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SUPERCONVERGENT DERIVATIVE RECOVERY FOR LAGRANGE
TRIANGULAR ELEMENTS OF DEGREE P ON UNSTRUCTURED

GRIDS

RANDOLPH E. BANK∗, JINCHAO XU† , AND BIN ZHENG‡

Abstract. In this paper, we develop a postprocessing derivative recovery scheme for the finite el-
ement solution uh on general unstructured but shape regular triangulations. In the case of continuous
piecewise polynomials of degree p ≥ 1, by applying the global L2 projection (Qh) and a smoothing
operator (Sh), the recovered p-th derivatives (Sm

h Qh∂puh) superconverge to the exact derivatives
(∂pu). Based on this technique we are able to derive a local error indicator depending only on the
geometry of corresponding element and the (p+1)-st derivatives approximated by ∂Sm

h Qh∂puh. We
provide several numerical examples illustrating the effectiveness of our procedures. We also observe
that higher order elements are likely to require more conservative refinement strategies to create
meshes corresponding to optimal orders of convergence.
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1. Introduction. In this work we introduce a derivative recovery scheme for
Lagrange triangular elements of degree p. It is an extension of the gradient recovery
scheme for linear elements proposed by Bank and Xu [3]. The recovered p-th deriva-
tives are shown to be superconvergent to the exact ones for general shape regular
meshes. Due to the superconvergent property of this scheme, some a posteriori error
estimates and local error indicators can be derived for mesh adaptation.

The recovery techniques for finite element analysis have been studied extensively
in the literature [6, 7, 10, 12, 13, 16, 17]. The main goal of the recovery techniques is
to construct better approximations of the solution function or derivative using certain
postprocessing procedures. Typically these techniques involve some kind of local or
global averaging, including local or global L2 projection. Due to the superconvergence
property, recovery techniques are often used to construct a posteriori error estimators
(see e.g. [5, 11, 14, 15, 18]) which are asymptotically exact. For the literature regard-
ing superconvergence analysis of recovery techniques we refer to [3] and the references
therein.

Most recovery schemes are only concerned with the recovery of the gradient, the
finite element solution itself and the second order derivatives. There was also some
work on the recovery of higher order derivatives on uniform grids (see e.g. [4]). It is
the purpose of the current work to recover (p+1)-st derivatives for Lagrange elements
of degree p ≥ 1 on unstructured grids.

Our development has two major components. First, we develop a postprocessing
derivative recovery scheme for the finite element solution uh on general shape regular
triangulations. In particular, in Section 2 of this paper we compute Sm

h Qh∂
puh,
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where Sh is an appropriate smoothing operator, m ∈ {1, 2, . . . } is the number of
smoothing steps, and Qh is the L2 projection operator. The recovered p-th derivatives
superconverge to the exact ones. In the case of a small number of smoothing steps
(the most interesting case), Theorem 2.5 shows that

||∂pu− Sm
h Qh∂

puh||0,Ω . h

(
mh1/2 +

[
κ− 1
κ

]m)
(||u||p+2,Ω + |u|p+1,∞,Ω) .

Here κ > 1 is a constant independent of h and u.
The second major component, presented in Section 3 of this paper, is the devel-

opment of a posteriori error estimates based on the derivative recovery scheme. As
an example, we discuss quadratic finite elements in detail. For the case of quadratic
elements, we define our local error indicator as

ετ =
1
12

3∏
k=1

(`k+1∂k+1 − `k−1∂k−1) ū3φ0 +
1
12

3∑
k=1

`3k∂
3
kū3φk,

where ū3 is any cubic polynomial with third derivatives equal to ∂Sm
h Qh∂

2uh, `k are
the edge lengths of the triangular element, and φk’s are hierarchical basis functions
for the 4-dimensional space of cubic polynomials that are zero at the vertices and
midpoints of the element. Note that the above local error indicator depends only
on the geometry of corresponding element and the gradients of the recovered second
order derivatives.

The rest of this paper is organized as follows: In Section 2, we describe our
derivative scheme, and give superconvergence estimates of the p-th derivatives for
shape regular meshes. In Section 3, we develop and analyze our a posteriori error
estimate. Finally, in Section 4, we present several numerical examples, involving both
uniform and adaptively refined (nonuniform) meshes, with some solutions that satisfy
our smoothness assumptions and some that do not. In the latter case, we observe
that high order elements require conservative refinement strategies to create meshes
corresponding to optimal orders of convergence.

