MATH 270C: Numerical Ordinary Differential Equations

Instructor: Randolph E. Bank

Spring Quarter 2018

Homework Assignment #8 Due Friday, June 8, 2018

Exercise 8.1. This problem is about the relationship between the Ritz and Galerkin methods. Let \mathcal{H} be a space of functions and consider the *Ritz* minimization problem: find $u^* \in \mathcal{H}$ which satisfies

$$\frac{a(u^*, u^*)}{2} - (f, u^*) = \min_{v \in \mathcal{H}} \frac{a(v, v)}{2} - (f, v)$$
(8.1)

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx, \qquad (f,v) = \int_{\Omega} f v \, dx$$

(this is a weak form of the problem: $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$.) Show that the Ritz formulation (8.1) is equivalent to the *Galerkin* formulation: find $u^* \in \mathcal{H}$ such that

 $a(u^*, v) = (f, v)$

for all $v \in \mathcal{H}$. (hint: try a function of the form $u^* + \epsilon v$ in $a(\cdot, \cdot)/2 - (f, \cdot)$, where $u^* \in \mathcal{H}$ is the solution of (8.1), $v \in \mathcal{H}$ and ϵ is a scalar).

Exercise 8.2. Let $\mathcal{S}_h \subset H$ be and suppose that $u^* \in \mathcal{H}$ solves the minimization problem

$$\frac{a(u^*, u^*)}{2} - (f, u^*) = \min_{v \in \mathcal{H}} \frac{a(v, v)}{2} - (f, v)$$
(8.2)

and $u_h^* \in \mathcal{S}_h$ solves the minimization problem

$$\frac{a(u_h^*, u_h^*)}{2} - (f, u_h^*) = \min_{v \in \mathcal{S}_h} \frac{a(v, v)}{2} - (f, v)$$
(8.3)

with $a(\cdot, \cdot)$ and (\cdot, \cdot) defined as in the Question 1. Prove

$$|\!|\!| u^* - u_h^* |\!|\!| = \min_{v \in \mathcal{S}_h} |\!|\!| u^* - v |\!|\!|$$

where $|||v|||^2 = a(v, v)$. (Hint: apply Question 1 to both u^* and u_h^* to first show that $a(u^* - u_h^*, v) = 0$ for all $v \in S_h$.