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Abstract In this note, we prove that the well known saturation assumption implies
that piecewise polynomial interpolation and best approximation in finite element
spaces behave in similar fashion. That is, the error in one can be used to estimate
the error in the other. We further show that interpolation error can be used as an a
posteriori error estimate that is both reliable and efficient.
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1 Introduction

Let 7 be a simplicial triangulation of some domain € in arbitrarily many space di-
mensions. We assume that the elements in 7 are shape regular but do not require
that 7 is quasiuniform. Associated with 7 are two conforming, piecewise polyno-
mial finite element spaces S, and S5, of polynomial degree p and 2p. Moreover, we
have the interpolation operators Z,, and Z,,, of the usual kind mapping the continuous
functions into S, respectively S»,,. As the points at which Z,, interpolates are con-
tained in the set of nodes at which 7, interpolates, Z,u = Z,1,,u for all continuous
functions u. With slight modification our results also hold for the usual families of
tensor product finite element spaces that also satisfy this nested node property and
for other norms and seminorms than that considered in this note as well.
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We consider a continuous function  in the Sobolev space W,! (), where 1 is the
differentiation order and r an arbitrary index greater than or equal to 1, that can in
some sense be better approximated by the functions in S, than by those in S,,. More
precisely, we assume that there is a sufficiently small constant § > 0 to be quantified
later, depending on this particular function u, such that

\u—"Topulr,r < Blu—Tpuly,, (1.1)

holds for the error measured in the W, -seminorm. This is a saturation property. One
can expect that for decreasing element sizes and sufficiently smooth functions u the
constant 8 tends asymptotically to zero but will not make explicit use of this.

We will compare the interpolation error |u —Z,u|; , with the error |u— x| , for
any ¥ € Sp, and in particular with the best approximation error in this seminorm. Of
course the best approximation error can be estimated by this interpolation error. The
interesting observation proved in this note is the converse; that is, the interpolation er-
ror of the function u under consideration can be estimated by the best approximation
error. The saturation property (1.1) thus implies that the interpolation and the approx-
imation error can be estimated by each other. A local variant of this result even does
not require that the function Y is continuous across the elements.

There is a related result by Andreas Veeser [3], who has shown that the error of
the global Ritz projection with respect to globally continuous finite element functions
is essentially the same as the one of the element-wise Ritz projection. In contrast
to the present work, no saturation assumption is used in this paper. The price is a
significantly more technical argumentation. Moreover, Veeser’s result seems to be
tied to the H'-seminorm and perhaps is less easily transferred to other cases.

2 The main result

The central result on which our estimate is based is the following simple observation
that is standard in finite element theory and has been used at many places:

Lemma 2.1 For all elementst € T and all functions v € Sy,
| Zpv]1,re < 01|11, 2.1)

with a constant 8 > 0 that depends only on the polynomial degrees of the finite ele-
ment spaces and the shape regularity of the elements in the triangulation.

Proof We prove the estimate first for the reference element 7 underlying the trian-
gulation and denote by Z,, the interpolation operator Z,, pulled back to 7. Then there

exists a constant 6 such that

|Ipv|l,r,? < 0 ‘{)\ 1,1

holds for all polynomials v of order 2p with vanishing mean value, because the semi-
norm on the right hand side is a norm on the space of these polynomials and since the
space of these polynomials is finite dimensional. Because Z, = « for all constant
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functions & and since the W,!-seminorm is invariant to the addition of a constant value
to the functions under consideration, the estimate (2.1) thus holds for the reference
element. Back transformation shows the proposition for the elements in 7, where in
this last step the degree of deviation of the shape of the elements from that of the
reference element but neither their size nor the polynomial degree p enter. O

The constant 6 depends on the polynomial degree p, which is assumed to be fixed
here. It is basically determined by the corresponding constant 6 for the reference el-
ement, which can in the L,-like case be calculated solving a little generalized eigen-
value problem. The local, element-wise estimate (2.1) implies the global estimate

|Ipv|1,, < 6|V|1,r, VESzP, 2.2)

on the given domain Q. This estimate is the only place where the particular structure
of the norms or seminorms under consideration enters. It is the starting point for the
proof of our main theorem, that can therefore be transferred to any other norm (like
the derivative-free L,-norms, for example) for which such an estimate can be proven,
and to every function u that satisfies a corresponding saturation assumption.

