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Abstract In this paper we will prove saturation es-

timates for the adaptive hp-finite element method
for linear, second order partial differential equations.

More specifically we will consider a sequence of nested

finite element discretizations where we allow for both,

local mesh refinement and locally increasing the poly-
nomial order. We will prove that the energy norm of

the error on the finer level can be estimated by the

sum of a contraction of the old error and data oscilla-

tions. We will derive estimates of the contraction fac-

tor which are explicit with respect to the local mesh
width and the local polynomial degree. In order to

cover p-refinement of finite element spaces new poly-

nomial projection operators will be introduced and

new polynomial inverse estimates will be derived.
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erstrasse 190, CH-8057 Zürich, Switzerland E-mail:
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1 Introduction

In this paper, we will consider the discretization of

linear, second order elliptic partial differential equa-
tions by finite elements. Nowadays, adaptive tech-

niques based on a posteriori error estimation have

been established to set up a sequence of finite ele-

ment approximations which should converge towards
the exact solution. The advantage compared to uni-

form mesh refinement is that the finite element spaces

are enriched from level to level in a problem oriented

way.

A posteriori error estimation and adaptivity are

well established methodologies for the numerical solu-

tion of partial differential equations by finite elements
(cf. [4], [5], [38], [2], [6], [31], [18], [24], [35], [11]).

Some types of error estimators as, e.g., hierar-

chical error estimators (see, e.g., [9], [12], [10]) re-

quire explicitly or implicitly the saturation assump-

tion which states that the error on the refined mesh

and/or with higher polynomial degree is strictly smaller
than the error on the previous mesh/polynomial de-

gree. In the pioneering paper [19] the saturation as-

sumption is proved for the P1-finite element method

for the Poisson problem in two spatial dimensions
under the assumption that the data oscillations are

small. In [24] the convergence of adaptive finite ele-

ment methods (AFEM) for general (nonsymmetric)

second order linear elliptic partial differential equa-

tions is proved, where the term “adaptivity” is under-
stood in the sense of adaptive mesh refinement and
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the polynomial degree stays fixed. The theory in [24]

also generalizes the proof of the saturation property

to quite general 2nd order elliptic problems and es-

timate the error on the refined mesh by the error of

the coarser mesh plus a data oscillation term.

In this paper, we will focus on adaptive hp-refine-

ment, i.e., the finite element space is enriched by in-

creasing locally the polynomial degree of the ansatz
functions while we allow also for conventional local h-

refinement, where the elements of the finite element

mesh are geometrically subdivided. We will show (and

quantify) that, for residual a posteriori error esti-
mation, the saturation property, i.e., the error con-

traction from level to level behaves like
(
1− C

p5/2

)

provided the data oscillations are sufficiently well re-

solved. Hence, p-refinement should be combined with

h-refinement in order to guarantee that the numer-

ical solution converges towards the exact solution.
Common strategies for hp-refinement are based on

the estimation of the local regularity of the solu-

tion on a triangle by using error estimators for dif-

ferent local polynomial orders in order to decide for

h- or p-refinement; for details we refer to [36], [3],
[32], [17], [14], [37], [28], [33]. The hp-refinement indi-

cator which is implemented in the software package

PLTMG (cf. [7]) is based on the superconvergence

result that recovered derivatives for elements of de-
gree p have higher order accuracy, provided the true

solution has the required smoothness (cf. [8]).

Our a posteriori error estimation takes into ac-
count data oscillations but does not incorporate er-

rors due to numerical quadrature [1], to iterative ap-

proximations of the solution of the linear system [21],

and to approximations of the domain [20], [15].

The paper is organised as follows. In Section 2 we

will introduce the elliptic boundary value problem

and formulate appropriate assumptions to ensure the

well-posedness of this problem.

The hp-finite element method will be defined in

Section 3 and standard assumptions on mesh refin-

ment, shape regularity, and the polynomial degree
distribution will be introduced.

In Section 4 we will recall the definition of the

residual a posteriori error estimator for hp-finite ele-
ments and its reliability estimate.

In Section 5 we will introduce some polynomial

projection operator which maps global polynomials
on triangle patches to piecewise polynomials of lower

degree. This allows to localize projected residuals by

multiplying the resulting piecewise polynomials with

appropriate bubble functions. We will investigate the

stability constant of the projection operator while its
explicit dependence on the polynomial degree for p-

refinement will be analysed numerically in Appendix

A.

The saturation estimate will be proved in Section

6.

In Appendix B we will derive polynomial inverse

estimates containing those bubble functions as weights

which have been used in Section 6 to prove the satu-
ration property.

Remark 1 The theory in [24] indicates how an adap-

tive finite element procedure should be defined such
that the sequence of finite element solutions converges.

Note that the rate of convergence for adaptive finite

elements is investigated in, e.g., [11], [35], [34].

Besides the estimates derived for the saturation

property, the convergence theory requires a reduction

of the data oscillations which, for h-refinement, is (es-
sentially) related to the fact that the local mesh width

shrinks by a fixed factor for the marked elements. For

p-refinement, the analogue condition is that the hp-

weight of the data oscillations term also shrinks by
a factor smaller than one. Due to the non-robust p-

dependence of polynomial inverse estimates this can-

not be expected in a straightforward way. In order

not to overload this paper we decided to leave the

convergence of an adaptive hp-finite element method
as well as the detailed description of the hp-adaptive

refinement strategy to a forthcoming paper. We also

emphasize that a posteriori error estimators which

are based on the hypercircle method (cf. [29]) such as
the equilibrated residual error estimates are p-robust

(see [13]).

2 Setting

LetΩ ⊂ R
d be a bounded Lipschitz domain. Consider

the Dirichlet problem for given f ∈ L2 (Ω) :

− div (A∇u) + 〈b,∇u〉+ cu = f in Ω,

u = 0 on ∂Ω
(2.1)

with variational formulation: Find u ∈ H1
0 (Ω) such

that

a (u, v) :=
∫
Ω
〈A∇u,∇v〉+ (〈b,∇u〉+ cu) v =

∫
Ω
fv

=: F (v) ∀v ∈ H1
0 (Ω) .

(2.2)

Assumption 1 The coefficients in (2.2) satisfy A ∈
C0,1

(
Ω,Rd×dsym

)
, b ∈ C0,1

(
Ω,Rd

)
, c ∈ L∞ (Ω), and

0 < α := inf
x∈Ω

inf
v∈Rd\{0}

〈Av, v〉
〈v, v〉 ≤ sup

x∈Ω
sup

v∈Rd\{0}

〈Av, v〉
〈v, v〉

:= β <∞
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0 ≤ inf
x∈Ω

(
c (x)− 1

2
divb (x)

)
.

We set c∞ := ‖c‖L∞(Ω) and

b∞ := max
{
‖b‖L∞(Ω,Rd) , ‖divb‖L∞(Ω)

}
. The en-

ergy norm is denoted by

‖v‖PDE := a (v, v)1/2 ,

where Assumption 1 implies that ‖·‖PDE is a norm

and Friedrichs inequality implies

‖v‖2PDE ≥
∫
Ω 〈A∇v,∇v〉 ≥ α ‖∇v‖2L2(Ω)

≥ α
cF

‖v‖2H1(Ω) ,
(2.3)

where cF denotes the Friedrichs constant. In fact, the

norms ‖·‖PDE and ‖·‖H1(Ω) are equivalent since also

‖v‖2PDE ≤ Ca ‖v‖2H1(Ω) withCa :=
b∞
2

+max {c∞, β} .
(2.4)

For a subdomain ω ⊂ Ω we set

‖v‖2PDE,ω := aω (v, v)

:=
∫
ω

(
〈A∇v,∇v〉 + 〈b,∇v〉 v + cv2

)
.

Remark 2 The constants in the estimates below pos-

sibly depend (continuously) on α, β, c∞, and b∞ and
might tend to infinity with increasing β, b∞, c∞, α−1.

We suppress the dependence in the notation.

Note that these conditions ensure that problem

(2.2) is well posed and the coercivity estimate holds

trivially

a (v, v) = ‖v‖2PDE ∀v ∈ H1
0 (Ω) .

Assumption 1 implies the continuity of a (·, ·), i.e.,

a (u, v) ≤ CS ‖v‖PDE ‖v‖PDE ∀v ∈ H1
0 (Ω) (2.5)

with CS := 1 + cF
b∞
α .

3 Conforming hp-Finite Elements

Let Ω ⊂ R
2 be a polygonal domain and let T :=

{Ki : 1 ≤ i ≤ N} denote a conforming simplicial fi-

nite element mesh. With each element K ∈ T we as-

sociate of polynomial degree pK ∈ N≥1 which are col-
lected into the polynomial degree vector p = (pK)K∈T .

Then, we define the conforming hp-finite element space

for the mesh T with local polynomials of degree pK
by

Sp

T :=
{
u ∈ H1

0 (Ω) | ∀K ∈ T u|K ∈ PpK

}
. (3.1)

Here Pp denote the space of bivariate polynomials
of maximal total degree p. For a subset ω ⊂ Ω, we

write Pp (ω) to indicate explicitly that we consider

u ∈ Pp (ω) as a polynomial on ω. Formally we define

P−1 := {0}. We set

pT := max {pK : K ∈ T } .

By convention the triangles K ∈ T are open sets.

The boundaries of the trianglesK ∈ T consist of one-

dimensional edges which are collected in the set E .
Furthermore, let EΩ := {E ∈ E | E ⊂ Ω}. The union
SΩ :=

⋃
E∈EΩ

E forms the inner skeleton of the mesh

T . For each E ∈ E we fix one unit vector nE which

is perpendicular to E. If E ⊂ ∂Ω, the orientation is

chosen such that nE points to the exterior of Ω. The

E-piecewise constant vector field n is given by n|E :=
nE . Finally we define the jump of some piecewise

smooth function g ∈ ∏
K∈T

H1 (K) across E ∈ EΩ by

[g]E (x) := lim
εց0

(g (x+ εnE)− g (x− εnE)) ∀x ∈
◦
E.

This defines the jump function [g]|E := [g]E for all

E ∈ EΩ almost everywhere.

Let N 1
Ω denote the set of inner vertices of T . For

z ∈ N 1
Ω, we denote by b1z ∈ S1

T the canonical con-
tinuous, piecewise affine basis function. The volume

star for the node z is given by ωz := supp b1z and its

measure is denoted by |ωz|. For z ∈ N 1
Ω, we set Ez :={

E ∈ E : E ⊂ SΩ ∩ ◦
ωz

}
and Tz := {K ∈ T : K ⊂ ωz}.

Let VK denote the set of inner vertices of K and let

ωK :=
⋃

z∈VK

ωz.

We denote by ∇T the trianglewise gradient and

by divT the trianglewise divergence operator. Let hT
denote the T -piecewise constant function with values
hT |K := diamK for all K ∈ T . Similarly we define

hE : SΩ → R as the E-piecewise constant function

hE |E := diamE for all E ∈ EΩ. The maximal mesh

width in T is defined by

hT ,max := max {diamK : K ∈ T } .

If T is clear from the context we write h short for

hT ,max. The shape regularity of T is described by

the constant

ρT := max

{
diamK

diamBK
: K ∈ T

}
, (3.2)

where BK is the maximal inscribed ball in K. Since
T contains finitely many simplices the constant ρT
is always bounded but becomes large if the simplices

are degenerate, e.g., are flat or needle-shaped. The

constants in the following estimates depend on the

mesh via the constant ρT – they are bounded for any
fixed ρT but, possibly, become large for large ρT .
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Concerning the polynomial degree distribution we

assume throughout the paper that the polynomial de-

grees of neighbouring elements are comparable1:

ρ−1
T (pK + 1) ≤ pK′ + 1 ≤ ρT (pK + 1)

∀K,K ′ ∈ T with K ∩K ′ 6= ∅. (3.3)

The finite element solution is defined by:

Find upT ∈ Sp

T such that a (upT , v) = F (v) ∀v ∈ Sp

T .

(3.4)

In view of an adaptive solution process we gener-
ate a sequence Sℓ := Spℓ

Tℓ
, ℓ ∈ N0, of finite element

spaces, where we require that all meshes Tℓ are con-

forming and the constants ρℓ corresponding to the

shape regularity of the mesh Tℓ and the polynomial

degree vector pℓ are uniformly bounded from above
by some positive constant ρ. We also assume that

Tℓ+1 is a refinement of Tℓ in the sense that for any

K ∈ Tℓ there is a subset sons (K) ⊂ Tℓ+1 such that

K =
⋃

K′∈sons(K)

K ′.

