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Abstract. We derive a class of globally convergent and quadratically converging algorithms
for a system of nonlinear equations g(u) = 0, where g is a sufficiently smooth homeomorphism.
Particular attention is directed to key parameters which control the iteration. Several examples are
given that have successful in solving the coupled nonlinear PDEs which arise in semiconductor device
modelling.
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1. Introduction. In this paper we derive an algorithm for solving the nonlinear
system

g(u) = 0(1.1)

where g = (g1, g2, . . . , gn)T is a sufficiently smooth homeomorphism from IRn to IRn.
Recall that a homeomorphism is a bijection (1-1, onto) with both g and the inverse
map, g−1, continuous. Physically, a homeomorphism means that the process modelled
by g has a unique solution x for any set of input conditions y, i.e., g(x) = y, and that
the solution x varies continuously with input y. Sometimes this notion is referred to
as a “well-posed” process g. Actually, the requirement that g be a homeomorphism is
a special case of our assumptions, but we defer a more detailed and general discussion
to Section 2.

In its generic form the algorithm we propose is well known. Starting at some
initial guess u0, we solve and n× n linear system

Mkxk = −g(uk) ≡ −gk(1.2)

and then set

uk+1 = uk + tkxk.(1.3)

We call the method an approximate Newton method because Mk will be chosen to
be related to the Jacobian g′(uk) ≡ g′k, in such a manner that xk approximates
the Newton step wk = −{g(uk)′}−1g(uk), and because usually tk 6= 1. In many
applications, (1.2) can be interpreted as an “inner” iterative method for solving the
linear system

g′kwk = −gk.(1.4)

When g is a smooth homeomorphism, we will show how to choose the damping
parameters tk and the approximate Newton steps xk such that the uk converge to
u∗ with g(u∗) = 0 quadratically for any initial u0 (see Section 2 for the notions of
quadratic and more general higher order convergence). The choice of xk = wk in
(1.4), the damped Newton method, in an important special case.

In Section 2 we show that, for any choice of norm ||·||, the choice tk = (1+K||gk||)−1
for some sequence 0 ≤ Kk ≤ K0 produces the convergence mentioned above. More
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precisely, for K0 sufficiently large, the sequence ||gk|| decreases monotonically and
quadratically to zero. While it is possible in theory to take Kk = K0 for all k,
such a strategy often leads to the quagmire of slow initial convergence and can prove
disastrous in practice (see Sections 3-4). As we shall see, this rule for choosing tk is
motivated by the requirement tk → 1 such that 1 − tk = O(||gk||). By specifying a
formula for picking tk, we attempt to avoid most of the searching common to other
damping strategies.

We also show in Section 2 how to choose the xk (or Mk) in (1.2) such that
the xk approximates wk of (1.4). In this setting our analysis continues and extends
investigations of approximate Newton methods initiated by Dennis and Moré (see
[5, 6]). Motivated by problems in optimization where it may be difficult or undesirable
to deal with the Jacobian, g′k, they choose Mk, for example, such that

||{Mk − g(u∗)}(uk+1 − uk)||||uk+1 − uk||−1 → 0(1.5)

to obtain superlinear convergence. Equation (1.5) may not be immediately useful
in contexts where Mk represents an iterative process for solving (1.4); contexts, for
example, arising from nonlinear PDEs where it is often possible to evaluate g′k but it
may not be easy to solve (1.4) exactly. Sherman [12] discusses such Newton-iterative
methods, showing that to obtain quadratic convergence it suffices to take mk = O(2k)
inner iterations as k →∞.

Computationally, it is more convenient to measure the extent to which xk approx-
imates wk by monitoring the quantity ||g′kxk + gk||, that is, checking the residual of
(1.4) when xk replaces wk. To obtain quadratic convergence, for example, we choose
xk such that

αk ≡
||g′kxk + gk||
||gk||

≤ c||gk||,(1.6)

c > 0, with xk 6= 0, a suggestion also made by Dembo, Eisenstat and Steihaug [4].
The discussions by the above named researchers all deal with local convergence;

that is, they examine convergence in a local region containing a root u∗ such that the
choice tk = 1 is appropriate. We derive (1.6) within a global framework consistent
with our choice of tk; that is we require αk = O(||gk||) to balance the quantity 1− tk =
O(||gk||).