2. A derivative recovery scheme for shape regular triangulations. Let
Ω ⊂ R2 be a bounded domain with Lipschitz boundary ∂Ω.1 For simplicity of ex-
position, we assume that Ω is a polygon. Let V(p)

h denote the finite element space
consisting of C0 piecewise polynomials of degree p associated with a shape regular
triangulation Th, and uh ∈ V(p)

h be the finite element approximation to a (possibly
nonlinear) second order elliptic boundary value problem.

We analyze a superconvergent approximation to the p-th order derivatives of u.
This approximation is generated by applying the global L2 projection operator Qh

and a multigrid smoothing operator Sh to the discrete p-th order derivatives of the
finite element solution uh, and it can be represented as Sm

h Qh∂
p
huh.

We first recall that the L2 projection Qhu ∈ V(1)
h of a given function u ∈ L2(Ω)

is defined by solving the variational problem

(Qhu, vh) = (u, vh), ∀ vh ∈ V(1)
h . (2.1)

Here (·, ·) denotes the inner product on L2(Ω).

1It is easy to see our theory in the paper is also valid for domains with cracks, such as the slit
domain in the third example of Section 4.



Superconvergent Derivative Recovery 3

Consider the following bilinear form:

a(u, v) = (∇u,∇v) + (u, v). (2.2)

By the Riesz representation theorem, a(·, ·) induces a bounded linear operator Ah :
V(1)

h → V(1)
h uniquely determined by

(Ahuh, vh) = a(uh, vh), ∀ uh, vh ∈ V(1)
h ,

it follows that the operator Ah is symmetric with respect to the L2-inner product.
We further notice that the discrete operator Ah is symmetric positive definite on the
finite dimensional space V(1)

h and

λ ≡ ρ(Ah) ' h−2.

Using Ah, we introduce the smoothing operator Sh defined by

Sh = I − λ−1Ah.

The usual multigrid convergence function

f(α, β) =
ααββ

(α+ β)(α+β)
= sup

x∈[0,1]

xα(1− x)β ,

α, β > 0, plays an important role [3].
For convenience in notation, we let ∂pu denote some p-th order derivative of u and

∂puh denote some discrete p-th order derivative of uh. We also use the notation || · ||′Ω
to indicate discrete norm

∑
K∈Th

|| · ||K . We now state and prove some preliminary
lemmas leading to the main Theorem 2.5 in this section.

Lemma 2.1. For any z ∈ V(1)
h , u ∈ Hp+2(Ω),

||(I − Sm
h )z||0,Ω . mh(||z − ∂pu||1,Ω + h||u||p+2,Ω + h1/2|u|p+1,∂Ω).

Proof. We note, from the definition of Sh,

||(I − Sm
h )z||0,Ω = λ−1||(I − Sm

h )(I − Sh)−1Ahz||0,Ω

≤ λ−1 max
s∈[0,1]

[(1− sm)(1− s)−1]||Ahz||0,Ω

≤ λ−1m||Ahz||0,Ω

. mh2||Ahz||0,Ω.

Let w = Ahz. By definition,

(w,ϕ) = (∇z,∇ϕ) + (z, ϕ) (2.3)

for all ϕ ∈ V(1)
h . We take ϕ = w in (2.3),

||w||20,Ω = (w,w) = (∇z,∇w) + (z, w).
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We estimate the terms on the right-hand side

(∇z,∇w) = (∇(z − ∂pu),∇w) + (∇∂pu,∇w)

. ||∇(z − ∂pu)||0,Ω||∇w||0,Ω − (4∂pu,w) +
∫

∂Ω

∇∂pu · nwds

. h−1||∇(z − ∂pu)||0,Ω||w||0,Ω + ||u||p+2,Ω||w||0,Ω + |u|p+1,∂Ω||w||0,∂Ω

. (h−1||z − ∂pu||1,Ω + ||u||p+2,Ω + h−1/2|u|p+1,∂Ω)||w||0,Ω.

Also

(z, w) = (z − ∂pu,w) + (∂pu,w)
. (||z − ∂pu||0,Ω + ||u||p,Ω)||w||0,Ω.

Thus for z ∈ V(1)
h ,

||Ahz||0,Ω = ||w||0,Ω . h−1||z − ∂pu||1,Ω + ||u||p+2,Ω + h−1/2|u|p+1,∂Ω,

completing the proof.
Lemma 2.2. [3] Suppose that for v ∈ V(1)

h and some 0 < α ≤ 1 we have

||v|| ≤ ω(h, v),

||v||−α ≡ ||A−α/2
h v|| ≤ (Ch)αω(h, v).