To reduce technicalities we make the following as-

sumption concerning the concrete refinement method

(cf. Figure 1). As usual for conforming h-refinement,

there exists two types of refinements. Some triangles
are marked for refinement while this marking induces

some additional refinement of neighbouring triangles

in order to avoid hanging nodes.

Assumption 2

a. A triangle K, which is marked for refinement, is

regularly refined by connecting the midpoint of the

edges as well as the midpoint of the longest side

with the opposite vertex in K (cf. Fig. 1, Pic 1) so
that the set sons (K) contains six new triangles.

b. To eliminate hanging nodes neighbouring triangles

are refined by inserting a line L from one hang-

ing node to the opposite vertex and connecting the
vertices of K with the midpoint of L (cf. Fig. 1,

Pic 2). If there is a further hanging node then this

node is connected also with the midpoint of L (cf.

Fig. 1, Pic 3). If K contains three hanging nodes

or the shape regularity of the new triangles exceeds
some threshold it will be regularly refined.

c. For any triangle K ∈ Tℓ, one of the following con-

ditions are satisfied (cf. Fig. 2):

i. K will be p-refined, i.e., K ∈ Tℓ+1 and the
polynomial degree is raised by 1.

1 We use here the same constant ρ as for the shape reg-
ularity to simplify the notation.
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Fig. 1 Refinement patterns of a triangle which satisfies the
interior node property. Second row, from left to right: Pic.
1: Regular refinement. Pic. 2,3: Refinement patterns for the
elimination of hanging nodes. Third row: If two triangles
K1, K2 share an edge E and they will be both h-refined,
then the common edge E must get an interior point xE .
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Fig. 2 Definition of the polynomial degrees. From left to
right: Pic1: regular refinement. Pic 2: K is h-refined, K̃ is
p-refined and p

K̃
≥ pK . Pic 3: K is h-refined, K̃ is p-refined

and p
K̃
< pK . Pic 4: p-refinement.

ii K will be h-refined, i.e., there exists a set of

sons σ (K) ⊂ Tℓ+1 with K =
⋃

K′∈sons(K)

K ′ and

at least one vertex of each K ′ lies in the in-

terior of K. The polynomial degree pK defines
the polynomial degree on K ′ ∈ sons (K) as fol-
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lows

pK′ :=





pK if K is regularly refined,

pK + 1 if




∃K̃ ∈ Tℓ : K ′ ∩ K̃ is a full

edge of K̃

K̃ is p− refined
pK̃ ≥ pK


 ,

pK otherwise.

Assumption 2 implies the interior node property

(cf. [24, Sec. 3.4]).

Definition 1 (interior node property) Any K ∈
Tℓ which will be regularly h-refined and the three

adjacent triangles T ′ ∈ Tℓ as well as their common
sides contain a node of the finer mesh Tℓ+1 in their

interior and the resulting triangulation Tℓ+1 has no

hanging nodes.

Remark 3 LetK1,K2 ∈ Tℓ denote two triangles which
share an edge E and let pm := pKm , m = 1, 2. The

condition u ∈ H1
0 (Ω) in the definition of Spℓ

Tℓ
in (3.1)

implies that for any u ∈ Sℓ the one-dimensional poly-
nomial degree of u along E satisfies

deg (u|E) ≤ pE := min {p1, p2} .

Notation 3 To reduce the number of indices we write

uℓ short for u
pℓ

Tℓ
, hℓ short for hTℓ

, divℓ short for divTℓ
,

pℓ short for pTℓ
, N 1

ℓ for the inner triangle vertices for
the mesh Tℓ, etc. The star ωz corresponds always to

the triangulation Tℓ while we suppress this additional

index in the notation of ωz.

Definition 2 The saturation estimate for a sequence
of finite element solutions (uℓ)ℓ is an estimate of the

form

‖uℓ+1 − u‖PDE ≤ κℓ ‖uℓ − u‖PDE

for some κℓ < 1 such that

∞∏

ℓ=1

κℓ = 0.

It was proved in [19] that the saturation estimate

holds for the case of a bounded, two-dimensional do-

main Ω with coefficients

A = I, b = 0 and c = 0, (3.5)

where I is the 2× 2 unit matrix and the analysis was

restricted to P1 finite elements with h-refinement. It
was proved that it is necessary and sufficient for the

saturation estimate that the data oscillations (which

will be introduced in (6.5)) are controlled. Here, we

generalize this result to the setting described in Sec-

tion 2 and also derive p-explicit estimates for the con-
traction factor κℓ.

4 Residual A Posteriori Error Estimation

The Galerkin error is denoted by eℓ := u− uℓ. In the

following, we will investigate under which condition

the saturation estimate of the form

‖eℓ+1‖PDE ≤ κℓ ‖eℓ‖PDE , (4.1)

hold for some κℓ ∈ ]0, 1[ depending only on the poly-

nomial degree p and the shape-regularity of the mesh

but not on the mesh width.

For the proof of the saturation estimate, we will

use tools from residual a posteriori error estimation
which we briefly recall: To obtain an a posteriori error

estimate we obtain by Galerkin’s orthogonality for

every v ∈ Sℓ

‖eℓ‖2PDE = a (eℓ, eℓ − v) =
∫
Ω res (uℓ) (eℓ − v)

+
∫
SΩ

Res (uℓ) (eℓ − v) ,
(4.2)

where the volume residual res : Sℓ → L2 (Ω) is given

by

res (v) := f + divℓ (A∇v)− 〈b,∇v〉 − cv

and the edge residual Res : Sℓ → L2 (SΩ) is given by

Res (v) := −〈An, [∇v]〉 a.e. in SΩ.

By choosing v ∈ Sℓ as the Clément interpolation of
eℓ and using a trace inequality for the last term in

(4.2), results in the classical residual a posteriori error

estimation. In [25], [26] the local and global residual

a posteriori error estimator is defined by

η2K (v) :=

∥∥∥∥
hK
pK

res (v)

∥∥∥∥
2

L2(K)

+
∑

E⊂∂K∩Ω

∥∥∥∥∥

√
hE
2pK

Res (v)

∥∥∥∥∥

2

L2(E)

∀v ∈ Sℓ ∀K ∈ Tℓ.

(4.3)

The global error estimator is given by

ηℓ (v) :=

√∑

K∈Tℓ

η2K (v).

Due to the finite overlap of the stars ωz, the error

estimator (4.3) is equivalent to

ηstarℓ (v) :=
√∑

z∈N 1
ℓ
η2z (v) with

η2z (v) :=
∥∥∥hz

pz
res (v)

∥∥∥
2

L2(ωz)

+
∑
E∈Ez

∥∥∥
√

hz

pz
Res (v)

∥∥∥
2

L2(E)

(4.4)

and

pz := min {pK : K ⊂ ωz} and

hz := max {hK : K ⊂ ωz} . (4.5)
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Theorem 4 (Melenk, Wohlmuth) Let Ω ⊂ R
2 be

a bounded Lipschitz domain. Let a (·, ·) in (2.2) sat-

isfy Assumption 1 and let f ∈ L2 (Ω). The solution of

(2.2) is denoted by u and its Galerkin approximation

by uℓ (see (3.4)). There exists a constant Crel inde-
pendent of the local mesh width and the local polyno-

mial degree but, possibly, depending on the constants

in Assumption 1 such that

‖u− uℓ‖PDE ≤ Crelηℓ (uℓ) ≤ Crelη
star
ℓ (uℓ) .

The proof of this theorem is a slight modification

of [26, Theorem 3.6] and we include it here for com-

pleteness.

Proof The error u − uℓ can be estimated by using

(4.2) and by setting w = eℓ−Ieℓ with the hp-Clément

interpolation operator I as in [26, Section 2.1]:

‖eℓ‖2PDE =

∫

Ω

w res (uℓ) +

∫

SΩ

wRes (uℓ)

≤ Crelηℓ (uℓ) ‖eℓ‖PDE

for all v ∈ Sℓ. Clearly we have

ηℓ (v) ≤ ηstarℓ (v) ≤ C♯ηℓ (v) ,

where C♯ depends only on the constant ρℓ in (3.2)

and (3.3).

5 Projection of Polynomials onto Piecewise

Polynomials

The proof of the saturation estimate is based on es-

timates of some projection of the volume residual to

the space of piecewise polynomials locally on stars
ωz. In this section, we will derive stability estimates

for this projection.

We start with a result of a weighed L2 projection

of global polynomials of maximal total degree p to
piecewise polynomials of lower degree. The setting is

as follows.

Let z ∈ R
2 and let Tz := {Ki : 1 ≤ i ≤ q} denote

a triangle patch around z, i.e., Tz is a set of (open)
triangles which

– are pairwise disjoint,

– share z as a common vertex.

– For all 1 ≤ i ≤ q, the triangles Ki−1 and Ki share
one common edge2.

2 We use here the convention K0 := Kq. Clearly q ≥ 3
holds.

Let3 ωz := int

(
q⋃

i=1

Ki

)
and let S := ωz ∩

q⋃

i=1

∂Ki

denote the inner mesh skeleton. We denote by Pp (Tz)
the space of piecewise polynomials, i.e.,

Pp (Tz) :={
f : ωz\S → R | ∀1 ≤ i ≤ q; f |Ki

∈ Pp (Ki)
}
.

(5.1)

Next, we will introduce weighted scalar products
and associated norms. The weights are defined triangle-

and edge-wise and depend whether the triangle will

be h-refined of p-refined.

Definition 3

a. p-refinement.
If K will be p-refined, then, the cubic weight func-

tion Φ
(3)
K and quadratic edge bubble ΦE are given,

on the reference element K̂ := conv
((

0
0

)
,
(
1
0

)
,
(
0
1

))

and on the reference interval Ê := (0, 1), by

Φ
(3)

K̂
(x1, x2) = (1− x1 − x2)x1x2 and

ΦÊ (x) = x (1− x) ,
(5.2)

while on K and E we set

Φ
(3)
K := Φ

(3)

K̂
◦ Λ−1

K and ΦE := ΦÊ ◦ Λ−1
E , (5.3)

where ΛK : K̂ → K and ΛE : Ê → E are affine

pullbacks4.

b. h-refinement.
The edge bubble ΦE for h-refinement is the same

as for p-refinement.

b1. LetK be regularly refined (cf. Figure 3). Then,

Φ
(1)
K,K is the piecewise linear function on the

submesh sons (K) which has value 1 at xK and
value 0 at all other vertices of the refined mesh.

Let E denote the edge as indicated in Figure 3

which splits K into the triangles K1 and K2.

Then Φ
(2)
K is the product of the barycentric

coordinates for the two endpoints of E with
respect to the two triangles K1 and K2.

b2. If K is non-regularly h-refined (cf. Figure 1,

Pic. 2,3), then the weight function for K is the

piecewise linear bubble function Φ
(1)
K which in-

terpolates Φ
(3)
K at the vertices of the submesh

sons (K).

3 For a subset ω ⊂ R2, we denote by int (ω) the open
interior of ω.
4 Note that the scalings compared to the scalings in [39,

p.83] differ by fixed constants of order 1.
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2

K
1

K
1
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K
2
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A B

C
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Fig. 3 Illustration for the notation of a regulary h-refined
triangle K. The edge E = AMA splits K into the two trian-
gles K1 and K2.The subtriangle K ′

1 has vertices A,MC , xK
while the vertices of K ′

2 are A, xK ,MB.

The weight function for a triangle K is

ΦK :=





Φ
(3)
K if K will be p-refined,

Φ
(1)
K if K will be non-regularly

h-refined,

Φ
(1)
K,K + Φ

(2)
K if K will be regularly h-refined.

(5.4)

For z ∈ N 1
Ω , the function Φz : ωz → R is given by

Φz|K := ΦK ∀K ∈ ωz (5.5)

and extended by zero to Ω.

These weight functions induce bilinear forms (·, ·)K
and (·, ·)z via

(u, v)K :=

∫

K

ΦKuv and

(u, v)z :=
∑

K⊂ωz

(u, v)K =

∫

ωz

Φzuv

and a corresponding norm ‖·‖z := (·, ·)1/2z .

Next we define a projection

Πp
K : Pp (K) → Pp−1 (K)

by

∫

K

ΦK (Πp
Kv)w =

∫

K

ΦKvw ∀w ∈ Pp−1 (K) ,

(5.6)

where the definition of ΦK is as in (5.4), i.e., depends
on how K will be refined.

