MATH 270C: Numerical Ordinary Differential Equations

Instructor: Randolph E. Bank

Spring Quarter 2018

Homework Assignment #7 Due Friday, June 1, 2018

Exercise 7.1. Let $x_0 = x_{n+1} = 0$, h = 1/n, and define $||x||^2 = h \sum_{i=1}^n x_i^2$. Prove the discrete Poincare inequality

$$h\sum_{i=1}^{n} x_i^2 \le Ch\sum_{i=1}^{n+1} \left(\frac{x_i - x_{i-1}}{h}\right)^2$$

Exercise 7.2. Let A be the $n \times n$ symmetric positive definite tridiagonal matrix with elements $a_{i,i} = (p_{i-1/2} + p_{i+1/2})/h^2 + q_i$ and $a_{i,i+1} = -p_{i+1/2}/h^2$ with $p_{i+1/2} > 0$ and $q_i \ge 0$. Let B be the $n \times n$ symmetric positive definite tridiagonal matrix constant diagonal elements $2/h^2$ and off-diagonal elements $-1/h^2$. Prove there exist positive constants c_1 and c_2 , depending only on the $p_{i+1/2}$ and q_i , such that

$$c_1 \le \frac{x^t A x}{x^t B x} \le c_2.$$

(Use exercise 7.1 and use $x_0 = x_{n+1} = 0$.)

Exercise 7.3. Consider the two point boundary value problem

$$-u'' + \gamma u = f$$

for 0 < x < 1, with u(0) = u(1) = 0, and $\gamma \ge 0$ a scalar constant. Find a *compact* fourth order discretization of the form

$$\frac{-u(x+h) + 2u(x) - u(x-h)}{h^2} + \gamma \{A(u(x+h) + u(x-h)) + (1-2A)u(x)\} = B(f(x+h) + f(x-h)) + (1-2B)f(x)$$

where A and B are constants.

Exercise 7.4. Suppose

$$a_i x_i - b_i x_{i+1} - b_{i-1} x_{i-1} = 0$$

for $1 \leq i \leq n$, with x_0 and x_{n+1} given. Assume $b_i > 0$, $0 \leq i \leq n$ and $a_i = b_i + b_{i-1}$, $1 \leq i \leq n$. Prove the Discrete Maximum Principle

$$\max\{x_0, x_{n+1}\} = \max_{0 \le i \le n+1} x_i$$