Then

||Sm
h v|| ≤ εm ω(h, v),

where

εm =

 κα/2f(m,α/2) . m−α/2 for m > (κ− 1)α/2,

[(κ− 1)/κ]m for m ≤ (κ− 1)α/2,

and κ = (Ch)2λ.
Lemma 2.3. Let w|K ∈ Hp(K) ∩ W p−1,∞(K), for all K ∈ Th. Then, for

1/2 < α ≤ 1,

||Sm
h Qh∂

pw||0,Ω . εm(h−1||w||′p−1,Ω + ||w||′p,Ω + h−α||w||′p−1,∞,Ω),

with εm defined as in Lemma 2.2.
Proof. Our plan is to apply Lemma 2.2 to v = Qh∂

pw. Note that

||v||−α = ||Qh∂
pw||−α = sup

φ∈V(1)
h

(Qh∂
pw, φ)

||φ||α
= sup

φ∈V(1)
h

(∂pw, φ)
||φ||α

.

Using integration by parts,

(∂pw, φ) = −(∂p−1w, ∂φ) +
∑

K∈Th

∫
∂K

∂p−1wφnids

≤ ||w||′p−1,Ω||φ||1,Ω + ||w||′p−1,∞,Ω||φ||α,Ω

. (hα−1||w||′p−1,Ω + ||w||′p−1,∞,Ω)||φ||α,Ω.



Superconvergent Derivative Recovery 5

Thus

||v||−α . hαω(h, v),

with ω(h, v) = h−1||w||′p−1,Ω + ||w||′p,Ω + h−α||w||′p−1,∞,Ω.
Since

||v||0,Ω ≤ ||∂pw||′0,Ω ≤ ω(h, v),

the desired estimate now follows from Lemma 2.2.
Lemma 2.4. Let u ∈ Hp+2(Ω) ∩ W p+1,∞(Ω). Then for any vh ∈ V(p)

h and
1/2 < α ≤ 1 we have

||∂pu− Sm
h Qh∂

pvh||0,Ω . mh3/2(h1/2||u||p+2,Ω + |u|p+1,∂Ω)

+ εm(h−1||u− vh||′p−1,Ω + h−α||u− vh||′p−1,∞,Ω),

with εm defined as in Lemma 2.2.
Proof. By the triangle inequality,

||∂pu− Sm
h Qh∂

pvh||0,Ω ≤ ||(I −Qh)∂pu||0,Ω + ||(I − Sm
h )Qh∂

pu||0,Ω

+ ||Sm
h Qh∂

p(u− vh)||0,Ω.

By standard arguments, the first term

||(I −Qh)∂pu||0,Ω . h2||u||p+2,Ω.

The second term is estimated by Lemma 2.1. For the third term, we apply Lemma
2.3.

In the case in which vh = uh ∈ V(p)
h ∩H1

0 (Ω) is the finite element approximation
to u ∈ H1

0 (Ω), the boundary terms vanish and

||∂pu− Sm
h Qh∂

puh||0,Ω . h(mh+ εm)||u||p+2,Ω.

In the more general case, we have the following theorem based only on the results
developed in this section.

Theorem 2.5. Let u ∈ Hp+2(Ω)∩W p+1,∞(Ω) and uh ∈ V(p)
h be an approximation

of u satisfying

||u− uh||′p−1,Ω . h2|u|p+1,Ω,

||u− uh||′p−1,∞,Ω . h2| log h||u|p+1,∞,Ω.

Then

||∂pu− Sm
h Qh∂

puh||0,Ω . h(mh1/2 + εm)(||u||p+2,Ω + |u|p+1,∞,Ω),

where εm is defined as in Lemma 2.2 and 1/2 < α < 1.
We can easily derive the following estimate for (p + 1)-st order derivatives with

the help of Theorem 2.5.
Theorem 2.6. Assume the hypotheses of Theorem 2.5. Then

||∂(∂pu− Sm
h Qh∂

puh)||0,Ω . (mh1/2 + εm)(||u||p+2,Ω + |u|p+1,∞,Ω),
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where εm is defined as in Lemma 2.2 and 1/2 < α < 1.

Proof. Let z = Ih∂
pu ∈ V(1)

h . Then

||∂(∂pu− Sm
h Qh∂

puh)||0,Ω ≤ ||∂(∂pu− z)||0,Ω + ||∂(z − Sm
h Qh∂

puh||0,Ω

. h||u||p+2,Ω + h−1||z − Sm
h Qh∂

puh||0,Ω

. h||u||p+2,Ω + h−1(||z − ∂pu||0,Ω + ||∂pu− Sm
h Qh∂

puh||0,Ω)

. (mh1/2 + εm)(||u||p+2,Ω + |u|p+1,∞,Ω).