Definition 4 For a triangle patch Tz , let pz be as

in (4.5). The star-wise polynomial projection Πz is

applied to polynomials v ∈ Ppz−1 (ωz) and given by

(Πzv)|K :=





Φ
(3)
K Πpz−1

K v if K is p-refined,

Φ
(1)
K v if K is non-

regularly h-refined,

Φ
(1)
K,Kv + ΦKΠ

pz−1
K v if K is regularly

h-refined,

Theorem 5 Let p ≥ 1. For all u ∈ Pp (ωz), the con-
dition

∑

K∈Tz

∫

K

Φ
(3)
K uw = 0 ∀w ∈ Pp−1 (Tz) . (5.7)

implies u = 0.

For a proof we refer to [23, Theorem 1.1]. A con-

sequence of Theorem 5 is the following corollary. To
reduce technicalities we make an assumption on the

minimal local polynomial degree.

Assumption 6 For all ℓ and z ∈ N 1
ℓ it holds: If

all K ⊂ ωz will be p-refined then pz ≥ 2 otherwise

pz ≥ 1.

Corollary 1 Let Assumption 6 be valid. The projec-

tion Πz is injective.

Proof If all triangles in ωz are p-refined, then the in-

jectivity follows from Theorem 5.

If, at least, one triangle is h-refined we distinguish

between two cases:

a. K is non-regularly h-refined. Then, the positivity

of Φ
(1)
K implies (Πzv)|K = 0 =⇒ v = 0.

b. K is regularly h-refined. We use the notation as

introduced in Figure 3. Note that (Πzv)|K′

1∪K
′

2
:=(

Φ
(1)
K,K

(
v +Πpz−1

K v
))∣∣∣

K′

1∪K
′

2

.

b1. If the degree of v satisfies deg v = pz − 2,

it holds Πpz−1
K v = v|K Then, Πzv|K′

1∪K
′

2
=

2 Φ
(1)
K,Kv

∣∣∣
K′

1∪K
′

2

. The positivity of Φ
(1)
K,K onK ′

1∪
K ′

2 together with the analytic continuation prin-
ciple, i.e., v|K′

1∪K
′

2
= 0 =⇒ v = 0, imply the

injectivity of Πz for this case.

b2. If deg v = pz−1, it holds v+Πpz−1
K v 6= 0. The

positivity of Φ
(1)
K,K again implies (Πzv)|K′

1∪K
′

2
6=

0.

Corollary 2 Let Assumption 6 be valid. For all z ∈
N 1
Ω, the estimates

inf
v∈Pp−1(ωz)\{0}

(v,Πzv)L2(ωz)

‖v‖2z
≥ cπ. (5.8)
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c
∥∥∥Φ−1/2

z Πzv
∥∥∥
L2(ωz)

≤ (v,Πzv)
1/2
L2(ωz)

≤ ‖v‖z
≤ ‖v‖L2(ωz)

. (5.9)

hold. The constant cπ in (5.8) satisfies 0 < cπ ≤ 1

and depends, possibly, on the polynomial degree p and
the shape regularity of the mesh.

Proof For the proof of (5.8), we distinguish between

the following cases.
a) If all triangles in ωz are p-refined, estimate

(5.8) for some constant cπ > 0 follows from the in-

jectivity of Πz via the compactness argument in [23,

Theorem 6.4] and the equivalence of norms on the

finite dimensional space Ppz−1 (ωz).
b) At least one triangle in ωz is h-refined. Let

K ⊂ ωz.

b1) K is non-regularly h-refined. Then, the posi-

tivity of Φ
(1)
K implies (v,Πzv)L2(K) =

∥∥∥Φ1/2
K v

∥∥∥
2

L2(K)
>

0 for all v ∈ Ppz−1 (K) \ {0}.
b2) K is regularly h-refined. We use the notation

as introduced in Figure 3. Then,

(v,Πzv)L2(K)

=
(
v, Φ

(1)
K,Kv

)
L2(K)

+
(
v, ΦKΠ

pz−1
K v

)
L2(K)

=
(
v, Φ

(1)
K,Kv

)
L2(K)

+
(
Πpz−1
K v, ΦKΠ

pz−1
K v

)
L2(K)

=

∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√
ΦKΠ

pz−1
K v

∥∥∥
2

L2(K)

≥
∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

.

Again, the positivity of Φ
(1)
K,K on K ′

1 ∪ K ′
2 implies

(v,Πzv)L2(K) > 0 for all v ∈ Ppz−1 (K) \ {0}.
For the estimate (5.9) we again consider the differ-

ent refinement options separately. It is easy to check

that pointwise on K, we have ΦK ≤ 1 so that Φ2
K ≤

ΦK .
a) K is p-refined, i.e., ΦK := Φ

(3)
K . Estimate

(v,Πzv)L2(K) =

∫

K

ΦKvΠ
pz−1
K v ≤

∥∥∥
√
ΦKv

∥∥∥
2

L2(K)

(5.10a)

holds since Πpz−1
K is a projection. On the other hand,

(v,Πzv)L2(K) =
∫
K ΦK

(
Πpz−1
K v

)2

=
∥∥∥Φ−1/2

K Πzv
∥∥∥
2

L2(K)
.

(5.11a)

b) K is non-regularly h-refined. Then,

(v,Πzv)L2(K) =
∥∥∥
√
ΦKv

∥∥∥
2

L2(K)
. (5.10b)

From (5.10b) we get

(v,Πzv)L2(K) =
∥∥∥Φ−1/2

K ΦKv
∥∥∥
2

L2(K)

=
∥∥∥Φ−1/2

K Πzv
∥∥∥
2

L2(K)
.

(5.11b)

c) K is regularly h-refined. Then,

(v,Πzv)L2(K)

=

∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√
ΦKΠ

pz−1
K v

∥∥∥
2

L2(K)

≤
∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√
ΦKv

∥∥∥
2

L2(K)
(5.10c)

≤ 2
∥∥∥
√
ΦKv

∥∥∥
2

L2(K)
.

For the first estimate in (5.9) we use the pointwise
estimate on K

(Πzv)
2 =

(
Φ
(1)
K,Kv + ΦKΠ

pz−1
K v

)2

≤ 2

((
Φ
(1)
K,Kv

)2
+
(
ΦKΠ

pz−1
K v

)2)

≤ 2
(
Φ
(1)
K,K + ΦK

)(
Φ
(1)
K,Kv

2 + ΦK

(
Πpz−1
K v

)2)

≤ 4ΦK

(
Φ
(1)
K,Kv

2 + ΦK

(
Πpz−1
K v

)2)

to get

∫
K
Φ−1
K (Πzv)

2

≤ 4

(∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√
ΦKΠ

pz−1
K v

∥∥∥
2

L2(K)

)

= 4 (v,Πzv)L2(K) .

(5.11c)

The second estimate in (5.9) follows by summing

the inequality (5.11c) over all K ⊂ ωz while the third

one is a consequence of ‖v‖z ≤ ‖v‖L2(ωz)
since 0 ≤

Φz ≤ 1.
The first estimate in (5.9) also follows by summa-

tion over all K ⊂ ωz the inequalities (5.11).

The derivation of a sharp positive lower bound

for cπ seems to rather involved. Instead we have per-
formed numerical experiments (cf. Appendix A) to

support the following conjecture.

Conjecture 1 The constant cπ is bounded from below

by a constant c0 > 0 which only depends on the shape
regularity of the mesh but neither on the mesh width

nor on the polynomial degree p.

For z ∈ N 1
ℓ , we introduce the subspaces for K ∈

Tℓ (recall Notation 3)

Sℓ+1,K := {u ∈ Sℓ+1 | suppu ⊂ K} and

Sℓ+1,z := {u ∈ Sℓ+1 | suppu ⊂ ωz} . (5.12)
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Theorem 7 Let Assumption 2 and 6 be satisfied.

For z ∈ N 1
ℓ , E ∈ Ez, and w ∈ Sℓ, let JE (w) :=

〈AnE , [∇w]E〉. Set p := pz (cf. (4.5)). For any v ∈
Pp−1 (ωz), there exists a ϕℓ+1,z ∈ Sℓ+1,z such that

∑

E∈Ez

∫

E

JEb
1
z =

∑

E∈Ez

∫

E

JEϕℓ+1,z, (5.13a)

cπ ‖hℓv‖z ≤
∣∣∣∣
∫

ωz

v
(
b1z − ϕℓ+1,z

)∣∣∣∣ , (5.13b)

∥∥∥Φ−1/2
z

(
b1z − ϕℓ+1,z

)∥∥∥
L2(ωz)

+ c2
hz
p

∥∥(b1z − ϕℓ+1,z

)∥∥
PDE,ωz

≤ C1hz . (5.13c)

The constant c2 > 0 only depends on α, β, b∞, c∞,

and the shape-regularity of the mesh while C1 is a

number.

Proof We make the ansatz

ϕℓ+1,z = b1z − ψℓ+1,z,

for some ψℓ+1,z with ψℓ+1,z|K ∈ Sℓ+1,K for all K ⊂
ωz. Hence ψℓ+1,z|K vanishes on all edges and condi-
tion (5.13a) trivially is satisfied.

Statement (5.13b) is trivial for v = 0 and we con-
sider here v ∈ Pp−1 (ωz) \ {0} . Let

ψℓ+1,z = hz
Πzv

‖v‖z
and observe that ψℓ+1,z ∈ Sℓ+1,z. Hence, by Corollary
2 we obtain

∣∣∣∣
∫

ωz

v
(
b1z − ϕℓ+1,z

)∣∣∣∣ = hz

∣∣∣(v,Πzv)L2(ωz)

∣∣∣
‖v‖z

≥ cπhz ‖v‖z .

Finally, we consider estimate (5.13c) and get

∥∥∥Φ−1/2
z

(
b1z − ϕℓ+1,z

)∥∥∥
L2(ωz)

= hz

∥∥∥Φ−1/2
z Πzv

∥∥∥
L2(ωz)

‖v‖z
(5.9)

≤ hz
c

(v,Πzv)
1/2
L2(ωz)

‖v‖z
(5.9)

≤ C̃hz. (5.14)

For the H1-seminorm we get

∥∥∇
(
b1z − ϕℓ+1,z

)∥∥
L2(ωz)

= hz

∥∥∥∥∇
(
Πzv

‖v‖z

)∥∥∥∥
L2(ωz)

.

(5.15)

We distinguish again three cases.

Case a. Let K ⊂ ωz be a triangle which will be
p-refined. Hence, ΦK = Φ

(3)
K (cf. Definition 3).

We apply Lemma 3 to obtain

‖∇ (Πzv)‖2L2(K) ≤ C′
0

p2

h2z

∥∥∥Φ1/2
K Πpz−1

K v
∥∥∥
2

L2(K)

≤ C′
0

p2

h2z

∥∥∥Φ1/2
K v

∥∥∥
2

L2(K)
. (5.16a)

The last inequality in (5.16a) is trivial for pK > p

since (Πzv)|K = v, while, for pK = p, we employ

(5.10a) and (5.11a).

Case b. Let K ⊂ ωz be a triangle which is non-

regularly h-refined. Hence, ΦK = Φ
(1)
K . We introduce

the function5 dK : K → R by

dK = dK̂ ◦ Λ−1
K with dK̂ (x) := dist

(
x, ∂K̂

)
,

where ΛK is as in (5.3). Since both, Φ
(1)
K and dK

are piecewise linear bubble functions with maximal

value O (1) in the interior it is easy to verify that the

pointwise estimates hold

cdK ≤ Φ
(1)
K ≤ CdK

c ‖∇dK‖ ≤
∥∥∥∇Φ(1)

K

∥∥∥ ≤ C ‖∇dK‖

}
a.e. (5.17)

with fixed constants 0 < c,C = O (1). Estimates

(5.17) imply the pointwise estimate

1
2 ‖∇ (vΦK)‖2 ≤ Φ2

K ‖∇v‖2 + ‖∇ΦK‖2 v2
≤ C2

(
d2K ‖∇v‖2 + v2 ‖∇dK‖2

)
.

Hence, we may use [26, (23) with δ = 1 and (22) with

α = 0 and β = 1] to obtain

1
2 ‖∇ (Πzv)‖2L2(K) =

1
2 ‖∇ (vΦK)‖2L2(K)

≤ C2

h2
K

(
p2
∥∥∥Φ1/2

K v
∥∥∥
2

L2(K)
+ ‖v‖2L2(K)

)

≤ C̃2 p
2

h2
K

∥∥∥Φ1/2
K v

∥∥∥
2

L2(K)
.

