Math 175/275: Numerical Methods for PDE

Instructor: Randolph E. Bank

Winter Quarter 2020
Final Examination
Monday, March 16, 2020

NAME
Signature \qquad

$\# 1$	30	
$\# 2$	40	
$\# 3$	30	
Total	100	

Question 1. (Galerkin's Method.) Let $a(\cdot, \cdot)$ and $L(\cdot)$ satisfy the assumptions of the LaxMilgram lemma, i.e.,

$$
\begin{aligned}
|a(v, w)| & \leq C_{1}\|v\|_{V}\|w\|_{V}, & \forall v, w \in V \\
a(v, v) & \geq C_{2}\|v\|_{V}^{2} & \forall v \in V \\
|L(v)| & \leq C_{3}\|v\|_{V} & \forall v \in V
\end{aligned}
$$

Let u be the solution of

$$
a(u, v)=L(v), \quad \forall v \in V
$$

Let $\tilde{V} \subset V$ be a finite-dimensional subspace and let $\tilde{u} \in \tilde{V}$ be determined by Galerkin's method:

$$
a(\tilde{u}, v)=L(v), \quad \forall v \in \tilde{V}
$$

Prove that (note that $a(\cdot, \cdot)$ may not be symmetric)

$$
\|\tilde{u}-u\|_{V} \leq \frac{C_{1}}{C_{2}} \min _{\chi \in \tilde{V}}\|\chi-u\|_{V}
$$

Prove that if $a(\cdot, \cdot)$ is symmetric and $\|v\|_{a}=a(v, v)^{1 / 2}$, then

$$
\|\tilde{u}-u\|_{a}=\min _{\chi \in \tilde{V}}\|\chi-u\|_{a} .
$$

and

$$
\|\tilde{u}-u\|_{V} \leq \sqrt{\frac{C_{1}}{C_{2}}} \min _{\chi \in \tilde{V}}\|\chi-u\|_{V}
$$

Question 2. Consider the problem

$$
\begin{array}{lr}
u_{t}-\Delta u=f, & \text { in } \Omega \times R_{+}, \\
u=0, & \text { on } \Gamma \times R_{+}, \\
u(\cdot, 0)=v, & \text { in } \Omega,
\end{array}
$$

in the case of one space dimension with $\Omega=(0,1)$. For the numerical solution, we use piecewise linear functions based on the partition

$$
0<x_{1}<x_{2}<\cdots<x_{M}<1, \quad x_{j}=j h, h=1 /(M+1)
$$

Determine the mass matrix B and the stiffness matrix A and write down the semidiscrete problem, the backward Euler equations, and the Crank-Nicolson equations.

Question 3. Consider the scalar first order differential equation

$$
\sum_{j=1}^{d} a_{j}(x) \frac{\partial u}{\partial x_{j}}+a_{0}(x) u \equiv a \cdot \nabla u+a_{0} u=f(x), \quad x \in \Omega
$$

where Ω is a bounded domain in \mathcal{R}^{d} with boundary Γ, a is a smooth vector field that does not vanish at any point, and a_{0} and f are given smooth functions. The solution is given on the inflow boundary

$$
u=v, \quad \text { on } \Gamma_{-},
$$

where $\Gamma \equiv \Gamma_{+} \cup \Gamma_{-}$,

$$
\begin{aligned}
& \Gamma_{-}=\{x \in \Gamma: n(x) \cdot a(x)<0\}, \\
& \Gamma_{+}=\{x \in \Gamma: n(x) \cdot a(x) \geq 0\},
\end{aligned}
$$

and n is the exterior normal. Prove the following stability estimate for the above problem, under a suitable condition on the coefficients a_{j} :

$$
\int_{\Omega} u^{2} d x+\int_{\Gamma_{+}} u^{2} n \cdot a d s \leq C\left(\int_{\Omega} f^{2} d x+\int_{\Gamma_{-}} v^{2}|n \cdot a| d s\right)
$$