3. A Posteriori Error Estimates. We begin with a description of our a pos-
teriori error estimator. Our approach follows the development in [3] for the case of
piecewise linear finite elements. For the general case of Lagrange elements of degree p,
our goal is to find an expression for the error that involves only (approximate) deriva-
tives of order p + 1 of u and known parameters describing the geometry of a given
element τ . Let a canonical element τ ∈ Th have vertices pt

k = (xk, yk), 1 ≤ k ≤ 3,
oriented counterclockwise, and corresponding linear nodal basis functions (barycen-
tric coordinates) {ψk}3k=1. Let {ek}3k=1 denote the edges of element τ , {nk}3k=1 the
unit outward normal vectors, {tk}3k=1 the unit tangent vectors with counterclockwise
orientation, and {`k}3k=1 the edge lengths (see Figure 3.1).

As an example, we now restrict attention to quadratic finite elements, since it
is the quadratic space that is used in the numerical illustrations. We first seek an
expression for û3− u2 on τ , where u2 is the quadratic Lagrange interpolant and û3 is
the cubic hierarchical extension. Thus û3 − u2 is a cubic polynomial zero at vertices
and edge midpoints of τ . A hierarchical basis for this 4-dimensional space is given by

φ0 = ψ1ψ2ψ3,

φk = ψk−1ψk+1(ψk+1 − ψk−1),

for 1 ≤ k ≤ 3, and (k− 1, k, k+ 1) is a cyclic permutation of (1, 2, 3). Let ∂ku denote
the directional derivative in the direction tk. Then

û3 − u2 =
1
12

3∏
k=1

(`k+1∂k+1 − `k−1∂k−1) û3φ0 +
1
12

3∑
k=1

`3k∂
3
kû3φk. (3.1)

Equation (3.1) can be verified using the identities

ψ1 + ψ2 + ψ3 = 1,
∇ψ1 +∇ψ2 +∇ψ3 = 0,
`1t1 + `2t2 + `3t3 = 0,`1tt

1

`2t
t
2

`3t
t
3

 (
∇ψ1 ∇ψ2 ∇ψ3

)
=

 0 −1 1
1 0 −1
−1 1 0

 .

In our local error indicator, we simply approximate the third derivatives needed
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Fig. 3.1. Parameters associated with the triangle τ .

to compute the directional derivatives appearing in (3.1) by

∂xxxû3 ≈ ατ∂xS
m
h Qh∂xxuh,

∂xxyû3 ≈
ατ

2
(∂yS

m
h Qh∂xxuh + ∂xS

m
h Qh∂xyuh), (3.2)

∂xyyû3 ≈
ατ

2
(∂yS

m
h Qh∂xyuh + ∂xS

m
h Qh∂yyuh),

∂yyyû3 ≈ ατ∂yS
m
h Qh∂yyuh,

where ατ > 0 is a constant described below. Let ū3 be any cubic polynomial with
third derivatives given by the right-hand sides of (3.2). Then our local error indicator
is given by

ετ =
1
12

3∏
k=1

(`k+1∂k+1 − `k−1∂k−1) ū3φ0 +
1
12

3∑
k=1

`3k∂
3
kū3φk. (3.3)

The normalization constant ατ is chosen such that

|ετ |22,τ = ||(I − Sm
h Qh)∂2

xxuh||20,τ + 2||(I − Sm
h Qh)∂2

xyuh||20,τ

+ ||(I − Sm
h Qh)∂2

yyuh||20,τ ≡ |uh −R(uh)|22,τ .

Normally we expect that ατ ≈ 1, which is likely to be the case in regions where
the third derivatives of the true solution are well defined. Near singularities, u is
not smooth and we anticipate difficulties in estimating the third derivatives. For
elements near such singularities, ατ provides a heuristic for partly compensating for
poor approximation. Note that ετ is a cubic polynomial on each element depending
only on the geometry of τ and the approximate third derivatives derived from our
superconvergent approximations.

In the general case, ûp+1−up on element τ is a polynomial of degree p+1 that is
zero at the degrees of freedom defining up. One can express this polynomial in terms
of hierarchical basis functions depending on the geometry of τ , and the derivatives of
order p + 1 of ûp+1. The derivatives can be approximated by ∂Sm

h Qh∂
puh as in the

example above. This yields a polynomial ετ of degree p + 1 for each element. The
local error indicator ητ is given by

ητ = ||∇ετ ||0,τ . (3.4)
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Since ετ is a discontinuous piecewise polynomial on all of Ω, we can also formally
approximate errors in global norms and other functionals using ετ . For example

||u− uh||20,Ω ≈
∑

τ

||ετ ||20,τ ,

|u− uh|21,Ω ≈
∑

τ

|ετ |21,τ =
∑

τ

η2
τ .