(5.16b)

Case c. Let K ⊂ ωz be a triangle which is regu-

larly h-refined. We employ the notation as explained

in Definition 3(b1); illustrated in Figure 3. It holds

∇ ( (Πzv)|K) = ∇
(
Φ
(1)
K,Kv + ΦKΠ

pz−1
K v

)

= ∇
(
Φ
(1)
K,K

(
v +Πpz−1

K v
))

+∇
(
Φ
(2)
K Πpz−1

K v
)
.

For the first term and the piecewise linear bubble

Φ
(1)
K,K we can argue as in Case b to obtain

∥∥∥∇
(
Φ
(1)
K,K

(
v +Πpz−1

K v
))∥∥∥

2

L2(K)

≤ C̃2 p
2

h2
K

∥∥∥∥
√
Φ
(1)
K,K

(
v +Πpz−1

K v
)∥∥∥∥

2

L2(K)

,
(5.18a)

5 The function dK differs from the function ΦK in [26,
(27)] only by a scaling constant which is of order 1.
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while we employ Lemma 4 for

∥∥∥∇
(
Φ
(2)
K Πpz−1

K v
)∥∥∥

2

L2(K)

≤ Ĉ2 p
2

h2
K

∥∥∥∥
√
Φ
(1)
K,K

(
Πpz−1
K v

)∥∥∥∥
2

L2(K)

.
(5.18b)

Thus,

‖∇ ( (Πzv)|K)‖2L2(K)

≤ 2

(∥∥∥∇
(
Φ
(1)
K,K

(
v +Πpz−1

K v
))∥∥∥

2

L2(K)

+
∥∥∥∇
(
Φ
(2)
K Πpz−1

K v
)∥∥∥

2

L2(K)

)

(5.18)

≤ 2
(
C̃2 + Ĉ2

) p2

h2K

(∥∥∥∥
√
Φ
(1)
K,K

(
v +Πpz−1

K v
)∥∥∥∥

2

L2(K)

+

∥∥∥∥
√
Φ
(2)
K

(
Πpz−1
K v

)∥∥∥∥
2

L2(K)

)

≤ 4
(
C̃2 + Ĉ2

) p2

h2K
×

(∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+

∥∥∥∥
√
Φ
(1)
K,KΠ

pz−1
K v

∥∥∥∥
2

L2(K)

+

∥∥∥∥
√
Φ
(2)
K

(
Πpz−1
K v

)∥∥∥∥
2

L2(K)

)

= 4
(
C̃2 + Ĉ2

) p2

h2K
×

(∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√
ΦKΠ

pz−1
K v

∥∥∥
2

L2(K)

)

(5.16a)

≤ 4
(
C̃2 + Ĉ2

) p2

h2K
×

(∥∥∥∥
√
Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√
ΦKv

∥∥∥
2

L2(K)

)

≤ 8
(
C̃2 + Ĉ2

) p2

h2K

∥∥∥
√
ΦKv

∥∥∥
2

L2(K)
. (5.16c)

The combination of (5.16) with (5.15) leads to

‖∇ϕℓ+1,z‖L2(ωz)
≤ C̃0p.

6 The Saturation Property

Note that the Pythagoras theorem

‖eℓ‖2PDE = ‖eℓ+1‖2PDE + ‖uℓ − uℓ+1‖2PDE

only holds for symmetric bilinear forms, i.e., b = 0

in (2.2). For non-symmetric bilinear forms one can
prove a quasi-orthogonality and we follow here [24,

Proof of Lemma 2.1.]. One ingredient in the proof is

an Aubin-Nitsche argument (see, e.g., [16]) which we

recall here. For 0 < s ≤ 1, we say that the adjoint

problem

For given g ∈ L2 (Ω) find ψg ∈ H1
0 (Ω) such that

a (v, ψg) :=

∫

Ω

gv ∀v ∈ H1
0 (Ω)

is H1+s (Ω)-regular if, for any right-hand side g ∈
L2 (Ω), the solution ψg is in H1+s (Ω) and there ex-
ists a constant Cs independent of g ∈ L2 (Ω) such

that

‖ψg‖H1+s(Ω) ≤ Cs ‖g‖L2(Ω) .

We introduce the adjoint approximation property for

a subspace S ⊂ H1
0 (Ω) by

η (S) := sup
g∈L2(Ω)\{0}

inf
v∈S

‖ψg − v‖PDE

‖g‖L2(Ω)

.

In our context, we obtain, e.g., from [16] the estimate

‖eℓ+1‖L2(Ω) ≤ CSη (Sℓ+1) ‖eℓ+1‖PDE .

If the adjoint problem is H1+s (Ω)-regular, standard

approximation results for finite elements lead to

η (Sℓ) ≤ Ca supg∈L2(Ω)\{0} infv∈Sℓ

‖ψg−v‖H1(Ω)

‖g‖L2(Ω)

≤ CaCapproxh
s
ℓ supg∈L2(Ω)\{0}

‖ψg‖H1+s(Ω)

‖g‖L2(Ω)

≤ CaCapproxCsh
s
ℓ ,

where Capprox only depends on the shape regularity

of the mesh. Hence,

‖eℓ+1‖L2(Ω) ≤ Cdualh
s
ℓ+1 ‖eℓ+1‖PDE with

Cdual := CSCaCapproxCs.
(6.1)

Lemma 1 Let Assumption 1 be satisfied and let the

adjoint problem be H1+s (Ω) regular for some 0 <

s ≤ 1. Then, there exists some C⋆ > 0 depending only

on α, β, b∞, c∞, and the shape regularity of the mesh
such that, for any finite element mesh Tℓ+1 with max-

imal mesh width hℓ+1 < C−s
⋆ , the quasi-orthogonality

‖eℓ+1‖2PDE ≤ Λ2
ℓ+1 ‖eℓ‖2PDE − ‖uℓ+1 − uℓ‖2PDE

with Λ2
ℓ+1 :=

1

1− C⋆hsℓ+1

(6.2)

holds.

The proof is adapted from [24, Lem. 4.1] and in-
cluded here for completeness.
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Proof We set ε̂ℓ := uℓ+1 − uℓ. It is easy to conclude

from Galerkin’s orthogonality that

‖eℓ‖2PDE = ‖eℓ+1‖2PDE + ‖ε̂ℓ‖2PDE + a (ε̂ℓ, eℓ+1)

holds. Then, integration by parts yields

a (ε̂ℓ, eℓ+1) = a (eℓ+1, ε̂ℓ) +

∫

Ω

(〈b,∇ε̂ℓ〉 eℓ+1

−〈b,∇eℓ+1〉 ε̂ℓ)

=

∫

Ω

(2 〈b,∇ε̂ℓ〉+ (divb) ε̂ℓ) eℓ+1.

Hence,

‖eℓ+1‖2PDE = ‖eℓ‖2PDE − ‖ε̂ℓ‖2PDE −
∫

Ω

(2 〈b,∇ε̂ℓ〉

+(divb) ε̂ℓ) eℓ+1. (6.3)

The integral can be estimated by Young’s inequality

and estimate (6.1)

−
∫

Ω

(2 〈b,∇ε̂ℓ〉+ (divb) ε̂ℓ) eℓ+1

≤ δ ‖eℓ+1‖2L2(Ω) +
(3b∞)

2

2δ
‖ε̂ℓ‖2H1(Ω)

(2.3)

≤ δ ‖eℓ+1‖2L2(Ω) +
9b2∞cF
2δα

‖ε̂ℓ‖2PDE

≤ δC2
dualh

2s
ℓ+1 ‖eℓ+1‖2PDE +

9b2∞cF
2δα

‖ε̂ℓ‖2PDE .

Inserting this into (6.3) leads to

(
1− δC2

dualh
2s
ℓ+1

)
‖eℓ+1‖2PDE ≤ ‖eℓ‖2PDE

−
(
1− 9b2∞cF

2δα

)
‖ε̂ℓ‖2PDE .

We choose δ such that both parenthesis have the same

value and obtain

‖eℓ+1‖2PDE ≤ ‖eℓ‖2PDE

1− C⋆hsℓ+1

− ‖ε̂ℓ‖2PDE with

C⋆ := 3Cdualb∞

√
cF
2α
.

Let the mesh width hℓ+1 of Tℓ+1 satisfy hsℓ+1 < C−1
⋆ .

Then the assertion holds with Λ2
ℓ+1 as in (6.2).

The proof of the saturation estimate requires con-

ditions on the data oscillations. First, we will intro-

duce some edge bubble for triangles with a common

edge. For E ∈ EΩ, let K1,K2 ∈ Tℓ denote the trian-
gles which share E as the common edge.

Case a) Both, K1,K2 will be p-refined.

In this case, let ϕ
(2)
K1,K2

∈ Sℓ+1 be the quadratic
edge bubble, i.e., the product of the barycentric coor-

dinates in K1, K2 for the endpoints of E.

Case b) Both K1,K2 will be h-refined

Let xE ∈ E denote the interior vertex on the

edge E (cf. Figure 1) and let K ∈ {K1,K2} be an

adjacent triangle with inner vertex xK . Let K ′ :=

conv {xE , xK , A} and K ′′ := conv {xE , B, xK} with

A,B denoting the endpoints of E. Then, the piece-
wise affine edge bubble ϕ

(1)
K1,K2

, restricted to K, has

value 1 at xE and vanishes at all other vertices of tri-

angles in sons (K1). Assumption 2 ensures that ϕ
(1)
K1,K2

∈
Sℓ+1.

Case c) K1 will be p-refined and K2 will be h-

refined. Let pm := pKm , m = 1, 2 and define pE :=
min {p1, p2}. LetK ′ ∈ sons (K2) be the triangle which

containsE as an edge. Then, ϕ
(2)
K1,K′

∣∣∣
K1

(resp. ϕ
(2)
K1,K′

∣∣∣
K′

)

is the product of the barycentric coordinates in K1

(resp. K ′) for the endpoints of E and zero outside

K1 ∪K ′.

Case d) K1 will be h-refined and K2 will be p-

refined. Then ϕ
(2)
K′,K2

is defined as in Case c by inter-
changing the roles of K1 and K2.

We define

ϕE :=





ϕ
(2)
K1,K2

in Case a,

ϕ
(1)
K1,K2

in Case b,

ϕ
(2)
K1,K′ in Case c,

ϕ
(2)
K′,K2

in Case d.

(6.4)

For g ∈ L2 (Ω), we define averages gz ∈ Ppz−1 (ωz)

(with pz as in (4.5)) as the L2 (ωz)-orthogonal pro-
jection onto Ppz−1 (ωz).

The data oscillations are defined by

osc (v) :=
√∑

z∈N 1
ℓ
osc2z (v) with

oscz (v) :=
∥∥∥hz

pz
Φ
1/2
osc,z (res (v)− resz (v))

∥∥∥
L2(ωz)

(6.5)

with

Φosc,z :=
p5z
c2π
Φz + p3zΦE,z + 1 and ΦE,z :=

∑

E∈Ez

ϕE

and resz (v) is a shorthand for (res (v))z.

Theorem 8 Let Assumptions 1, 2, and 6 be satis-

fied. We assume that the adjoint problem is H1+s (Ω)

regular for some 0 < s ≤ 1. Further we assume that

the maximal mesh width of Tℓ+1 satisfies hℓ+1 < C−s
⋆

with C⋆ as in Lemma 1. Let cπ be as in (5.13b) and

Crel as in (4).

There exists a constant C2 > 0 depending on α, β,

b∞, c∞, and ρ but independent of hℓ, pℓ, u, and f

such that for any 0 ≤ µ ≤ 1 and any C3 > C2Crel the

condition

osc (uℓ) ≤
µ

C3
‖eℓ‖PDE (6.6)
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implies the error reduction

‖eℓ+1‖PDE ≤ κℓ ‖eℓ‖PDE with

κℓ :=

√√√√√


Λ2

ℓ+1 −
(

cπ

C3p
5/2
ℓ

)2

(1− µ2)


.

Remark 4 The condition on C3 implies that κℓ > 0.

From the definition of Λ2
ℓ+1 = 1

1−C⋆hs
ℓ+1

with hℓ+1 <

(2C⋆)
−1/s

as in (6.2) it follows that the condition

hℓ+1 ≤ H (pℓ) := C4

(
cπ

p
5/2
ℓ

)2/s

with

C4 :=

(
1

C⋆ (2C3Crel)
2

)1/s

implies

Λ2
ℓ+1 −

(
cπ

C3Crelp
5/2
ℓ

)2

≤ 1− 1

2

(
cπ

C3Crelp
5/2
ℓ

)2

and, for 0 ≤ µ < 1/
√
2, it holds

κℓ ≤

√√√√1−
(

cπ

C3Crelp
5/2
ℓ

)2(
1

2
− µ2

)
< 1.