We also show that conditions such as (1.6) are equivalent to the original conditions
imposed by Dennis and Moré. The whole key to our analysis is the judicious use of
the Taylor expansion:

gk+1 = gk + g′k{uk+1 − uk}(1.7)

+

∫ 1

0

{g′(uk + s(uk+1 − uk))− g′k}{uk+1 − uk} ds

or, using (1.3) and the notation of Section 2

gk+1 = (1− tk)gk + tk||gk||(g′kxx + gk)||gk||−1(1.8)

+

∫ 1

0

G(s;uk+1, uk)tkxk ds.

Taking norms will lead to

||gk+1|| ≤ ||gk||{(1− tk) + tkαk + t2kβk||gk||}(1.9)
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under appropriate conditions on the smoothness of g and the sequence M−1k . Since βk
will be bounded, (1.9) shows it is possible to insure that the ||gk|| → 0 monotonically
and quadratically by forcing each term in braces to be O(||gk||). Finally, note that
(1.7) can be interpreted in a Banach space, and the extension of our results to such a
setting is immediate (see [13], Section 12.1).

Section 2 contains a detailed discussion of our assumptions and global convergence
analysis. Section 3 encodes the analysis of Section 2 into a general algorithm. Section
4 presents a further algorithmic discussion and discusses several important examples.
We conclude in Section 5 with some numerical results relevant to the solution of
semiconductor device partial differential equations.

The authors acknowledge discussions with S. Eisenstat, I. Sandberg (see [10, 11]),
and W. Fichtner and appreciate the support and encouragement of J. McKenna.

2. Parameter Selection and Convergence. Given an arbitrary initial itera-
tion u0, we consider here the convergence of the iteration (1.2)-(1.3) where the pa-
rameters tk are chosen by the rule

tk =
1

1 +Kk||gk||
.(2.1)

We make the following assumptions on the mapping g(u) and the sequence Mk.
Assumption A1: The closed level set

S0 = {u| ||g(u)|| ≤ ||g0||}(2.2)

is bounded.
Assumption A2: g is differentiable and the Jacobian g′(u) is a continuous and

nonsingular on S0, and the sequence ||M−1k || is uniformly bounded, i.e.,

||M−1k || ≤ k1 on S0 for all k ≥ 0.(2.3)

We embed S0 in the closed convex ball

S1 =

{
u| ||u|| ≤ sup

v∈S0

||v||+ k1||g0||
}
.(2.4)

Assumption A3: The Jacobian g′ is Lipshitz; i.e.,

||g′(u)− g′(v)|| ≤ k2||u− v||; u, v ∈ S1.(2.5)

Without loss suppose gk 6= 0 for all k, and let the quantities Ak, αk, Bk, βk be
defined as follows:

Ak ≡
gk + g′kxk
||gk||

;(2.6)

αk ≡ ||Ak||;

and

Bk ≡
∫ 1

0
{g′(uk + stkxk)− g′k}tkxk ds

(tk||gk||)2
(2.7)

βk ≡ ||Bk||;
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for tk, uk, and xk as in (1.2)-(1.3).
The parameters αk measure the extent to which the xk of (1.2) differ from the

Newton correction (αk ≡ 0). For uk ∈ S0 note that

αk ≤ k1||g′k −Mk||.(2.8)

Typically, given the sequence ||gk|| and α0 ∈ (0, 1), we will consider the convergence
process when all αk ≤ α0 and

αk ≤ c||gk||p for p ∈ (0, 1], c > 0:(2.9)

for example,

αk ≤ α0

(
||gk||
||g0||

)p
= αk−1

(
||gk||
||gk−1||

)p
.(2.10)

For many Newton-like methods the αk can be easily computed, and α0 and p can be
specified a priori.