In the case of | · |1,Ω there is a bit of theory. In particular

|u− uh|1,Ω ≤ |u− ûp+1|1,Ω + |up − uh|1,Ω + |up − ûp+1|1,Ω, (3.5)

|up − ûp+1|1,Ω ≤ |u− ûp+1|1,Ω + |up − uh|1,Ω + |u− uh|1,Ω. (3.6)

Suppose |u − uh|1,Ω ≥ chp, and |u − ûp+1|1,Ω ≤ Chp+1. Then if |up − uh|1,Ω is also
higher order, estimates (3.5)–(3.6) show |up − ûp+1|1,Ω to be an asymptotically exact
estimate for |u−uh|1,Ω. Such super-approximation results for |up−uh|1,Ω are known
for p = 1, 2, see [2, 3, 8]. However, super-approximation estimates for |up−uh|1,Ω are
known not to hold for p ≥ 3, see [9]. For general p, estimate (3.5) can be replaced by

|u− uh|1,Ω ≤ C (|u− ûp+1|1,Ω + |ûp+1 − up|1,Ω) (3.7)

due to the best approximation property for the energy norm and norm comparability
of ||| · |||Ω and | · |1,Ω. Here we lose asymptotic exactness, but still have a useful upper
bound for the error. Insofar as we know, the lower bound for p > 2 is still an open
question, as are general norms and functionals. Nonetheless, this informal analysis
suggests that the error indicators ητ will provide a useful and reliable basis for adaptive
meshing algorithms.

4. Numerical experiments. We now present some numerical illustrations of
our recovery scheme in the cases of uniform and adaptively refined (nonuniform)
meshes. The gradient recovery scheme and a posteriori error estimate described
above for the case of continuous piecewise quadratic elements were implemented in
the PLTMG package [1], which was then used for our numerical experiments. The
experiments were done on a dual Opteron Linux workstation, using the g77 compiler
and double precision arithmetic. We reprise some experiments given in [3] for the case
of continuous piecewise linear finite elements.

In our first example, we consider the solution of the problem

−∆u = f in Ω = (0, 1)× (0, 1),
u = g on ∂Ω,

where f and g are chosen such that u = ex+y is the exact solution. This is a very
smooth solution that satisfies all the assumptions of our theory. Here we will compare
the recovery scheme with m = 2 smoothing steps, for the case of uniform and adaptive
meshes. We begin with a uniform 3 × 3 mesh consisting of eight right triangles as
shown in Figure 4.1. Elements in Figure 4.1 are colored according to size; this allows
one to obtain some impression of the structure of highly refined meshes with many
elements, even if individual elements can no longer be resolved.

In Tables 4.1–4.2, we record the results of the computation. We give the error
as a function of the number of elements, choosing targets for the adaptive refinement
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Fig. 4.1. Top left: 3 × 3 initial mesh. Top right: uniform refinement with nt = 128. Bottom
left: adaptive refinement with nt = 137. Bottom right: adaptive refinement with nt = 131105.
Elements are colored according to size.

procedure to produce adaptive meshes with similar numbers of elements to the uniform
refinement case. Note that the dimension of the quadratic finite element space is
approximately 2nt, where nt is the number of elements reported in the tables. Other
values are defined as follows:

L2 = ||u− uh||0,Ω,

L̃2 = ||εh||0,Ω,

EF0 =
||εh||0,Ω

||u− uh||0,Ω
,

H1 = |u− uh|1,Ω,

H̃1 = |εh|1,Ω,

EF1 =
|εh|1,Ω

|u− uh|1,Ω
,

H2 = |u− uh|2,Ω,

H̃2 = |u−R(uh)|2,Ω,

EF2 =
|R(uh)− uh|2,Ω

|u− uh|2,Ω
.

For each type of norm, we made a least squares fit of the data to a function of the
form F (N) = CN−p/2 to estimate the order of convergence p. All integrals were
approximated using a 12-point order 7 quadrature formula applied to each triangle.