Proof of Theorem 8. Since uℓ+1 − uℓ ∈ Sℓ+1,
the quasi-orthogonality (cf. Lemma 1) implies

Λ2
ℓ+1 ‖eℓ‖2PDE ≥ ‖eℓ+1‖2PDE + ‖uℓ+1 − uℓ‖2PDE (6.7)

with Λ2
ℓ+1 as in (6.2). Hence it is sufficient to prove a

lower bound for ‖uℓ+1 − uℓ‖2PDE in terms of ‖eℓ‖2PDE

and data oscillations. The residual a posteriori error
estimate can be recast in the form of stars (cf. (4.4)):

By a triangle inequality we obtain

‖eℓ‖2PDE ≤2C2
rel

∑

z∈N 1
ℓ

(∥∥∥∥
hz
pz

resz (uℓ)

∥∥∥∥
2

L2(ωz)

+
∑

E∈Ez

∥∥∥∥∥

√
hz
pz

Res (uℓ)

∥∥∥∥∥

2

L2(E)

(6.8)

+

∥∥∥∥
hz
pz

(resz (uℓ)− res (uℓ))

∥∥∥∥
2

L2(ωz)

)
.

Hence, it is sufficient to bound the jumps and pro-
jected volume residuals from above by ‖uℓ+1 − uℓ‖PDE

and to control the last term by the oscillation condi-

tion (6.6).

We start with the jump term and employ the same

arguments as in [24, Proof of Lemma 3.1, Step 2].
Since uℓ is continuous, [∇uℓ]E is parallel to nE , i.e.,

[∇uℓ]E = jEnE and jE =
[
∂uℓ

∂nE

]
E

∈ PpE−1 with

pE := min {p1, p2} (cf. Remark 3). The continuity of
the coefficient matrix A implies

JE := 〈AnE , [∇uℓ]E〉 = 〈AnE ,nE〉 jE =: aEjE ,

(6.9)

where α ≤ aE (x) ≤ β (cf. Assumption 1). Conse-

quently

‖√ϕEJE‖2L2(E) =

∫

E

αE (jEϕE)JE ≤ β

∫

E

(jEϕE)JE

‖√ϕEJE‖2L2(E) =

∫

E

α2
Ej

2
EϕE ≥ α2

∫

E

j2EϕE

[26, Lem. 2.4]

≥ c
α2

p2E
‖jE‖2L2(E)

≥ c

(
α

βpE

)2

‖JE‖2L2(E) . (6.10)

Thus
∥∥∥
√
hEϕEJE

∥∥∥
2

L2(E)
≤ βhE

∫

E

〈An, [∇uℓ]E〉 (jEϕE) .

Next we extend jE to ωE . For K ⊂ ωE , let ΛK , ΛE
be chosen such that (cf. (5.3)) ΛK |x2=0 = ΛE holds.

Let Ẑ (x) := (x1, 0)
⊺
for x = (x1, x2) ∈ R

2. We define

j⋆E : ωE → R trianglewise by

j⋆E |K := jE ◦ ΛK ◦ Ẑ ◦ Λ−1
K . (6.11)

Note that j⋆E is a polynomial of degree pE−1 on both

triangles which share E as the common edge. The

construction of ϕE along the definition of the poly-

nomial degrees on the refined mesh (cf. Assumption
2) imply ϕEj

⋆
E ∈ Sℓ+1. By using partial integration

and the fact that uℓ+1 is the Galerkin solution we get

for any E ⊂ ωz

1

β

∥∥∥
√
hEϕEJE

∥∥∥
2

L2(E)
≤ hE

∫

E

〈An, [∇uℓ]E〉 (jEϕE)

(6.12a)

= hE

∫

ωE

〈A∇uℓ,∇ (j⋆EϕE)〉+ divℓ (A∇ℓuℓ) (j
⋆
EϕE)

(6.12b)

= hE

{
a (uℓ − uℓ+1, j

⋆
EϕE) +

∫

ωE

resz (uℓ) (j
⋆
EϕE)

+ (res (uℓ)− resz (uℓ)) (j
⋆
EϕE)} . (6.12c)

From Lemma 5 and Corollary 6 we conclude by an

affine pullback to the reference element that

‖√ϕEj⋆E‖L2(ωE) ≤ C5

∥∥∥
√
hEϕEjE

∥∥∥
L2(E)

(6.9)

≤ C5

α

∥∥∥
√
hEϕEJE

∥∥∥
L2(E)

, (6.13a)

‖ϕEj⋆E‖PDE ≤ C6pE

∥∥∥∥
√
ϕE
hE

JE

∥∥∥∥
L2(E)

, (6.13b)



Saturation Estimates for hp-Finite Element Methods 13

where C5, C6 only depend on α, β, b∞, c∞ and the

shape regularity of the mesh. The combination of

(6.12) with (6.13) and (6.10) leads to
∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥
L2(E)

≤ C7p
3/2
E

{
‖uℓ − uℓ+1‖PDE,ωE

+

∥∥∥∥
hE
pE

ϕ
1/2
E resz (uℓ)

∥∥∥∥
L2(ωE)

(6.14)

+

∥∥∥∥
hE
pE

ϕ
1/2
E (res (uℓ)− resz (uℓ))

∥∥∥∥
L2(ωE)

}

with C7 depending only on α, β, b∞, c∞, and ρ. A

summation of the squared inequality (6.14) over all
E ∈ Ez yields

∑

E∈Ez

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥

2

L2(E)

≤ C8p
3
z×

{
‖uℓ − uℓ+1‖2PDE,ωz

+

∥∥∥∥
hz
pz
Φ
1/2
E,z resz (uℓ)

∥∥∥∥
2

L2(ωz)

+

∥∥∥∥
hz
pz
Φ
1/2
E,z (res (uℓ)− resz (uℓ))

∥∥∥∥
2

L2(ωz)

}
. (6.15)

Hence, we are left with the estimate of the volume

residual.
Partial integration and the fact that uℓ solves the

Galerkin equations leads to

∑

E∈Ez

∫

E

JEb
1
z =

∫

ωz

〈
A∇uℓ,∇b1z

〉
+ divℓ (A∇ℓuℓ) b

1
z

=

∫

ωz

res (uℓ) b
1
z (6.16)

=

∫

ωz

resz (uℓ) b
1
z +

∫

ωz

(res (uℓ)− resz (uℓ)) b
1
z.

We choose ϕℓ+1,z as in Theorem 7 such that (5.13)

holds and obtain as in (6.12c)

∑

E∈Ez

∫

E

JEϕℓ+1,z =
∑

E∈Ez

∫

E

〈An, [∇uℓ]E〉ϕℓ+1,z

=
∑

K⊂ωz

∫

K

〈A∇uℓ,∇ϕℓ+1,z〉+ divℓ (A∇uℓ)ϕℓ+1,z

= a (uℓ − uℓ+1, ϕℓ+1,z) +

∫

ωz

resz (uℓ)ϕℓ+1,z

+

∫

ωz

(res (uℓ)− resz (uℓ))ϕℓ+1,z. (6.17)

The combination of (??) and (6.17) with (5.13a)

allows to eliminate the jump residuals and we obtain
∫

ωz

resz (uℓ)
(
b1z − ϕℓ+1,z

)
= a

(
uℓ − uℓ+1, ϕℓ+1,z − b1z

)

+

∫

ωz

(res (uℓ)− resz (uℓ))
(
ϕℓ+1,z − b1z

)
. (6.18)

Recall the definition of ϕℓ+1,z as in the proof of The-

orem 7

b1z − ϕℓ+1,z = vz with vz := hz
Πzv

‖v‖z

and we apply this definition for v = resz (uℓ). From

this and (5.13b) we obtain a bound of the averaged
volume residual on stars

cπ

∥∥∥Φ1/2
z hz resz (uℓ)

∥∥∥
L2(ωz)

≤CS ‖uℓ − uℓ+1‖PDE,ωz

∥∥ϕℓ+1,z − b1z
∥∥
PDE,ωz

+
∥∥∥hzΦ1/2

z (res (uℓ)− resz (uℓ))
∥∥∥
L2(ωz)

h−1
z ×

(∥∥∥Φ−1/2
z

(
ϕℓ+1,z − b1z

)∥∥∥
L2(ωz)

)
. (6.19)

Hence, from (5.13) we conclude

cπ

∥∥∥Φ1/2
z hz resz (uℓ)

∥∥∥
L2(ωz)

≤ CS
C1

c2
pz ‖uℓ − uℓ+1‖PDE,ωz

+2C1

∥∥∥hzΦ1/2
z (res (uℓ)− resz (uℓ))

∥∥∥
L2(ωz)

.

(6.20a)

Note that6

∥∥∥Φ1/2
z hz resz (uℓ)

∥∥∥
L2(ωz)

≥ c
p1−s
z

×
∥∥∥∥
hz
pz
Φ
s/2
E,z resz (uℓ)

∥∥∥∥
L2(ωz)

for s ∈ {0, 1} .

(6.20b)

6 For s = 1 this follows from Corollary 6. For s = 0, we
conclude from [39, Prop. 3.37, Cor. 3.40, Prop. 3.46] that

∥∥∥∥
√
Φ
(3)
K v

∥∥∥∥
L2(K)

≥ c

p2
‖v‖L2(K) ∀v ∈ Pp (K) , p ≥ 1

holds and from [26, (22) with α = 0 and β = 1]

∥∥∥∥
√
Φ
(1)
K v

∥∥∥∥
L2(K)

≥ c

p
‖v‖L2(K) ∀v ∈ Pp (K) , p ≥ 1

for some constant c > 0 which is independent of p and hK .

Finally, for Φ(1)
K,K + Φ

(2)
K we employ

Φ
(3)
K ≤ Φ

(1)
K,K + Φ

(2)
K pointwise

to obtain

∥∥∥∥
√
Φ
(1)
K,K + Φ

(2)
K v

∥∥∥∥
L2(K)

≥
∥∥∥∥
√
Φ
(3)
K v

∥∥∥∥L2 (K) ≥ c

p2
‖v‖L2(K)

∀v ∈ Pp (K) , p ≥ 1.
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The first and second term in the right-hand side in

(6.8) can be estimated by means of (6.14) and (6.20)

‖eℓ‖2PDE ≤ 2C2
relC

∑

z∈N 1
ℓ

(
p5z
c2π

‖uℓ − uℓ+1‖2PDE,ωz

+

∥∥∥∥
hz
pz
Φ1/2
osc,z (res (uℓ)− resz (uℓ))

∥∥∥∥
2

L2(ωz)

)
, (6.21)

where, again, C9 only depends on α, β, b∞, c∞, and

ρ.

Taking into account the finite overlap of the sup-
ports ωz we end up with

‖eℓ‖2PDE ≤ (C2Crel)
2

(
p5ℓ
c2π

‖uℓ − uℓ+1‖2PDE + osc2 (uℓ)

)

(6.22)

where C2 only depends on α, β, b∞, c∞, and ρ.

Choose C3 > C2Crel. The assumption that the

data oscillations are small, i.e., osc (uℓ) ≤ µ
C3

, implies

for any 0 ≤ µ < 1

∑

z∈N 1
ℓ

‖uℓ − uℓ+1‖2PDE,ωz
≥ c2π
C2

3p
5
ℓ

(
1− µ2

)
‖eℓ‖2PDE .

The combination with (6.7) finally leads to

‖eℓ+1‖2PDE ≤ Λ2
ℓ+1 ‖eℓ‖

2
PDE − ‖uℓ+1 − uℓ‖2PDE

≤
(
Λ2
ℓ+1 −

(
cπ

C3p
5/2
ℓ

)2 (
1− µ2

)
)
‖eℓ‖2PDE

and this is the assertion.

Corollary 3 Let the assumptions of Theorem 8 be
satisfied. Condition (6.6) follows from the computable

condition

osc (uℓ) ≤
µ̂cπ

C10p
5/2
ℓ


 ∑

E∈EΩ

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥

2

L2(E)




1/2

(6.23)

for sufficiently small 0 < µ̂ ≤ µ̂0, where µ̂0 depends

on α, β, b∞, c∞, µ, C3, and ρ.