The parameters βk reflect the size of higher (second) order terms which are ignored
in the derivation of a Newton-like method. For uk+1 = uk + tkxk ∈ S1 and uk ∈ S0,
(1.2), (2.3), (2.5), and (2.7) imply

βk ≤
k2
2

(
||xk||
||gk||

)2

≤ k21k2
2

(2.11)

Suppose uk+1 ∈ S1 and uk ∈ S0. Taylor’s Theorem ([9], Section 3.2) implies

gk+1 = gk + g′k{uk+1 − uk} +

∫ 1

0

{g′(uk + s(uk+1 − uk))− g′k}(uk+1 − uk) ds

= (1− tk)gk +Aktk||gk||+ Bkt2k||gk||2,(2.12)

Ak and Bk as above. Equation (2.12) immediately yields the Taylor inequality

||gk+1|| ≤ ||gk||
{

(1− tk) + αktk + βkt
2
k||gk||

}
.(2.13)

We will show the sequence ||gk|| → 0 by analyzing the term in braces.
Proposition 2.1. Let δ ∈ (0, 1−α0), α0 ∈ (0, 1) and tk chosen as in (2.1) where

0 ≤ Kk ≤ K0(2.14)

and

Kk ≥
k21k2

2(1− αk − δ)
− 1

||gk||
.(2.15)

Assume A1-A3 and all αk ≤ α0. Then
(i) all uk ∈ S0, the sequence ||gk|| is strictly decreasing and ||gk|| → 0; furthermore,

(ii) ||gk+1||/||gk|| → 0 if and only if αk → 0, and for any fixed p ∈ (0, 1],

||gk+1|| ≤ c1||gk||1+p(2.16)

if and only if

αk ≤ c2||gk||p(2.17)
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for positive constants c1 and c2.
Proof. To show (i), suppose uj ∈ S0 and ||gj || < ||gj−1|| for 1 ≤ j ≤ k. Since

uk+1 = uk + tkM
−1
k gk, ||uk+1|| ≤ ||uk||+ k1||gk|| so uk+1 ∈ S1. Thus (2.11) and (2.15)

imply

Kk ≥
βk

1− αk − δ
− 1

||gk||
(2.18)

Rearranging (2.18) and using (2.1) shows

(1− tk) + αktk + βkt
2
k||gk|| ≤ 1− δtk,(2.19)

hence

||gk+1|| ≤ (1− δtk)||gk|| ≤ (1− δt0)||gk||(2.20)

recalling (2.13). Equation (2.20) implies the conclusion (i).
Part (ii) follows from the pair of inequalities

||gk+1||
||gk||

≤ (Kk + k21k2/2)||gk||+ αk(2.21)

and

αk ≤ (1 +Kk||gk||)
||gk+1||
||gk||

+ (Kk + k21k2/2)||gk||(2.22)

since ||gk|| → 0. Recalling tk ≤ 1, Equations (2.21)-(2.22) are immediate from (2.13)
and the analogous inequality derived by transposing (2.12).

Note that (2.15) is satisfied for the constant sequence

Kk = K0 for all k.(2.23)

Furthermore (2.15) allows the choice Kk = 0 when

||gk|| ≤
2(1− αk − δ)

k21k2
.(2.24)

However, as noted in Section 1, (2.23) can be quite unsatisfactory, and we have chosen
to force tk → 1 by using (2.1) rather than using a test to determine whether the choice
tk = 1 is satisfactory as eventually guaranteed by (2.24); see Sections 3-4.

We will show later that the sequence uk converges to the root u∗ with g(u∗) = 0.
Recall that convergence is superlinear if

||uk+1 − u∗|| ≤ ηk||uk − u∗|| and ηk → 0;(2.25)

it is order Q− (p+ 1), (p ∈ (0, 1]) if

||uk+1 − u∗|| ≤ cp||uk − u∗||p+1 cp > 0.(2.26)

Convergence is R-linear if

||uk+1 − u∗|| ≤ ηk+1(2.27)
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and if

ηk+1 ≤ cηk, c ∈ (0, 1).(2.28)

To examine the nature of the convergence of {uk} we consider the relationship
between ||gk|| → 0 and ||uk − u∗|| → 0. Consider the Taylor expansion

0 = g(u∗) = gk + g′k{u∗ − uk}+

∫ 1

0

{g′(uk + s(u∗ − uk))− g′k}{u∗ − uk} ds

= gk + g′ktkxk + g′k{u∗ − uk+1}+

∫ 1

0

{g′(uk + s(u∗ − uk))− g′k}{u∗ − uk} ds(2.29)

Sine g′ is continuous and invertible on S0, ||(g′k)−1|| ≤ k3; rearranging the second
inequality of (2.29) implies

||uk+1 − u∗|| ≤ k3{(1− tk)||gk||+ tkαk||gk||+ (k2/2)||uk − u∗||2}.(2.30)

Letting k5 = supu∈S1
||g′(u)||, note

||gk|| ≤ k5||uk − u∗||;(2.31)

hence,

||uk+1 − u∗|| ≤ ||uk − u∗||k3{k5αk + (k25K0 + k2/2)||uk − u∗||}(2.32)

using (2.1) and tk ≤ 1. Equation (2.32) shows that the convergence of {uk} to u∗ is
superliner if αk → 0 and is of order Q− (p+ 1) if αk ≤ c2||gk||p, again using (2.31).