We note here the superconvergence of the second derivatives and effectivity ratios
that are close to one. Despite lack of a complete theory, error estimates L̃2 and H̃1
are also quite accurate, and the orders of convergence are optimal in all three norms
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Table 4.1
Error estimates for uniform refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 8.8e-3 1.0e-2 1.1 0.1 0.2 1.6 1.3 2.1 1.7
32 1.0e-3 1.8e-3 1.8 3.0e-2 0.1 1.8 0.7 1.2 2.0

128 1.2e-4 2.0e-4 1.6 7.5e-3 1.2e-2 1.6 0.3 0.5 1.7
512 1.6e-5 2.4e-5 1.6 1.9e-3 2.9e-3 1.5 0.2 0.2 1.5

2048 1.9e-6 2.7e-6 1.4 4.7e-4 6.5e-4 1.4 0.1 0.1 1.4
8192 2.4e-7 3.1e-7 1.3 1.2e-4 1.5e-4 1.3 4.2e-2 3.4e-2 1.3

32768 3.0e-8 3.5e-8 1.2 3.0e-5 3.4e-5 1.2 2.1e-2 1.3e-2 1.2
131072 3.8e-9 4.1e-9 1.1 7.4e-6 8.0e-6 1.1 1.0e-2 4.7e-3 1.1

order 3.04 3.15 2.02 2.13 1.01 1.43

Table 4.2
Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 6.9e-4 3.7e-4 0.5 1.0e-2 5.6e-3 0.6 0.2 0.2 0.5
33 2.5e-4 1.8e-4 0.7 5.1e-3 4.8e-3 0.9 0.1 0.2 1.0

137 1.6e-5 2.2e-5 1.4 8.9e-4 1.5e-3 1.6 0.1 0.1 1.7
523 1.8e-6 2.2e-6 1.2 1.8e-4 2.6e-4 1.4 2.2e-2 3.1e-2 1.6

2063 2.0e-7 2.0e-7 1.0 3.7e-5 4.4e-5 1.2 1.0e-2 1.0e-2 1.3
8207 1.8e-8 1.6e-8 0.9 7.9e-6 7.9e-6 1.0 4.7e-3 2.6e-3 1.1

32775 2.2e-9 1.7e-9 0.8 1.9e-6 1.7e-6 0.9 2.3e-3 7.3e-4 1.0
131105 2.6e-1 2.0e-1 0.8 4.5e-7 4.1e-7 0.9 1.1e-3 2.1e-4 1.0

order 3.15 3.24 2.12 2.20 1.06 1.83

(and superconvergent for the recovered second derivatives).
In our second example, we consider the nonlinear problem

−∇ · (a∇u) + eu = f in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω,

where a is the 2× 2 diagonal matrix

a =
(
.01

1

)
.

The function f is chosen such that u = x(1− x)3y5(1− y) is the exact solution. We
repeat the same computations as in the first example, with uniform and adaptive
meshes. The uniform meshes are identical to those of the first example. Some of the
adaptive meshes are shown in Figure 4.2. The numerical results are summarized in
Tables 4.3–4.4.

This problem is more difficult than the first in several respects. The diffusion is
anisotropic and the operator is nonlinear. The solution is smooth but generally has
larger derivatives than the first example. Nonetheless, we see a similar behavior of
the gradient recovery scheme and a posteriori error estimate.
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Fig. 4.2. Left: adaptive refinement with nt = 135. Right: adaptive refinement with nt =
129345. Elements are colored according to size.

Table 4.3
Error estimates for uniform refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 6.9e-4 3.7e-4 0.5 1.0e-2 5.6e-3 0.6 0.2 0.2 0.5
32 2.2e-4 1.3e-4 0.6 4.7e-3 3.9e-3 0.8 0.1 0.2 1.0

128 4.3e-5 3.1e-5 0.7 2.0e-3 2.0e-3 1.0 0.1 0.1 1.4
512 6.1e-6 5.3e-6 0.9 6.2e-4 7.0e-4 1.1 4.4e-2 0.1 1.5

2048 6.7e-7 7.4e-7 1.1 1.5e-4 2.0e-4 1.3 2.1e-2 3.7e-2 1.6
8192 6.4e-8 8.9e-8 1.4 3.0e-5 4.7e-5 1.6 1.0e-2 1.6e-2 1.7

32768 6.4e-9 1.0e-8 1.5 6.4e-6 1.0e-5 1.6 4.5e-3 6.3e-3 1.6
131072 7.1e-1 1.0e-9 1.5 1.5e-6 2.2e-6 1.5 2.2e-3 2.4e-3 1.4

order 3.26 3.21 2.18 2.20 1.08 1.35

In our third example, we consider the problem

−∆u = 0 in Ω,
u = g on ∂Ω1,
un = 0 on ∂Ω2,

where Ω is a circle of radius one centered at the origin, and with a crack along the
positive x-axis 0 ≤ x ≤ 1. The boundary ∂Ω2 is the bottom edge of the crack,
and ∂Ω1 = ∂Ω \ ∂Ω2. The function g is chosen such that the exact solution is
u = r1/4 sin(θ/4), the leading term of the singularity associated with the interior angle
of 2π and change in boundary conditions at the origin. In Figure 4.3 we illustrate the
initial mesh, and several of the uniformly and adaptively refined meshes.