Proof Observe that (6.12c) and (6.17) remain true if

uℓ+1 is replaced by u. Hence, we may also replace
uℓ+1 by u in (6.14) and (6.20). By doing so, the com-

bination of (6.14) and (6.20) yields after summing the

squared norms over all z ∈ N 1
ℓ the estimate

(∑
E∈EΩ

∥∥∥
√

hE

pE
Res (uℓ)

∥∥∥
2

L2(E)

)1/2

≤ C10

(
p
5/2
ℓ

cπ
‖eℓ‖PDE + osc (uℓ)

)
,

where C10 only depends α, β, b∞, c∞, and ρ. The con-

dition (6.23) implies (since 0 ≤ cπ ≤ 1 (cf. Cor. 2))

osc (uℓ) ≤ µ̂
1

C10

cπ

p
5/2
ℓ


 ∑

E∈EΩ

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥

2

L2(E)




1/2

≤ µ̂ ‖eℓ‖PDE + µ̂ osc (uℓ) .

For sufficiently small 0 < µ̂ ≤ µ̂0, this implies (6.6).

Corollary 4 Assume that the sequence of meshes and

polynomial distributions are chosen such that the os-

cillation condition (6.6) holds on every level ℓ. Let

Conjecture 1 be satisfied. Then, the contraction of the
error on level ℓ is given by

ζℓ :=

ℓ∏

k=1

(
1− C

p
5/2
k

)

for a constant 0 < C ≤ 1 which is independent of the

polynomial degrees, i.e.,

‖eℓ‖PDE ≤ ζℓ ‖e0‖PDE .

Recall that pk denotes the maximal polynomial degree

at level k which is monotonously increasing. Define
the sequence (ni)i∈N

recursively by n0 = 0 and, for

i = 1, 2, . . ., by the condition

pk = i for ni−1 + 1 ≤ k ≤ ni,

i.e., the maximal polynomial degree stays fix for δi :=

ni − ni−1 consecutive levels.

1. If, for some k0 > 0, it holds nk = ∞ for all k ≥
k0, then ζℓ ≤

(
1− Cp

−5/2
k0

)ℓ
→ 0 as ℓ→ ∞.

2. If,
∑∞

k=1 p
−5/2
k = +∞, then limℓ→∞ ζℓ = 0.

3. If δi ≥ ci3/2, then limℓ→∞ ζℓ = 0 as ℓ→ ∞, while
limk→∞ pk = ∞.

Proof The first statement is trivial. For the second

statement we employ for s > 0 and C < 1

ζℓ ≤ exp

(
ℓ∑

k=1

log

(
1− C

psk

))
.

Note that, for 0 < ε < 1,

log (1− ε) ≤ −ε
so that

ζℓ ≤ exp

(
−C

ℓ∑

k=1

1

psk

)
.

From this, the second statement follows. For the third

one we use

lim
ℓ→∞

ζℓ ≤ exp

(
−C

∞∑

i=1

δi
is

)
.

Hence, for δi ≥ cis−1 we have limℓ→∞ ζℓ = 0.
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A Lower Bound for the Constant cπ.

Numerical Experiments

In this appendix we will invest the dependence of the sta-
bility constant cπ of the polynomial projection operator Πz

(cf. (5.8)) on the polynomial degree p. We consider mainly
two cases: pure p-refinement and h-refinement.

A.1 p-Refinement

First, we will rewrite the definition of cπ as an algebraic
eigenvalue problem which we will solve numerically. We
have performed numerical experiments for the two-dimensi-
onal setting on stars as described in this paper but also
considered the one-dimensional case where ωz consists of
the two intervals which have z as a common endpoint.

A.1.1 Equivalent Formulation

The goal is to investigate the dependence of the constant

cπ := inf
v∈Pp(ωz)\{0}

(v,Πp
z v)L2(ωz)∥∥∥Φ1/2

z v
∥∥∥
2

L2(ωz)

(A.1)

on the polynomial degree p numerically. Let d denote the
spatial dimension. Let ωz consists of q ≥ d simplices Ki,
1 ≤ i ≤ q.

By employing a global affine map we can pull back
the star ωz to a reference configuration, where K1 = K̂ is
the unit simplex, on the expense that cπ in (A.1) depends

additionally on the shape regularity of K1. Let χi : K̂ →
Ki denote affine bijection with the special choice χ1 = id.
Then,

∥∥∥Φ1/2
z v

∥∥∥
2

L2(ωz)
=

q∑

i=1

|Ki|∣∣∣K̂
∣∣∣

∫

K̂

Φ̂K v̂
2
i ,

where v̂i = v◦χi and ΦK̂
denotes the product of barycentric

coordinates. Let (Pn)n∈ιp
denote a basis of Pp (ωz) for a

suitable index set ιp. We write

v =

p∑

n=0

vnPn (A.2)

and obtain
∥∥∥Φ1/2

z v
∥∥∥
2

L2(ωz)
= v⊺M(p)v,

where
(
M

(p)
i

)
n,m

:=
|Ki|∣∣∣K̂
∣∣∣

∫

K̂

Φ̂K (Pn ◦ χi) (Pm ◦ χi) , n,m ∈ ιp

and M(p) :=

q∑

i=1

M
(p)
i .

For the special case that Φ̂
K̂

is the polynomial bubble func-

tion we can choose an orthogonal basis for Pp

(
K̂
)
(cf. [30],

[22]) so that M
(p)
1 is a diagonal matrix.

In order to invest (A.1) we introduce a matrix repre-
sentation of Πp

z v with v as in (A.2) via the ansatz

Πp
z v|Ki

=
∑

m∈ιp

wm,iPm ◦ χ−1
i

The coefficients wi = (wm,i)m∈ιp are determined via

wi =
(
M

(p−1)
1

)−1
Wiv with

(Wi)m,n :=
|Ki|∣∣∣K̂
∣∣∣

∫

K̂

Φ̂KPn ◦ χiPm for m ∈ ιp−1, n ∈ ιp.

Hence,

(v,Πp
z v)z = v⊺Bv with B :=

q∑

i=1

W
⊺

i

(
M

(p−1)
1,1

)−1
Wi

so that the constant cπ has the algebraic representation

cπ = inf
v∈R

ιp

v⊺Bv

v⊺M(p)v
.

Hence, cπ is the smallest eigenvalue of

(
M(p)

)−1/2
B

(
M(p)

)−1/2
.

A.1.2 The One-Dimensional Case

In this case we have K̂ = [−1, 1] and Pn are the Jacobi

polynomials P (1,1)
n which are defined as follows

P
(α,β)
n (x) =

(2)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
,

where (·)n is Pochhammer’s symbol and 2F1 is the termi-
nating Gauss hypergeometric function

2F1

(
−n, b
c

; z

)
=

n∑

k=0

(−n)k(b)k
(c)kk!

zk.

We consider K1 = K̂ and K2 = [1, 1 + δ] for some δ > 0.

Note that M
(p)
1 in this case is given by

M
(p)
1 = diag

[
8

(n+ 1)

(2n+ 3) (n+ 2)
: n ∈ ιp

]
.

The mapping χ2 is defined by

χ2 (x̂) =
1− x̂

2
+

1 + x̂

2
(1 + δ) .

To observe the behaviour of cπ with respect to p and δ, we
consider three different cases: δ = 0.5, δ = 1, δ = 2, δ = 4.
The following observations can be obtained from Figure 4:

– cπ converges to a positive constant with respect to p,
– cπ is properly bounded from below,
– cπ is decreasing as δ goes to zero.

A.1.3 The Two-Dimensional Case

Now we consider Jacobi bivariate polynomials as our basis
functions on the reference triangle, which are defined as
follows:

P 1,1,1
n,k (x, y) := (1 − x)kP

(1,3+2k)
n−k (1− 2x)P

(1,1)
k

(
1− 2y

1 − x

)
,

which is a polynomial of degree n in x and y.
We study different triangulations. Again we assume

that K1 is the unit simplex and the common point of all
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Fig. 4 Performance of cπ versus p for the one-dimensional
case.

triangles in the patch is (0, 0). The meshes consist of the
following nodes and are illustrated in Figure 5:

v1 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)},
v2 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−2, 0), (−2,−1), (−1,−3),

(0,−3), (1,−1)},
v3 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−3, 0), (−4,−2), (−3,−3),

(−1,−4), (0,−4), (1,−2)}, (A.3)

v4 = {(0, 0), (1, 0), (0, 1), (−1,−1)},
v5 = {(0, 0), (1, 0), (0, 1), (−0.1,−0.2)},
v6 = {(0, 0), (1, 0), (0, 1), (−4, 3), (−4, 0), (−4,−4), (0,−4),

(1,−0.1)}.

Figure 6 shows the behaviour of cπ with respect to p in
each case and we summarize the main observations.

a. In the first three cases, i.e., the number of triangles (at
least six) is varying while the shape regularity constant
is always moderately bounded, the lower bound of cπ
is approximately 1. It also shows that the constant cπ
is robust with respect to the elongation of the triangles
which is in analogy to the one-dimensional observation
(δ increases).

b. If we consider the minimal number (three) elements,
again, with moderate shape regular constant, we still
get a proper lower bound. Recall that the dimension of
the image space Pp−1 (Tz) (in (5.1)) increases with the
number of triangles so that we expect that the constant
cπ becomes larger with increasing number of triangles.

c. On the other hand, if we consider the minimal config-
uration with only three triangles and large shape regu-
larity constant (the area of the triangles is highly vary-
ing) as described by v5, then the constant cπ becomes
smaller as expected.

d. Configuration v6 supports the statement that, if the
space Pp−1 (Tz) is large enough, then a few tiny el-
ements can be still harmless. We can see that these
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1
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Fig. 5 Illustration of the geometric configuations described
in (A.3).
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Fig. 6 Performance of cπ versus p for the two-dimensional
cases.

numerical examples confirm our hypothesis that cπ de-
pends on the shape regularity of our meshes but does
not depend on p.

A.2 h-Refinement

In this section we study the similar problem as in previous
section but with h-refinement instead of p-refinement. In
other word, we apply one level of regular h-refinement on
each mesh and observe the behaviour of the constant cπ
with respect to p on the refined mesh. To be able to make a
comparison between the results, we take the same patches
as in previous section. From the definition of Φz for this
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case we have

cπ =

inf
v∈Pp−1(K)

∑
K⊂ωz

∫
K
vΦ

(1)
K,Kv +

∫
K
v
(
Φ
(1)
K,K + Φ

(2)
K

)∏p−1
K v

∑
K⊂ωz

∫
K
v
(
Φ
(1)
K,K + Φ

(2)
K

)
v

,

where Φ
(1)
K,K and Φ

(2)
K are piecewise linear and quadratic

functions defined as in (5.4). Figure 7 shows the behaviour
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Fig. 7 Behaviour of cπ versus p with one level of h-
refinement

of cπ for the same patches with respect to p. It supports our
hypothesis and shows the similar behaviour as in p-version.
Also here we observe that cπ does not depend on p, but it
only depends on the shape regularity of the mesh.

B Polynomial Inverse Estimates

We start with a one-dimensional estimate.

Lemma 2 For a < b, let Φ[a,b] (x) =
(x−a)(b−x)

(b−a)2
denote the

one-dimensional bubble function. Then,
∥∥∥
(
Φ[a,b]v

)′∥∥∥
L2([a,b])

≤C p+ 1

b− a

∥∥∥Φ1/2
[a,b]

v
∥∥∥
L2([a,b])

∀v ∈ Pp ([a, b]) .

Proof We first prove the result for (a, b) = (0, 1). Observe

that
∥∥∥Φ′

[0,1]

∥∥∥
L∞([0,1])

= 1 so that Leibniz rule gives us

∥∥∥
(
Φ[0,1]v

)′∥∥∥
L2([0,1])

≤
∥∥∥Φ′

[0,1]v
∥∥∥
L2([0,1])

+
∥∥Φ[0,1]v

′∥∥
L2([0,1])

≤ ‖v‖L2([0,1]) +
∥∥Φ[0,1]v

′∥∥
L2([0,1])

.

For the first term, we apply [26, Lemma 2.4 with α = 0
and β = 1] and for the second term [26, Lemma 2.4 with
δ = 1] to obtain
∥∥∥
(
Φ[0,1]v

)′∥∥∥
L2([0,1])

≤ C (p+ 1)
∥∥∥Φ1/2

[0,1]
v
∥∥∥
L2([0,1])

. (B.1)

The result then follows via a scaling argument.