Suppose that in some set S ⊆ S0 (2.31) can be extended to

k4||uk − u∗|| ≤ ||gk|| ≤ k5||uk − u∗||.(2.33)

Then under the conditions of Proposition 2.1, it is immediate from (2.20),, (2.21),
and (2.33) that the convergence of {uk} tp u∗ is:

(i) R-linear, and furthermore
(ii) superlinear if and only if ||gk+1||/||gk|| → 0, and;
(iii) order Q− (p+ 1) if and only if ||gk+1|| ≤ c1||gk||p+1, p ∈ (0, 1].
In general (2.33) may not be valid on the entire set S0. However (2.29) implies

(2.33) for uk sufficiently close to u∗ as follows. The first inequality in (2.29) leads to

||uk − u∗||{1− (k2k3/2)||uk − u∗||} ≤ k3||gk||.(2.34)

Thus for any ρ ∈ (0, 1) (say ρ = 1/2), (2.34) and (2.31) imply (2.33) for S = S0 ∩ Sρ
where

Sρ =

{
u| ||u− u∗|| ≤ 2(1− ρ)

k2k3

}
(2.35)

and k4 of (2.33) is k4 = ρk−13 . Summarizing Proposition2.1 and the discussion involv-
ing (2.25)-(2.35) we have

Theorem 2.2. Under the conditions of Proposition 2.1
(i) there exists a u∗ ∈ S0 with u∗ = limuk and g(u∗) = 0;

(ii) on S0 the convergence of {uk} to u∗ is superlinear or order O − (p + 1) if
αk → 0 or αk ≤ c2||gk||p, respectively;
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(iii) on any set S = S0 ∩ Sρ as in (2.35), the convergence of {uk} to u∗ is at
least R-linear; it is superlinear or order Q− (p+ 1) if and only if αk → 0 or
αk ≤ c2||gk||p, respectively.

Proof. It remains only to show (i), which we establish by showing that {uk} is a
Cauchy sequence. But since

||uk+j − uk|| =

∣∣∣∣∣
∣∣∣∣∣
k+j−1∑
i=k

tixi

∣∣∣∣∣
∣∣∣∣∣ ≤ k1∑

i

||gi||,(2.36)

and the ||gk|| → 0 with ||gk+1|| ≤ c||gk||, c < 1, {uk} is clearly Cauchy with a limit u∗

in the closed set S0. Continuity of g implies that g(u∗) = lim g(uk) = 0.
We now have the following global result.
Theorem 2.3. Let G : IRn → IRn be a homeomorphism. Suppose g′ is Lipschitz

on closed bounded sets and A2 is satisfied. Then, given any u0, the sequence uk of
(1.2)-(1.3) with tk as in (2.1) and Kk as in (2.15) converges to u∗ as in Theorem
2.2.

Proof. Since g′ is Lipschitz on closed bounded sets, g′ is continuous on IRn. Thus
||g(u)|| → ∞ as ||u|| → ∞ since g is a homeomorphism ([9], page 137). Hence S0 of
(2.2) is bounded for any u0 and A1 and A3 are satisfied. The result now follows from
Theorem 2.2.