Convergence results for uniform and adaptive refinement are reported in Tables
4.5–4.6. The solution u is not smooth in this case (u ∈ H5/4−ε(Ω)), and this is
reflected in the results. In particular, both H2 and H̃2 should be infinite and are
computed as finite only because of numerical quadrature. Despite this singularity,
the resulting error approximations ετ still provided useful information and formed a
reliable basis for adaptive refinement.

For the case of uniform refinement, the 0.25 order of convergence of the gradient
coincides with the smoothness of the solution. The effectivity ratios for all cases show
lack of asymptotic exactness. EF1, although not approaching unity, still seems under
control, reflecting the analysis (3.5)–(3.7). On the other hand, EF0 seems very poorly
controlled, indicating that ||ετ ||0,Ω is not a very reliable estimate for ||u− uh||0,Ω.
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Table 4.4
Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 6.9e-4 2.0e-4 0.3 1.0e-2 3.0e-3 0.3 0.2 0.2 0.5
32 2.2e-4 8.2e-5 0.4 4.7e-3 2.5e-3 0.5 0.1 0.2 1.0

135 1.5e-5 1.9e-5 1.2 8.6e-4 1.5e-3 1.7 0.1 0.1 1.8
524 2.0e-6 2.8e-6 1.4 1.7e-4 5.2e-4 3.0 2.1e-2 3.0e-2 1.6

2060 3.4e-7 4.1e-7 1.2 4.5e-5 1.4e-4 3.0 1.0e-2 9.1e-3 1.3
8119 4.6e-8 4.8e-8 1.1 1.2e-5 3.2e-5 2.6 5.2e-3 2.2e-3 1.1

32333 5.4e-9 5.2e-9 1.0 2.9e-6 6.4e-6 2.2 2.7e-3 4.9e-4 1.0
129345 5.8e-1 5.4e-1 0.9 7.0e-7 1.3e-6 1.8 1.3e-3 1.5e-4 1.0

order 3.16 3.25 2.07 2.30 0.99 1.86

Fig. 4.3. Top left: initial mesh with nt = 8. Top right: uniform refinement with nt = 128.
Bottom left: adaptive refinement with nt = 133. Bottom right: adaptive refinement with nt =
133890. Elements are colored according to size.

Table 4.5
Error estimates for uniform refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 0.1 3.9e-2 0.3 0.6 0.3 0.5 4.1 4.3 0.4
32 0.1 8.6e-3 0.1 0.5 0.1 0.3 6.6 6.7 0.5

128 0.1 2.9e-3 4.9e-2 0.4 0.1 0.3 11.0 11.0 0.5
512 4.0e-2 1.2e-3 2.9e-2 0.3 0.1 0.3 18.0 19.0 0.5

2048 2.7e-2 4.7e-4 1.7e-2 0.2 0.1 0.3 31.0 32.0 0.5
8192 1.9e-2 2.0e-4 1.0e-2 0.2 0.1 0.3 52.0 53.0 0.5

32768 1.3e-2 8.1e-5 6.1e-3 0.2 4.6e-2 0.3 87.0 90.0 0.5
131072 9.3e-3 3.4e-5 3.7e-3 0.1 3.8e-2 0.3 1.5e2 1.5e2 0.5

order 0.53 1.29 0.27 0.27 -0.76 -0.76
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Table 4.6
Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 0.1 3.9e-2 0.3 0.6 0.3 0.5 4.1 4.3 0.4
31 0.1 8.9e-3 0.1 0.5 0.1 0.3 6.4 6.5 0.5

133 4.5e-2 2.3e-3 5.0e-2 0.3 0.1 0.3 14.0 14.0 0.5
533 2.3e-2 4.4e-4 1.9e-2 0.2 0.1 0.3 34.0 35.0 0.5

2078 8.5e-3 5.7e-5 6.7e-3 0.1 0.1 0.4 1.5e2 1.6e2 0.5
8237 2.3e-3 4.6e-6 2.0e-3 0.1 2.7e-2 0.4 1.0e3 1.1e3 0.5