Corollary 5 Let a < b and Φ[a,b] be as in Lemma 2. Let
Ψ[a,b] ∈ W 1,∞ ([a, b]) be a function with the properties
∣∣Ψ[a,b]

∣∣ ≤ C11Φ[a,b] pointwise and

∥∥∥Ψ ′
[a,b]

∥∥∥
L∞([a,b])

≤ C12

b− a
.

Then
∥∥∥
(
Ψ[a,b]v

)′∥∥∥
L2([a,b])

≤ C (C11 + C12)
p+ 1

b− a

∥∥∥Φ1/2
[a,b]

v
∥∥∥
L2([a,b])

∀v ∈ Pp ([a, b]) .

Proof Leibniz’ rule gives us
∥∥∥
(
Ψ[a,b]v

)′∥∥∥
L2([a,b])

≤
∥∥∥Ψ ′

[a,b]v
∥∥∥
L2([a,b])

+
∥∥Ψ[a,b]v

′∥∥
L2([a,b])

≤ C12

b− a
‖v‖L2([a,b]) + C11

∥∥Φ[a,b]v
′∥∥

L2([a,b])

≤C (C11 + C12)
p+ 1

b− a

∥∥∥Φ1/2
[a,b]

v
∥∥∥
L2([a,b])

,

where the last inequality follows as (B.1).
The two-dimensional version is formulated next. The

estimates are similar to those in [39, Sec. 3.6] but differ by
powers of the weight functions in the right-hand side and
also by the choice of the weight function in Lemma 4. The
proofs follow the lines of the proofs in [39, Prop. 3.46] and
also employs tools from [27, Appendix D].

Lemma 3 Let K denote a triangle and let ΦK be the cubic
bubble function as defined in (5.3). Then, it holds for all v ∈
Pp (K)

‖∇ (ΦKv)‖L2(K) ≤ C
p+ 1

hK

∥∥∥Φ1/2
K v

∥∥∥
L2(K)

.

Proof Let K = K̂ be the two-dimensional reference trian-
gle. Note that

Φ
K̂

(x1, x2) = Φ[0,1−x1] (x2) (1− x1)Φ[0,1] (x1)

with Φ[a,b] as in Lemma 2. First, we consider the derivative
with respect to x2 and obtain
∥∥∂2

(
Φ
K̂
v
)∥∥2

L2(K̂)

=

∫ 1

0

(∫ 1−x1

0

(
∂2
(
Φ
K̂

(x1, x2) v (x1, x2)
))2

dx2

)
dx1

=

∫ 1

0

Φ2
[0,1] (x1) (1− x1)

2 ×
(∫ 1−x1

0

(
∂

∂x2

(
Φ[0,1−x1] (x2) v (x1, x2)

))2

dx2

)
dx1.

We then get

(1− x1)
2

∫ 1−x1

0

(
∂

∂x2

(
Φ[0,1−x1] (x2) v (x1, x2)

))2

dx2

= (1− x1)
2
∥∥∥
(
Φ[0,1−x1]v (x1, ·)

)′∥∥∥
2

L2(0,1−x1)

Lem. 2
≤ C (p+ 1)2

∥∥∥Φ1/2
[0,1−x1]

v (x1, ·)
∥∥∥
2

L2(0,1−x1)
.

Since Φ2
[0,1] (x1)Φ[0,1−x1] (x2) ≤ Φ

K̂
(x1, x2) we end up with

∥∥∂2
(
Φ
K̂
v
)∥∥2

L2(K̂) ≤ C (p+ 1)2 ×
∫ 1

0

∫ 1−x1

0

Φ2
[0,1] (x1)Φ[0,1−x1] (x2) v

2 (x1, x2) dx2dx1

≤ C (p+ 1)2
∥∥∥Φ1/2

K̂
v
∥∥∥
2

L2(K̂)
.
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Since K̂, ψ
K̂
, and the integral are invariant under permu-

tations of the coordinates, the same estimate holds for the
other partial derivatives.

Lemma 4 Let K be regularly h-refined and let Φ
(2)
K be as

explained in Definition 3 and illustrated in Figure 3. Then, it
holds for all v ∈ Pp (K)

∥∥∥∇
(
Φ
(2)
K v

)∥∥∥
L2(K)

≤ C
p+ 1

hK

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
L2(K)

.

Proof Via an affine transformation it suffices to prove the
result for the reference elementK1 = K̂ andK2 = conv

{(
0
0

)
,(

0
1

)
,
(−1

0

)}
. The common edge is E = {0} × (0, 1). Let

K = K1 ∪ K2. The edge bubble Φ(2)
K (cf. (5.4)) is given

by

Φ
(2)
K (x1, x2) = x2 (1 − |x1| − x2) .

We first consider the derivative with respect to x2. Let

Φ[0,1−|x1|] (x2) =
x2 (1− |x1| − x2)

(1 − |x1|)2
,

i.e., Φ[0,1−|x1|] is the one-dimensional bubble function for

[0, 1 − |x1|] and satisfies Φ(2)
K = (1− |x1|)2 Φ[0,1−|x1|]. Hence,

∥∥∥∂2
(
Φ
(2)
K v

)∥∥∥
2

L2(K)
=

∫ 1

−1

(1 − |x1|)4 ×
∫ 1−|x1|

0

(
∂2
(
Φ[0,1−|x1|] (x2) v (x1, x2)

))2
dx2dx1

Lem. 2
≤ C (p+ 1)2

∫ 1

−1

(1 − |x1|)2 ×
∫ 1−|x1|

0

Φ[0,1−|x1|] (x2) v
2 (x1, x2) dx2dx1

= C (p+ 1)2
∫

K

Φ
(2)
K v2. (B.2)

Next, we will estimate the derivative with respect to
x1. We split the triangle into the two regions

D1 :=

{(
x1

x2

)
∈ K : x2 ≤ 1

2

}
and

D2 := conv
{(1/2

1/2

)
,
(
0
1

)
,
(−1/2

1/2

)}
.

In addition, we will need

D3 := conv
{(

0
0

)
,
(1/2
1/2

)
,
(
0
1

)
,
(−1/2

1/2

)}
.

On D1 we obtain

∥∥∥∂1
(
Φ
(2)
K v

)∥∥∥
2

L2(D1)
≤
∫ 1/2

0

x22 (1− x2)
2 ×

∫ 1−x2

x2−1

(
∂1

(
1− |x1| − x2

1− x2
v (x1, x2)

))2

dx1dx2

Lem. 5
≤ C (p+ 1)2

∫ 1/2

0

∫ 1−x2

x2−1

x2

1− x2
×

Φ
(2)
K (x1, x2) v

2 (x1, x2) dx1dx2

≤ C (p+ 1)2
∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
2

L2(D1)

, (B.3)

since x2/ (1− x2) ≤ 1 on D1.
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K
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K
2

Fig. 8 Reference triangle K̂ which is split into K̂1 and K̂2.
The shaded regions illustrate the integration domains in
the splitting of the integral in (B.8).

On D2, we observe that

1

2

∥∥∥∂1
(
Φ
(2)
K v

)∥∥∥
2

L2(D2)
≤
∥∥∥v∂1Φ(2)

K

∥∥∥
2

L2(D2)
+
∥∥∥Φ(2)

K ∂1v
∥∥∥
2

L2(D2)
.

(B.4)

Let d : D3 → R be defined by

d (x1, x2) = c3 dist ((x1, x2)
⊺ , ∂D3)

where the scaling c3 is chosen such that d interpolates Φ(2)
K

at the vertices of the two triangles Km∩D3, m = 1, 2. Note
that

d ≤ Φ
(2)
K ≤ 1pointwise in D3 and Φ

(2)
K ≤ 2d pointwise in D2.

Since
∥∥∥∂1Φ(2)

K

∥∥∥
L∞(K)

≤ C we obtain for the first term in

(B.4) as in (5.16b)

∥∥∥v∂1Φ(2)
K

∥∥∥
L2(D2)

≤ C ‖v‖L2(D2)

≤ C ‖v‖L2(D3)
≤ C (p+ 1)

∥∥d1/2v
∥∥
L2(D3)

≤ C (p+ 1)

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
L2(D3)

.

(B.5a)

For the second term in (B.4) we get, again, as in (5.16b)
∥∥∥Φ(2)

K ∂1v
∥∥∥
L2(D2)

≤ 2 ‖d∂1v‖L2(D3)

[26, (23) with δ = 1]

≤ C (p+ 1)
∥∥√dv

∥∥
L2(D3)

≤ C (p+ 1)

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
L2(D3)

.

(B.5b)

The combination of (B.4) and (B.5) yields

∥∥∥∂1
(
Φ
(2)
K v

)∥∥∥
2

L2(D2)
≤ C (p+ 1)2

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
2

L2(D3)

. (B.6)

The combination of (B.2), (B.3), and (B.6) yields the as-
sertion.

The following lemma is illustrated in Figure 8.

Lemma 5 Let K̂ be the reference triangle split into K̂1 =
conv

((
0
0

)
,
(
a
0

)
,
(
0
1

))
and K̂2 = conv

((
a
0

)
,
(
1
0

)
,
(
0
1

))
for some

a ∈ ]0, 1[. Let ϕlin
E denote the continuous, piecewise linear

function which has value 1 at
(
a
0

)
and vanishes at ∂K̂\E1 with

E1 = [0, 1] × {0}. Then, for any polynomial v ∈ Pp which is
constant with respect to x2 it holds
∥∥∥∥
√
ϕlin
E v

∥∥∥∥
L2(K̂)

≤ C

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
L2(E1)

,

∥∥∇
(
ϕlin
E v

)∥∥
L2(K̂) ≤ C (p+ 1)

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
L2(E1)

.
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Proof We prove this lemma only for a = 1/2 to reduce
technicalities. The arguments apply verbatim for the gen-
eral case. The function ϕlin

E and its partial derivatives are
given by

ϕlin
E (x1, x2) =

{
2x1 (x1, x2) ∈ K̂1,

2 (1− x1 − x2) (x1, x2) ∈ K̂2,

∂1ϕ
lin
E (x1, x2) =

{
2 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2.

∂2ϕ
lin
E (x1, x2) =

{
0 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2,

Since v ∈ Pp is constant with respect to x2 we write, with
a slight abuse of notation, v (x1, x2) = v (x1). Hence,

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2(K̂)
=

∫ 1

0

v2 (x1)

(∫ 1−x1

0

ϕlin
E (x1, x2) dx2

)
dx1.

The result of the inner integration is

r (x1) :=

∫ 1−x1

0

ϕlin
E (x1, x2) dx2

=

{
2
(∫ 1−2x1

0
x1dx2 +

∫ 1−x1

1−2x1
(1− x1 − x2) dx2

)

2
∫ 1−x1

0
(1 − x1 − x2) dx2

=

{
x1 (2− 3x1) x1 ≤ 1/2,

(1− x1)
2 x1 > 1/2.

Since r ≤ ϕlin
E (·, 0) pointwise on [0, 1], the first assertion

follows.

Next, we investigate the derivative with respect to x2.
It holds

∂2
(
ϕlin
E v

)
= v∂2ϕ

lin
E = v ×

{
0 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2.

Thus,

∫

K̂

(
∂2
(
ϕlin
E v

))2
=

∫

K̂

(
v∂2ϕ

lin
E

)2 ≤ 4

∫

K̂

v2 ≤ 4

∫ 1

0

v2

[26, Lemma 2.4 with α = 0 and β = 1]

≤ 4 (p+ 1)2
∫ 1

0

Φ[0,1]v
2

≤ 4C (p+ 1)2
∫ 1

0

ϕlin
E v2. (B.7)

For the derivative with respect to x1, we get

q (x1, x2) := ∂1
(
ϕlin
E (x1, x2) v (x1)

)

= 2

{
(x1v (x1))

′ in K̂1,

(1− x1 − x2) v′ (x1)− v (x1) in K̂2.

The function q is on K̂1 and on K̂2, an affine function
with respect to x2. We split the integral into

∫ 1

0

∫ 1−x1

0

. . .

=

∫ 1/2

0

∫ 1−2x1

0

. . .+

∫ 1/2

0

∫ 1−x1

1−2x1

. . .+

∫ 1

1/2

∫ 1−x1

0

=: W1 +W2 +W3 (B.8)

and obtain for the summands

W1 = 4

∫ 1/2

0

(1− 2x1)
(
(x1v (x1))

′)2 dx1

≤
∫ 1/2

0

(
(2x1v (x1))

′)2 dx1

≤
∫ 1

0

((
ϕlin
E (x1, 0) v (x1)

)′)2
dx1

Cor. 5
≤ C (p+ 1)2

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2([0,1])

.