As mentioned in Section 1, early investigations by Dennis and Moré examined
higher order convergence of approximate Newton methods. In our notation, they
characterized convergence by studying the quantity ||(Mk − g′(u∗))xk||/||xk|| where
they chose xk = uk+1 − uk (tk = 1). Their results can be recast in the framework of
Theorem 2.2 as the following

Theorem 2.4. (cf. [6], pages 51-52). In addition to the conditions of Proposition2.1,
let ||Mk|| ≤ k6. Then

(i) on any set S = S0 ∩ Sρ, Sρ as in (2.35), convergence of {uk} to u∗ is super-
linear if and only if

||(Mk − g′(u∗))xk||
||xk||

→ 0(2.37)

while on S0, (2.37) implies superlinear convergence;
(ii) on S convergence is Q− (p+ 1) if and only if

||(Mk − g′(u∗))xk||
||xk||

≤ µp||xk||p, p ∈ (0, 1].(2.38)

Proof. The conclusion follows from the pair of inequalities

αk ≤ k1
||(Mk − g′(u∗))xk||

||xk||
+ k1k2||uk − u∗||,(2.39)

and

||(Mk − g′(u∗))xk||
||xk||

≤ αk
||gk||
||xk||

+
k2
k4
||gk||,(2.40)

which can be derived from the definitions of αk and the constants ki. For example,
to show the “only if” part of (ii), we first note that Q − (p + 1) convergence implies
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(Theorem 2.2) that αk ≤ c2||gk||p ≤ c2kp6 ||xk||p. Hence by (2.40)

||(Mk − g′(u∗))xk||
||xk||

≤ c2kp+1
6 ||xk||p +

k2k6
k4
||xk||

≤ µp||xk||p.

The other conclusions follow similarly.
We conclude this section with some remarks concerning the generality of the

analysis presented here.
Remark R1: If Hölder continuity, i.e.,

||g′(u)− g′(v)|| ≤ ke||u− v||e, v, u ∈ S1, e ∈ (0, 1)(2.41)

replaces Lipschitz continuity in A3, the above analysis remains valid with minor mod-
ifications including the restriction of the order exponent p to p ∈ (0, e]. In fact, if g′

is only uniformly continuous on S1 (continuous in IRn), then

||g′(u)− g′(v)|| ≤ w(||u− v||)(2.42)

where w(t) is the modulus of continuity for g′ on S1 (see [9], page 64). Again much
of the analysis remains valid; however, it is now only possible to obtain superlinear
convergence. The restriction on Kk analogous to (2.15) in this case is

w

(
k1||gk||

1 +Kk||gk||

)
≤ 1− αk − δ

k1
,(2.43)

showing it is possible to choose 0 ≤ Kk ≤ K0 since w is an isotone continuous function
with w(0) = 0. See Daniel ([3], Section 4.2, Chapter 8) and Sanberg [11] for discussions
of the role of uniform continuity in similar contexts.

Remark R2: Note that (1.2) and (1.3) can be replaced by any procedure for
determining xk such that

0 < ||xk|| ≤ k1||gk||.(2.44)

In all our applications, however, xk can be shown to derive from gk by a linear
relationship of the form (1.2). Furthermore, the bound on ||M−1k || usually follows from
the continuity and invertibility of g′ on S0 in addition to convergence assumptions on
the inner process which determines xk (see Section 4).

In the spirit of R1, it is also possible to generalize (2.44) to

0 < ||xk|| ≤ k1||gk||s, s ∈ (1/2, 1](2.45)

for g′ Lipschitz on S1. If g′ is less smooth, s must be suitably restricted.
Remark R3: As we have seen in Theorems 2.2 and 2.4, the inability to extend

(2.33), in general, to the entire set S0 leads to somewhat disquieting technicalities
concerning the necessary conditions on the convergence to zero of the sequence {αk}.
In the important special case that g(u) is uniformly monotine on S0, i.e.,

(g(u)− g(v))T (u− v) ≥ k7(u− v)T (u− v),(2.46)

the Cauchy-Schwarz inequality implies (in the 2-norm) that

k7||u− u∗||2 ≤ ||g(u)||2 on S0.(2.47)

Hence (2.33) is valid on S0 and the appropriate statements in Theorems 2.2 and 2.4
can be simplified. In an algorithmic setting, however, note that statements (i) and
(ii) of Theorem 2.2 are the real content of the result.
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3. Algorithm. We now turn to the computational aspects of the analysis de-
scribed in Section 2. In particular, we consider the problem of determining the Kk of
(2.1) such that (2.15), or more importantly (2.18), is satisfied.

