MATH 270C: Numerical Ordinary Differential Equations

Instructor: Randolph E. Bank

Spring Quarter 2018

Homework Assignment #6 Due Friday, May 18, 2018

Exercise 6.1. Let

$$Lu = -(pu')'$$

for $0 \le x \le 1$, where p(x) is smooth and $p(x) \ge p_{\min} > 0$. In this problem we will prove the *maximum principle*: if $u \in C^2(0, 1)$ and $Lu \le 0$ for $0 \le x \le 1$, then

$$\max_{0 \le x \le 1} u(x) = \max\{u(0), u(1)\}.$$

We will prove this result in several steps.

- **a.** First assume Lu < 0 and assume that the maximum occurs at x_0 where $0 < x_0 < 1$. Since $u'(x_0) = 0$, $u''(x_0) \le 0$, show this leads to a contradiction.
- **b.** Now assume $Lu \leq 0$. Let $\phi = e^{\lambda x}$ with λ sufficiently large that $L\phi < 0$ for $0 \leq x \leq 1$. Again assume the maximum occurs at x_0 . Use the function $v = u + \epsilon \phi$ for $\epsilon > 0$ but sufficiently small, and apply part a.

Exercise 6.2. Now let

$$Lu = -(pu')' + qu$$

for $0 \le x \le 1$, where p(x) are q(x) are smooth, $p(x) \ge p_{\min} > 0$, and $q(x) \ge 0$. In this problem we will prove the *maximum principle*: if $u \in C^2(0, 1)$ and $Lu \le 0$ for $0 \le x \le 1$, then

$$\max_{0 \le x \le 1} u(x) \le \max\{u(0), u(1), 0\}.$$

If $u \leq 0$, we are done. As before assume the maximum occurs at x_0 and $u(x_0) > 0$. Let (α, β) be the biggest interval on (0, 1) where u > 0, and consider the operator $\hat{L}u = Lu - qu$, and use the previous exercise to show a contradiction.