B

(
tj − ti
ε

)
uj

]
. (41)

Here dTji =
∫
T
D∇yλi · ∇yλj are the entries of the local stiffness matrix corre-

sponding to the discretization of (− divD∇) with linear elements on T . There-
fore on T we get

[AT ]jj = −
d+2∑

i=1;i 6=j

dTjiB

(
tj − ti
ε

)
, [AT ]ji = dTjiB

(
ti − tj
ε

)
. (42)

The global stiffness matrix is assembled from AT . It is invertible for sufficiently
small mesh size, invertible whenever the assembly of dTij gives an M -matrix.

For more detailed discussions about sufficient conditions which lead to a
stiffness matrix which is an M -matrix, as well as relations to finite volume
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methods we refer to [8]. More importantly, the work [8] provides techniques for
consistent modification of the local stiffness matrices, leading to solvable linear
systems for wide range of meshes. In 2 dimensions, a sufficient condition for
the stiffness matrix to be an M -matrix is that the triangulation is a Delaunay
triangulation which is easily achieved by any standard mesh generator. For
spatial dimensions greater than 2, meshes satisfying the condition given in [7,
Lemma 2.1] yields discretization with M -stiffness matrix. If this condition is
violated by the mesh, then the techniques proposed in [8] can be used to modify
the consistently the local stiffness matrices so that the resulting global stiffness
matrix is an M -matrix.

6. Numerical tests

We consider the 2D heat equation with Dirichlet boundary conditions on the
unit square (0, 1)× (0, 1). We test both schemes: StreamLineDIffusion (SLDI)
and EAFE on a uniform triangulation of the unit square. The exact solution is

U(x, t) = e−t sinπx sinπy.

The domain is the unit square in 2D, and the space-time problem is solved as
fully coupled 3D convection diffusion problem.

(a)
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Figure 1: (a) Trace of the solution on the plane x = 1
2

. (b) Error reduction in L2-norm.
Quadratic convergence is clearly observed.

We have tested the lowest order streamline diffusion scheme which has the
same number of degrees of freedom as the EAFE scheme. The convergence
behavior of both discretizations is shown in Figure 1b.

We have tested the convergence on a family of successively refined triangu-
lations. The coarsest one has a mesh size h0 ≈ 1

2 and the finest 2−8 in 3D. The
parameter ε in the diffusion tensor Dε for the EAFE scheme was 10−5 on all
grids. The parameter θ in the streamline diffusion method was set to 10−2 on
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all grids. Such pool of tests corresponds to mesh with 27 vertices on the coarsest
grid, and, ≈ 2.1× 106 vertices on the finest grid. In Figure 1a we have plotted
the trace of the approximate solution on the plane x = 0. The approximate
solution obtained via the EAFE scheme looks exactly the same, as is also the
exact solution.

We next show a plot of a solution to an equation with convection depending
on time. The equation is

ut − div(K(x)∇u− bu) = 1, x ∈ Ωs, b =

(
100 sin(6πt)

0

)
(43)

and the boundary and initial conditions are homogeneous, the domain is the
unit square and the time interval is (0, 1). The solution via the Scharfetter-
Gummel (EAFE) scheme is shown in Figure 2. Note that with such convection
term, the convection is 0 for t = k/6 and k integer; it is, however, convection
dominated for other values of t.

Figure 2: Trace of the numerical solution of equation (43) on the plane x = 1
2

. The effect of
the time dependent convection is clearly seen in the plot.

We have mentioned already the software used in performing the tests. In
summary, we have used the C++ library and examples from the mfem package [19]
(discretization); The solutions of the resulting linear systems are done using the
Algebraic Multigraph Multilevel ILU algorithm by Bank and Smith [20, 21]
found at http://ccom.ucsd.edu/~reb/software.html. The visualization was
done using the glvis tool [22].

7. Concluding remarks

We introduced a class of numerical methods for convection diffusion equa-
tions in arbitrary spatial dimensions. In principle, these schemes can be applied
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to wide range of problems, such as linearization of the Nernst-Plank equations
for transport of species in a charged media and the space-time discretizations
of such equations. We have derived novel exponentially fitted (higher order
Scharfetter-Gummel and streamline diffusion) discretizations for convection dif-
fusion equations. Distinctive features of the proposed Scharfetter-Gummel dis-
cretization are: (1) the monotonicity in the lowest order case; (2) its applicability
in any spatial dimension; and (3) the a priori estimates are in terms of the flux
only. For order higher than 1, the derivation and the analysis of this scheme is
new, and its implementation for space-time formulation of parabolic problems
is a subject of a current research.
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