
Mesh Regularization in Bank-Holst Parallel
hp-Adaptive Meshing

Randolph E. Bank *1 and Hieu Nguyen†2

1 Department of Mathematics, University of California, San Diego, La Jolla, California
92093-0112, rbank@ucsd.edu.

2 Department of Computer Science, University of California, Davis, Davis, California
95616, htrnguyen@ucdavis.edu.

1 Introduction

In this work, we study mesh regularization in Bank-Holst parallel adaptive paradigm
when adaptive enrichment in both h (geometry) and p (degree) is used. The paradigm
was first introduced by Bank and Holst in [2, 3, 1] and later extended to hp-adaptivity
in [5]. In detail, the paradigm can be summarized in the following steps.

Step 1 - Load Balancing: The problem is solved on a coarse mesh, and avail-
able a posteriori error estimates are used to partition the mesh into subregions. The
partition is such that each subregion has approximately the same error although sub-
regions may vary considerably in terms of number of elements, number of degrees
of freedom, and polynomial degree.

Step 2 - Adaptive Meshing: Each processor is provided with complete data for
the coarse problem and instructed to sequentially solve the entire problem, with the
stipulation that its adaptive enrichment (in h or p) should be limited largely to its
own subregion. The target number of degrees of freedom for each processor is the
same.

Step 3 - Mesh Regularization: The local mesh on each processor is regularized
such that the mesh for the global problem described in Step 4 is conforming in both
h and p.

Step 4 - Global Solve: The final global problem consists of the union of the
refined partitions provided by each processor. A final solution is computed using
domain decomposition.

This paradigm is attractive as it requires low communication and allows exist-
ing sequential adaptive finite element codes to run in parallel environment without

∗ The work of this author was supported by the U.S. National Science Foundation under con-
tract DMS-0915220. The Beowulf cluster used for the numerical experiments was funded
by NSF SCREMS-0619173.

† The work of this author was supported by the National Science Foundation under contract
DMS-0915220 and a grant from the Vietnam Education Foundation (VEF).



6 Randolph E. Bank and Hieu Nguyen

much effort in recoding. However, it also poses some challenges in mesh regular-
ization (Step 3). Since the adaptive enrichment on each processor (Step 2) is com-
pletely independent of what happens on other processors, the global refined mesh,
constructed from the meshes associated with the refined regions on each of the pro-
cessors, is initially non-conforming along the interface system3. Thus, we need to
efficiently identify and resolve these nonconformities, and ultimately to establish
links between degrees of freedom on the fine mesh interface system on a given pro-
cessor and the corresponding degrees of freedom on other processors which share its
interface. These tasks are challenging due to the fact that the meshes are unstructured
in geometry (in h), have variable degree (variable p), no element refinement tree is
available, and nonconformity exists in both h and p.

2 Data Structures

In our implementation of Bank-Holst paradigm in PLTMG, a relaxed version of
longest edge bisection h-refinement and a rather flexible p-refinement strategy are
used for hp-refinement, see [7].

2.1 Boundary Edge Data Structure

Each boundary edge is represented by a column in the 6×NBF integer array IB-
NDRY, where NBF is the number of boundary edges. For the Ith column of IBNDRY,
four of the six entries contain information about the endpoint vertices, and indica-
tion of whether the edges is curved or straight, and a user-defined label. One entry
indicates edge type (various boundary condition types, or internal interface), and the
fifth entry, nonzero only for edges defining the interface system used in the parallel
computation, encodes information which is used in the regularization process. This
entry is described in more detail in Subsection 2.2.

Table 1. Boundary edge information

IBNDRY(1,I) first vertex number
IBNDRY(2,I) second vertex number
IBNDRY(3,I) curved edge
IBNDRY(4,I) edge type
IBNDRY(5,I) parallel information
IBNDRY(6,I) user label

3 The term “interface” is used to refer to the system of edges that are shared by two subre-
gions, and the term “boundary” is used to refer to the union of the physical boundary of the
domain and the interface.



Mesh Regularization in Bank-Holst Parallel hp-Adaptive Meshing 7

2.2 Interface Edge Labeling

One approach to solve the nonconformities in the global refined mesh is to build and
store refinement trees for all elements. However, such trees lose some of their attrac-
tiveness if procedures such as mesh moving and edge flipping destroy some of their
properties. In addition, we only need information about the edges on the interface
system, which typically is a very small fraction of the total information describing
the mesh. Thus, instead of creating refinement trees for all elements, during the regu-
larization phase we recover a refinement tree for each interface edge that defines the
initial interface system. To insure that subregions remain geometrically conforming
on all processors, we forbid mesh moving and edge flipping for all vertices and edges
lying on the interface system.