Theorem 2.1 Assume that u is a continuous function in W!(Q) that satisfies the
saturation assumption (1.1) with a constant B = B(u) such that 03 < 1. Then
1+6 | |
"u—
1 _ Gﬁ X l,r
Sfor all functions ¥ in the finite element space S,,. That is, the interpolation error can
be estimated by the best approximation error.

lu—ZTouli, < (2.3)

Proof Since Z,u = T,15,u and y = 1,), we obtain from (2.2) for every y € S,
| Zpu=211,r = [Lp(Zopu— %) [1,r < O Lopu—2 |1,
By the triangle inequality therefore
|Zpu—uli,r < lu—x|r+ O{|Topu—uli,y + lu—x|r}

Inserting the saturation assumption (1.1) on the right hand side and resolving for the
left hand side, the proposition already follows. 0O

There is a local version of Theorem 2.1 that holds under the somewhat stronger as-
sumption that we have a local saturation property

lu—Topulrre < Blu—Tpuli 2.4)

that holds separately for each element r € 7. The same kind of reasoning then yields

Theorem 2.2 Assume that u is a continuous function in W) (Q) that satisfies the
local saturation property (2.4) with a constant B = (u) such that 0 < 1. For each
single element t € T and every polynomial ) of order p then

IM_Ipuh,r;t < %“t_)dl,r;r (2.5)
The point here is that the function that is globally composed of the single polynomi-
als x does not need to be continuous. The best approximation in S, can thus even be
replaced by the function that is composed of the best local approximations by poly-

nomials of order p, without regard to the continuity across the element boundaries.
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3 Application to a posteriori error estimation

In this section, we consider the application of these results to a posteriori error es-
timation for elliptic boundary value problems. We seek a computable global upper
bound for the error (making the estimator reliable) and both global and element-wise
lower bounds for the error (making the estimator efficient), see the recent survey [4].
For the ease of presentation, we restrict ourselves to the most simple model prob-
lem, the Dirichlet problem for the Laplace equation. We emphasize, however, that
the technique presented here does not rely on this particular setting and can easily
be generalized to other situations, including non-selfadjoint, indefinite, and nonlinear
problems, and even systems including saddle point problems. The same kind of re-
sult holds for all problems for which the approximate solution is quasi-optimal in the
spaces under consideration and analogues of our two theorems can be proven.

Let u, € S, be the finite element approximation of the solution u € H 1(Q) of the
given boundary value problem for the Laplace equation. The approximate solution
uy, is the best approximation of the solution u# with respect to the energy norm, in the
given case the H'!-seminorm, which is the norm here. Theorem 2.1 thus implies that

1-6
l+913|u_zpu|l’2§ \u—uh|1,2§ |u—Ipu|1,2 3.1)
and Theorem 2.2 implies
1-6
1+9ﬁ lu—ZTpulr,2.0 < |u—upli,2;4 (3.2)

for every single t € T. By these observations, the quantities

N = |u—Zyu

1,2;1 (3.3)

are both reliable and efficient local error estimators. As both the global and element-
wise lower bounds remain true for general ¥ € S,, they are immune to perturbations
in uy, due to incomplete solution of the linear system, numerical quadrature errors and
other variational crimes. The upper bound in (3.1) is not, but such issues have been
widely studied in the literature and need not be repeated here.

We now briefly describe a procedure for approximating the 1, that still depend on
the unknown solution u. Our starting point is the representation

u—Tpu =Y Fi(d" u)y; (3.4)
J

of the interpolation error on a triangle ¢, where the y; form a basis for the space
of polynomials of degree p + 1 that are zero at all nodes of S, on ¢ and the coef-
ficient functions F; depend in an explicitly known and computationally accessible
way on potentially all derivatives of u of order p + 1, generically denoted 97*!u.
This error representation can be derived from Sobolev’s counterpart (see [2], for ex-
ample) of Taylor’s theorem for weakly differentiable functions. Approximations to
the derivatives d”*'u on element ¢ are given by constants computed by a supercon-
vergent recovery procedure that we now summarize. The derivatives of order p of the
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approximate solution uy, denoted d”uy,, are piecewise constant. The recovery oper-
ator RdPuy, consists of projecting these piecewise constant functions onto the space
of continuous piecewise linear finite element functions using L,-projection, followed
by a smoothing step. This results in a globally superconvergent piecewise linear ap-
proximation of the order p derivatives d”u. Then dRd”uy, is a piecewise constant
approximation of d”*!u. The local error indicators 1, are then approximated by

n: ~ ‘Z]-'j(BR(?puh)l//j | th. (35)
j 3Ly

They depend only on the computed solution uy, the choice of norm, and on the shape
and size of the finite elements. See [1] for a more detailed discussion.
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