Note that inequality (2.20) can be rewritten as

δ ≤
(

1− ||gk+1||
||gk||

)
1

tk
.(3.1)

Since the right-hand side of (3.1) is easily computed, and since we may choose δ ∈
(0, 1 − α0), equation (3.1) is a convenient test. Failure to satisfy (3.1) implies Kk
fails to satisfy (2.18). We then increase Kk and compute new values for tk and gk.
These increases will eventually lead to Kk satisfying (2.15), (2.18), and (3.1), and this
process leads to convergence as in Proposition 2.1.

Consider the choice of K0. Given a guess, say K0 = 0, each failure of the test
(3.1) requires a function evaluation of g(u) to compute a new g1. This aspect of the
procedure has the flavor of a line search, but with one important difference. Once a
value of K0 has been accepted, one might reasonable expect to pass (3.1) for Kk = K0

on almost all subsequent iterations k. However, note that as ||gk|| decreases, the right-
hand side of (2.18) decreases, suggesting the possibility of taking Kk ≤ Kk−1. If
the Kk decrease in a orderly manner (for example Kk = Kk−1/10), we anticipate a
process which uses only one function evaluation on most steps. In fact decreasing the
Kk can be important; we have found than an excessively large value of K0 will cause
the convergence of tk → 1 to be much slower than necessary, delaying the onset of
the observed superlinear convergence, and possibly resulting in many iterations.

The above discussion motivates the following algorithm.

Algorithm Global

(1) input u0, δ ∈ (0, 1− α0)
(2) K ← 0, k ← 0; compute g0, ||g0||
(3) compute xk
(4) tk ← (1 +K||gk||)−1
(5) compute uk+1, gk+1, ||gk+1||
(6) if (1− ||gk+1||/||gk||)t−1k < δ
(7) then {if K = 0, then K ← 1; else K ← 10K}; GOTO (4)
(8) else {K ← K/10; k ← k + 1}
(9) if converge, then return; else GOTO (3)

In Global, failure to satisfy (3.1) causes K to be increased in line (7). Each failure
requires on additional function evaluation on line (5). On line (8), we take K/10 as
the initial estimate for Kk+1. Alternatively, we have considered Kk+1 = Kk4j−k−1

where j is the last index resulting in a failure of the test on line (6). In practice, we
have found these methods for decreasing K to be a reasonable compromise between
the (possibly) conflicting goals of having tk → 1 quickly and having (3.1) satisfied on
the first function evaluation for most steps.

The procedure for increasing K is also important, and we have found a procedure
other than the relatively simple one given on line (7) to be advantageous. In this
scheme, one specifies a priori the maximum number of function evaluations to be
allowed on a given step, say ` (typically ` = 10), The trial values of K denoted Kk,j ,
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1 ≤ j ≤ `, satisfy

Kk,j =

(
1

||gk||
+
Kk−1

10

)(
||xk||
µ||uk||

)((j−1)/(`−1))2

− 1

||gk||
, for

||xk||
||uk||

> µ.(3.2)

This corresponds to the easily implemented formulae

tk,1 = (1 +K||gk||/10)−1;(3.3)

tk,j = tk,1(µ||uk||||xk||)((j−1)/(`−1))
2

, 2 ≤ j ≤ `.

We take µ to be a constant on the order of the machine epsilon ×103. For small values
of j ≥ 2, tk,j represents a modest decrease of tk,j−1. As j increases, tk,j decreases more
rapidly until tk,`||xk|| = ||uk||µtk,1. If (3.1) fails for tk,`, the calculation is terminated
and an error flag set. Equations (3.3) represent a compromise between the conflicting
goals of increasing K slowly (so as not to accept a value which is excessively large)
and of finding an acceptable value in few function evaluations.

On line (3) we have not detailed the computation involving (1.2). If Mk = g′k in
(1.2), Global is a damped Newton method and αk = 0 for all k (disregarding round
off). Alternatively, (1.2) may represent an iterative process for solving g′kxk + gk =
0 terminated when αk satisfies some tolerance such as (2.9)-(2.10). Such damped
Newton methods and other approximate Newton methods are outlined in the following
section.

4. Applications. In this section we present several applications for the results in
the previous sections. In particular, we show how Newton-iterative methods, Newton-
approximate Jacobian methods, and other Newton-like methods fit within our global
approximate Newton framework.