Only minimal information needed to recover the edge refinement tree is stored
for each interface edge. In particular, for each interface edge E, we need the index of
its original edge r(E) in the interface system of the broadcast coarse mesh (after Step
1) and its position in the refinement binary tree s(E). Because the original (interface)
edges are the same on all processors, we can first match them, and then their descen-
dants based on their positions in the refinement tree. These two pieces of information
are combined to make a single integer, label(E), the parallel information for edge E
stored in the fifth row of the IBNDRY array:

label(E) = r(E)+(s(E)−1)∗base.

Here base is an integer which is larger than the number of boundary edges NBF in
the broadcast coarse mesh. For edge Eorg in the broadcast mesh, r(Eorg) is its number
in the IBNDRY system and s(Eorg) = 1. When an edge E is refined into two children
E1 and E2, their labels are determined from label(E) and the following identities:

r(E1) = r(E2) = r(E)

s(E1) = 2∗ s(E)

s(E2) = 2∗ s(E)+1

For consistency, E1 and E2 are ordered in the counterclockwise traversal defined by
vertices of E.

2.3 Interface Data Structure

When a boundary edge is refined, its entries in IBNDRY are replaced by those of
one of its children. Thus IBNDRY contains only refined boundary edges. To recover
the refinement trees of the interface edges, first all of the refined edges are sorted
in groups according to r(E). The refined edges in each group are then ordered in
a counterclockwise traversal of the interface based on their vertices (end points).
Edges in each group will be used to recover a refinement tree whose leaves and root
represent themselves and their original edge respectively.

In order to illustrate the construction of the refinement tree of edges sharing the
same ancestor, we consider the group of all refined edges associated with the original



8 Randolph E. Bank and Hieu Nguyen

edge E as shown in Figure 1. These edges have the same index r(E) and have been
ordered via a counterclockwise traversal. For simplicity, only positions of these edges
in the binary tree are shown. First, leaf nodes for the refined edges are created. Since
the two nodes with largest keys (nodes 15 and 14 in our example) are siblings, their
s(E) values are used to create the node of their parent (node 7). Then the parent
node for the two nodes with the next largest keys (nodes 10 and 11 in our example)
are created and so on. The process is completed when the root node (with key 1) is
created.

1

2

4 5

10 11

3

6 7

14 15

4 10 11 6 14 15

b b b b b b b

Fig. 1. Refinement tree associated with an original edge

Following the above procedure, we construct the interface data IPATH outlined
in Table 2. Each interface edge, including those associated with internal nodes in
refinement trees, is represented by a column with six entries in IPATH array. The
first entry contains the index r(E) if the edge is original (root) and zero otherwise.
When edges from the two sides of the interface are matched, this entry is updated
with the index of the corresponding edge. The second entry stores either the index
of the edge’s first child or its number in IBNDRY array (with minus sign) if it has
no child. Sibling edges are put consecutively in IPATH array so storing the index for
the second child edge is not necessary. Depending on the stage in the construction
of IPATH array, the third and forth entries accommodate the indices of either edges,
vertices or degrees of freedom of the two ends of the edge. The fifth entry is either
the first or last (with minus sign) index of the interior degree(s) of freedom of the
edge. This information together with the degree of the edge stored in the last entry
are sufficient to recover all indices of the edge’s interior degrees of freedom as they
are numbered consecutively. The sign of the fifth entry indicates if they are increase
or decrease along the counterclockwise traversal of the interface.



Mesh Regularization in Bank-Holst Parallel hp-Adaptive Meshing 9

Table 2. Interface data structure: tree section

tree section
type root root/leaf internal leaf

IPATH(1,*) -l/n -l/n 0/n 0/n
IPATH(2,*) child -e child -e
IPATH(3,*) e1/v1/d1 v1/d1 e1/v1/d1 v1/d1
IPATH(4,*) e2/v2/d2 v2/d2 e2/v2/d2 v2/d2
IPATH(5,*) +-d +-d +-d +-d
IPATH(6,*) degree degree degree degree
l=label, n=neighbor, e = edge k, v = vertex, d = dof

3 Mesh Regularization

The regularization phase requires two all-to-all communication steps. The first de-
scribes the initial (non-conforming in h and p) interface system, and the second de-
scribes the final conforming system.

3.1 Data Reordering

At the beginning of the regularization step, each processor reorders its data struc-
tures. For processor I, edges, vertices and degrees of freedom on the interface be-
tween subregion I and the rest of the domain (fine interface) appear first in their
respective arrays. These data are also arranged in a counterclockwise traversal of the
interface to aid in the creation of the parallel interface data structure IPATH. Next,
in all arrays, appears data corresponding to the interior of subregion I (fine interior);
typically this is the majority of the data on processor I. Then appears data corre-
sponding to the coarse part of the interface system on processor I (the interface not
bounding region I). Finally appears data corresponding to the interiors of subregions
other than I. Note that the first two blocks of this data (fine interface and fine interior)
represent the contribution of processor I to the global fine mesh.