32796 6.0e-4 5.8e-7 1.0e-3 3.5e-2 1.2e-2 0.3 7.7e3 8.1e3 0.5
130890 1.1e-4 7.4e-8 6.6e-4 1.5e-2 7.6e-3 0.5 9.8e4 1.1e5 0.6

order 2.18 3.07 1.12 0.83 -3.29 -3.30

For the adaptive meshes, the order of convergence improves and seems to be
approaching order one for the gradient and order two for the solution. This is subop-
timal for quadratic elements. This was not due to poor error indicators, but rather
to an overly aggressive refinement strategy. In the adaptive refinement procedure
implemented in PLTMG, all elements are placed on a heap, with the element having
largest error at the root. The root element is then selected for refinement. When an
element is refined, it is removed from the heap, and its child elements are added to
the heap. This of course requires the child elements to have error indicators. These
are constructed using derivative values inherited from the parent, and their own ge-
ometry information. Thus a single element might undergo several levels of refinement
during a given adaptive step. Using old derivative information for new elements will
generally fail to be optimal after sufficiently many levels of refinement.

In PLTMG, the amount of refinement allowed in a given refinement step is gov-
erned by the user, by specifying a target number of vertices in the refined mesh. In
this example, we chose a strategy that increased the number of vertices by roughly
a factor of four in each refinement step, in order to closely match the size of prob-
lems generated by uniform refinement. If there are too many levels of refinement of
individual elements before the problem is resolved, the resulting mesh might be lower
quality, as was the case in this example. On the other hand, frequently assembling
and resolving the global finite element equations results in higher quality adaptive
meshes, but at a much greater cost. Since the appropriate compromise is likely to
be highly problem dependent, in PLTMG it is up to the user to choose the proper
balance.

For this example, we solved this problem adaptively a second time, this time
specifying the number of vertices should be increased by a factor of roughly two
between resolves, rather than four. Here we see near optimal rate of convergence for
both L2 and H1. In other respects, the data are quite similar to Table 4.6. Meshes
corresponding to the adaptive meshes in Figure 4.3 are shown in Figure 4.4.

It is interesting to note that a refinement factor of four caused no problems in
the case of a similar experiment performed in the case p = 1 in [3]. For p = 2 the
refinement is much sharper in the region of the singularity, and it was this increase
in sharpness that required a less aggressive refinement strategy. Even higher order
elements are likely to require even more conservative refinement strategies to create
meshes corresponding to optimal orders of convergence. Perhaps this adds another
dimension to already complex general discussions evaluating the relative merits of
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Fig. 4.4. Left: adaptive refinement with nt = 136. Right: adaptive refinement with nt =
130586. Elements are colored according to size.

Table 4.7
Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 0.1 3.9e-2 0.3 0.6 0.3 0.5 4.1 4.3 0.4
31 0.1 8.9e-3 0.1 0.5 0.1 0.3 6.4 6.5 0.5
74 0.1 4.9e-3 0.1 0.4 0.1 0.4 9.5 9.8 0.5

136 4.5e-2 1.8e-3 4.1e-2 0.3 0.1 0.3 14.0 15.0 0.5
302 2.5e-2 5.6e-4 2.2e-2 0.3 0.1 0.3 34.0 35.0 0.4
534 1.3e-2 2.7e-4 2.1e-2 0.2 0.1 0.4 87.0 89.0 0.4

1179 5.8e-3 7.8e-5 1.4e-2 0.1 4.1e-2 0.3 2.5e2 2.6e2 0.5
2077 2.8e-3 3.5e-5 1.3e-2 0.1 2.7e-2 0.3 7.0e2 7.3e2 0.5
4617 1.1e-3 1.2e-5 1.1e-2 5.0e-2 1.9e-2 0.4 3.1e3 3.3e3 0.5
8204 3.7e-4 5.1e-6 1.4e-2 3.0e-2 1.1e-2 0.4 1.4e4 1.4e4 0.5

18388 1.4e-4 1.5e-6 1.1e-2 1.8e-2 6.2e-3 0.4 6.4e4 6.7e4 0.5
32669 4.0e-5 6.7e-7 1.7e-2 9.5e-3 4.2e-3 0.4 3.8e5 4.0e5 0.6
73439 1.1e-5 2.0e-7 1.8e-2 5.0e-3 1.9e-3 0.4 2.6e6 2.7e6 0.5

130586 2.6e-6 8.5e-8 3.2e-2 2.5e-3 1.0e-3 0.4 2.0e7 2.2e7 0.5
order 3.56 2.96 1.77 1.73 -5.21 -5.22

higher order methods.
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