For W2 and W3 we use the fact that the Simpson rule is
exact for quadratic polynomials and (B.7) to obtain

W2 = 4

∫ 1/2

0

∫ 1−x1

1−2x1

((1− x1 − x2) v
′ (x1)− v (x1))

2
dx2dx1

=
2

3

∫ 1/2

0

x1





x1v

′ (x1)− v (x1)︸ ︷︷ ︸
=(x1v(x1))

′−2v(x1)




2

+ 4



x1

2
v′ (x1)− v (x1)

︸ ︷︷ ︸
(x1v(x1))′

2
− 3

2
v(x1)




2

+v2 (x1)
)
dx1

≤ 2

3

∫ 1/2

0

x1

(
4
(
(x1v (x1))

′)2 + 27v2 (x1)
)
dx1

≤ 4

3

∫ 1

0

(((
ϕlin
E (x1, 0) v (x1)

)′)2
)
dx1 + 9 ‖v‖2L2([0,1])

Cor. 5
≤ C (p+ 1)2

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2([0,1])

.

Finally, for W3 we obtain

W3 = 4

∫ 1

1/2

∫ 1−x1

0

((1− x1 − x2) v
′ (x1)− v (x1))

2
dx2dx1

= 4

∫ 1

1/2

1 − x1

6





(1 − x1) v

′ (x1)− v (x1)︸ ︷︷ ︸
((1−x1)v(x1))′




2

+4




(
1 − x1

2

)
v′ (x1)− v (x1)

︸ ︷︷ ︸
1
2
(((1−x1)v(x1))

′−v(x1))




2

+ v2 (x1)



dx1

≤ 4

∫ 1

1/2

1− x1

6

(
3
(
((1− x1) v (x1))

′)2 + 9v (x1)
)
dx1

≤ 1

12

∫ 1

1/2

3
(
(2 (1 − x1) v (x1))

′)2 + 36v2 (x1) dx1

≤ 1

4

∫ 1

0

((
ϕlin
E (x1) v (x1)

)′)2
dx1 + 3 ‖v‖2L2[0,1]

Cor. 5
≤ C (p+ 1)2

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2([0,1])

.

Corollary 6 Let K̂ be the reference triangle and let ϕE (x1, x2)

= x1 (1 − x1 − x2) denote the quadratic edge bubble on K̂ for
the edge E1 = [0, 1] × {0}. Then, for any polynomial v ∈ Pp

which is constant with respect to x2 it holds

‖√ϕEv‖L2(K̂) ≤ C ‖√ϕEv‖L2(E1)
,

‖∇ (ϕEv)‖L2(K̂) ≤ C (p+ 1) ‖√ϕEv‖L2(E1)
.
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The proof follows by a simple repetition of the argu-
ments of the proof of Lemma 5.

Lemma 6 Let K be a triangle and E one of its edges. Then,
for any of the functions ϕE (6.4) and corresponding version
ΦK as in (5.4) it holds

∥∥∥ϕ1/2
E v

∥∥∥
L2(D)

≤ C (p+ 1)
∥∥∥Φ1/2

K v
∥∥∥
L2(D)

∀v ∈ Pp (D) .

The proof requires two preparatory lemmata and fol-
lows the ideas in [27, Appendix D].

Lemma 7 Let I = [a, b] for some a < b and let ω : I → R be
a weight function which satisfies

∃A,B,D ≥ 0 with

{
ω is positive in ]a, b[ ,
ω (x) ≤ Aϕa (x) +Bϕb (x) +DΦ[a,b] (x) ,

(PI)

where ϕb (x) = x−a
b−a

, ϕa = 1 − ϕb, and Φ[a,b] = ϕaϕb as in
(2). Then, it holds

∥∥∥ω1/2v
∥∥∥
L2(I)

≤ C (p+ 1)
∥∥∥
√
ωΦ[a,b]v

∥∥∥
L2(I)

∀v ∈ Pp (I) ,

where C is independent of p, v, ω, a, b.

Proof By employing an affine transform it is sufficient to
prove the assertion for the unit interval I = [0, 1].

a) ω (x) = Φ[0,1] (x) = x (1− x). We may apply stan-
dard inverse estimates to obtain

∥∥∥Φ1/2
[0,1]

v
∥∥∥
L2(I)

[26, with α = 1, β = 2]

≤ C (p+ 1)
∥∥Φ[0,1]v

∥∥
L2(I)

= C (p+ 1)
∥∥∥
√
ωΦ[0,1]v

∥∥∥
L2(I)

.

b) For ω (x) = ϕb (x) = x we observe that ω (x) ≤
2Φ[0,1] (x) holds for all 0 ≤ x ≤ 1/2 so that

∥∥ω1/2v
∥∥2
L2(I)

≤ 2
∥∥∥Φ1/2

[0,1]
v
∥∥∥
2

L2(I)
+ ‖v‖2

L2([ 1
2
,1])

[26, Lem. 2.4]

≤ C (p+ 1)2 ×(
∥∥Φ[0,1]v

∥∥2
L2(I)

+

∥∥∥∥Φ
1/2

[ 1
2
,1]
v

∥∥∥∥
2

L2([ 1
2
,1])

)
.

The result now follows from Φ
1/2
[0,1]

≤ ω1/2 pointwise in [0, 1]

and
√
2ω ≥ 1 pointwise on

[
1
2
, 1
]
.

c) The ω (x) = ϕa (x) follows from Case b by symmetry.
d) Let ω be a general weight function which satisfies

the assumptions of the lemma. Hence, from Part a,b,c we
conclude that

∥∥ω1/2v
∥∥2
L2(I)

= A
∥∥√ϕ0v

∥∥2
L2(I)

+B
∥∥√ϕ1v

∥∥2
L2(I)

+D
∥∥√Φ[0,1]v

∥∥2
L2(I)

≤ C′ (p+ 1)2
∥∥√ωΦ[0,1]v

∥∥2
L2(I)

holds.
The following lemma is a weighted version of [27, Lem.

D3].

Lemma 8 Let d ∈ (0, 1), a, b be given such that −1 + ad <
1 + bd and define the trapezoid

D := D (a, b, d) :=
{
(x1, x2) ∈ R

2 | x2 ∈ (0, d)

and − 1 + ax2 < x1 < 1 + bx2.

Let ω ∈ P2 (D) be a polynomial such that for any 0 ≤ x2 ≤ d,
ω (·, x2) has property P[−1+ax2,1+bx2].

On D we define the weight function

Φa,b,d (x1, x2) := min {|x1 − (−1 + ax2)| , |x1 − (1 + bx2)|}

which measures the distance of the point (x1, x2) from the
lateral edges of D. Then, there exists a constant C = C (a, b, d)
such that for all p ∈ N and all polynomials v ∈ Pp (D) it holds

∥∥∥ω1/2v
∥∥∥
L2(D)

≤ C (p+ 1)
∥∥∥
√
ωΦa,b,dv

∥∥∥
L2(D)

.

Proof Note that

C13Φ[−1+ax2,1+bx2] (x1) ≤ Φa,b,d (x1, x2)
≤ C14Φ[−1+ax2,1+bx2] (x1)

for positive constants C13, C14 which only depends on a, b, d.
Hence, the one-dimensional case (Lemma 7) implies

∫ 1+bx2

−1+ax2
ω1/2 (x1, x2) v2 (x1, x2) dx1 ≤ C (p+ 1)2 ×∫ 1+bx2

−1+ax2

√
ω (x1, x2)Φa,b,d (x1, x2)v

2 (x1, x2)dx1.

Integrating this estimate over x2 ∈ (0, d) completes the
proof.

Proof of Lemma 6. By using an affine pullback we
may restrict to the case that K is the equi-sided triangle

conv
((

0
0

)
,
(
1
0

)
, 1
2

(
1√
3

))
and E = (0, 1)× {0}.

It turns out that the proofs for the different cases in
(6.4) for ϕE and in (5.4) for ΦK uses the same arguments
and we work them out exemplarily for the case of the
quadratic edge bubble

ϕE (x1, x2) =

(
x1 − x2√

3

)(
1 − x1 − x2√

3

)

and for ΦK = Φ
(3)
K being the cubic bubble on K.

First, we will cover K with 4 trapezoids and one trian-
gle: Let v =

(
cos π

4
, sin π

4

)
⊺
= 2−1/2 (1, 1)⊺. Then,

1. T1 :=

{(
x̂1

0

)
+ sv :

(
0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1 (x̂1)

)}
with

L1 (x̂1) :=

√
6

1 +
√
3
(1− x̂1) .

2. T2 : mirror image of T1 with respect to the angle bisec-
tor at (0, 0)⊺ .

3. T3 : counter-clockwise rotations of T1 by 3π
4
about the

barycenter of K.
4. T4 : mirror image of T3 with respect to the angle bisec-

tor at (1, 0)⊺.
5. T5 := {(x1, x2)⊺ ∈ K | x2 ≥ 1/2}.

Case T1: We introduce

χ :

(
0 ≤ x̂1 ≤ 1/2

0 ≤ s ≤ L1 (x̂1)

)
→ T1 by χ (x̂1, s) :=

(
x̂1

0

)
+ sv

The bubble function ϕE restricted to the line
(
x̂1

0

)
+ sv

results in

ψx̂1
(s) := ϕE ◦ χ (x̂1, s) = (L1 (x̂1)− s)

(√
3 + 1√
6

x̂1 +
s

3

)

∀
(
0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1 (x̂1)

)
.
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Note that the function ψx̂1
satisfies the assumptions of

Lemma 7 and v̂ := v ◦χ is a polynomial of maximal degree
p. Hence,

∫

T1

ϕEv
2 =

∫ 1/2

0

(∫ L1(x̂1)

0

ψx̂1
(s) v̂2ds

)
dx1

≤ C (p+ 1)2
∫ 1/2

0

(∫ L1(x̂1)

0

ψx̂1
(s)Φ[0,L1(x̂1)] (s) v̂

2ds

)
dx̂1.

Composing Φ[0,L1(x̂1)] (s) with χ−1 yields the function

d (x1, x2) =
1 +

√
3√

3

x2

(
1− x1 − x2√

3

)

(1− x1 + x2)
2

.

Note that the distance function

Φ1
K (x1, x2) = dist ((x1, x2)

⊺ , ∂K)

is piecewise linear on K. It is easy to verify that d (x1, x2) ≤
CΦ1

K (x1, x2) pointwise on T1 for some C = O (1) so that
∫

T1

ϕEv
2 ≤ C′ (p+ 1)2

∫

T1

ϕEΦ
1
Kv

2.

Since ϕEΦ
1
K ≤ C̃ΦK pointwise on K we have proved the

assertion for T1.

Case T3: The proof for the trapezoid T3 follows by
symmetry.

Case T2: Next, we will consider the trapezoid T2 and
first note that by interchanging the x1, x2-variables the case
becomes equivalent to the estimate
∫

T1

ϕẼv
2 ≤ C′ (p+ 1)2

∫

T1

Φ
(3)
K v2 v ∈ Pp (T1) ,

where ϕẼ is the qudratic edge bubble for the edge Ẽ =
(
0
0

)
,
( 1/2√

3/2

)
with explicit form

ϕẼ (x1, x2) =
2√
3
x2

(
1− x1 − x2√

3

)
.

This time, the bubble function ϕẼ , restricted to the line(
x̂1

0

)
+ sv, is given by

ψ̃x̂1
(s) := ϕẼ ◦ χ (x̂1, s) =

√
3 + 1

3
s (L (x̂1)− s)

∀
(
0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1 (x̂1)

)
.

The function ψ̃x̂1
satisfies the assumptions of Lemma 7

so that
∫

T1

ϕẼv
2 =

∫ 1/2

0

(∫ L1(x̂1)

0

ψ̃x̂1
(s) v̂2ds

)
dx1

≤ C (p+ 1)2
∫ 1/2

0

(∫ L1(x̂1)

0

ψ̃x̂1
(s)Φ[0,L1(x̂1)] (s) v̂

2ds

)
dx̂1.

Now we can argue as for the Case of T1 to obtain
∫

T1

ϕẼv
2 ≤ C′ (p+ 1)2

∫

T1

ϕẼΦ
1
Kv

2.

Since ϕẼΦ
1
K ≤ C̃ΦK pointwise on K the assertion follows

for T2.

Case T4: The proof for the trapezoid T4 again follows
by symmetry from the case T2.

Case T5: On T5 we have the pointwise estimate ϕE ≤
CΦ

(3)
K and the estimate for T5 is trivial.
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