The parallel interface data structure IPATH is arranged in two sections; at the
beginning is a pointer section with pointers for each processor’s contribution to the
fine interface system, and then two special sets of pointers, one for the local coarse
interface system and one for the global fine mesh as a whole (see Table 3). The
second section contains the tree data for individual edges on the interface system.
After regularization, each processor has an IPATH array that contains complete data
of the two-sided global fine interface system appended with data of local coarse
interface system.

3.2 Fine Mesh Regularization

After reordering and a global exchange of interface data, each processor has com-
plete information of the fine interface system. Then each process matches its in-
terface edges against those of it neighbors. First original coarse edges are matched



10 Randolph E. Bank and Hieu Nguyen

Table 3. Interface data structure: pointer section

pointer section: 1→p+2
IPATH(1,I) first interface tree entry for subregion I
IPATH(2,I) last interface tree entry for subregion I
IPATH(3,I) first interface vertex/dof for subregion I
IPATH(4,I) last interface vertex/dof for subregion I

I = p+1: pointers for local coarse system
I = p+2: pointers for global fine system

based on their labels. Then their descendants are matched following the refinement
tree structures. We note here that for two neighboring processors, counterclockwise
traversals of the interface are in opposite directions. An example of descendants of
two original edges (from two different processors) is shown in Figure 2.

1

2

4

5

10

11

3

6

7

14

15

b

b

b

b

b

b

b

b

b

b

b

b

b

1

3

7

15

14

6

2

5

11

10

4

Fig. 2. Edge matching

When a pair of matching edges is determined, their first entries in IPATH are
updated to store the indices (also in IPATH array) of their neighbors (change status
from “-l” or “0” to “n” as in Table 2). If edges without corresponding neighbors
are found, this indicates nonconformity in h. This is resolved by the processor with
the less refined interface; it executes appropriate steps of h-refinement to make its
interface match that of it neighbor. Although we must allow for arbitrary differences
in refinement, it is typical to see at most one level of refinement difference on the fine
portion of the interface. An example in Figure 2 is edge 4 on the left that corresponds
to edge 7 on the right with two child edges 14 and 15. In this case, edge 4 on the left
will be h-refined one level.

When issues of h-conformity are resolved, the edges are re-examined to elimi-
nate nonconformity in degree. Since the mesh is now h-conforming, each leaf edge
on the fine interface system should have exactly one matching neighbor (from an-



Mesh Regularization in Bank-Holst Parallel hp-Adaptive Meshing 11

other processor). If the degrees of a matching pair are different, this nonconformity
is resolved by the processor with the edge of lower degree; it executes appropriate
steps of p-refinement in order to achieve the same degree as its neighbor on the in-
terface edge. However, if red-green like refinement rules are applied as in [6], fixing
the degree for one interface edge might also change the degree of another interface
edge and cause further nonconformity. Thus, multiple communication steps might
be required to eliminate nonconformity in degree. This issue was the main motiva-
tion for us to find a more flexible p-refinement algorithm and more general nodal
basis functions for transition elements, allowing the mesh to be made both h and p
conforming with just one communication step. Such approach is described in [5, 7].

When the global mesh is conforming, a second reordering as described above is
carried out locally on each processor, followed by a second all-to-all broadcast of the
new IPATH array. This time no nonconforming edges will be encountered during the
matching process.

3.3 Coarse Mesh Regularization

The coarse part of the local mesh on processor I allows a complete conforming mesh
of the whole domain on each processor, thus avoiding otherwise necessary commu-
nication steps. Due to constraints of shape regularity, the coarse mesh will typically
be reasonably fine in areas near the fine subregion ΩI and become more coarse in
regions more distant from ΩI . However, in some special situations such as having
a singularity outside of ΩI , the coarse mesh on processor I might be refined [8]. In
very unusual circumstances, it is possible for the coarse mesh on some processors to
be more refined (in h or in p) than the global fine mesh in some areas. Although this
does not influence the global fine mesh solution directly, our DD solver assumes that
the coarse mesh on each processor is not more refined than the global fine mesh, see
[4, 9].

As described in Subsection 3.1, the IPATH array on each processor has a section
for the coarse interface edges; this part of the data structure is local and different
on every processor. Following the second and final broadcast of the IPATH data
structure, each coarse interface edge is matched with one of the global fine edges.
Here, the matching is one-way from a coarse edge to a fine edge only. Based on
this type of matching, over-refined coarse edges are identified and then unrefined in
either h or p.

We have also observed empirically [9, 5] that the convergence properties of our
DD solver are enhanced when elements in the coarse regions having edges on the
coarse interface system are more refined than those in the interior parts of the coarse
region. To capture this effect, we also allow some limited refinement of elements
lying along the coarse interface. The level of refinement on the interface boundary of
ΩJ is determined by its distance from ΩI ; distance is measured in a graph in which
the ΩJ correspond to vertices and the edge between ΩI and ΩJ is present if and only
if they have a shared interface boundary. The level of allowed refinement decays as
2−K , where K is the distance from ΩI to ΩJ .