4.1. Newton-Iterative Methods. Suppose that xk in line (3) of algorithm
Global is computed by using an iterative method to solve the Newton equations

g′kwk = −gk.(4.1)

For example, we might use a standard iterative method such as SOR or a Newton-
Richardson method where g′k in (4.1) is replaced by a previous Jacobian g′k′ . The
Newton-Richardson choice is useful when a (possibly sparse) LU factorization of the
Jacobian is relatively expensive. Hence the Jacobian is factored infrequently, and in
outer iterations where the factorization is not computed, we iterate to approximately
solve (4.1) using the last computed factorization. (see [12]).

In all such Newton-iterative methods ([9], Section 7.4), we suppose g′k has a
uniformly convergent splitting on S0; i.e.,

g′k = Ak −Bk(4.2)

with ||Hk|| ≤ ρ0 < 1 for all k, where

Hk = A−1k Bk = I −A−1k g′k.(4.3)

We then compute xk by computing the inner iteration

Akxk,m = Bkxk,m−1 − gk(4.4)
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until m = mk, taking xk,0 = 0 and setting xk = xk,mk
. Note that (4.4) can be

rewritten as

Ak(xk,m − xk,m−1) = −(g′kxk,m−1 + gk).(4.5)

Using induction and (4.3), it can be shown that the xk,m in (4.4) satisfy

g′k(I −Hm
k )−1xk,m = −gk, m ≥ 1.(4.6)

Hence we may identify Mk of (1.2) with Mk = g′k(I −Hmk

k )−1, and these Mk satisfy
(2.3) since ||(g′k)−1|| is bounded on S0 and ||I −Hmk

k || ≤ 2.
Notice that the right hand side of (4.5) contains the Newton residual which suggest

defining the quantities

αk,m ≡
||gk + g′kxk,m||

||gk||
(4.7)

in analogy with (2.6) and the quantities xk,m. The αk,m are easily computed, certainly
when the iteration proceeds as in (4.5) rather then (4.4). Since we have assumed that
the Ak and Bk are a convergent splitting, αk,m → 0 as m → ∞. Thus to obtain
convergence as discussed in Section 2, we stop the inner iteration when αk,m attains
the desired tolerance αk ≡ αk,mk

. For example, to obtain orer Q− (p+ 1) superlinear
convergence, p ∈ (0, 1], we stop after mk iterations where

αk,m ≤ α0

(
||gk||
||g0||

)p
, α0 ∈ (0, 1),(4.8)

as in (2.9)-(2.10).
Note that

gk + g′k,mxk,m = Ĥm
k gk(4.9)

where Hk = g′kĤk(g′k)−1; this implies

αk,m ≤ ||Ĥk||m(4.10)

Assuming (4.1) is an equality with ||Ĥk|| < 1 and that equation (2.16)-(2.17) are
equalities, we see that

mk =
log c2||gk||p

log ||Ĥk||
.(4.11)

Asymptotically (as k → ∞) we expect ||Ĥk+1|| ≈ ||Ĥk||; again assuming equality and
using (2.16)-(2.17) and (4.11) shows

mk+1 ∼ (1 + p)mk.(4.12)

Hence for k sufficiently large we can expect the number of inner iterations per outer
iteration to approximately increase by a factor of (1 + p).

In the preceding general analysis of Newton-iterative methods all αk = αk,m are
possibly nonzero. For the special case of a Newton-Richardson method a decision is
made at the beginning of the k-th outer iteration whether to factor g′k thus doing an
“exact” damped Newton iteration. Such a factorization implies αk = 0; otherwise the
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inner iteration corresponds to a splitting with Ak = g′k′ , k
′ < k, where Ak has been

previously factored.

It is not difficult to decide when to refactor: one should refactor when the total
cost of inner iterations using the factored g′k′ just surpasses the cost of a new factor-
ization. For example, using nested dissection on an n × n mesh cost approximately
10n3 operations for a factorization and 5n2 log2 n operations for a backsolution. Thus
approximately 2n/ log2 n inner iterations compared with a new factorization. Note
however that initially these 2n/ log2 n inner iterations will be part of several outer
iterations monitored by the αk,m; each time a new such outer iteration is started,
g′k is computed (but not factored) for use in the right hand side of (4.5). The rela-
tive time T1 corresponding to 10n3 and T2 corresponding to 5n2 log2 n can often be
timed dynamically using a “clock routine” and need not be known a priori. As a
final remark, note that superlinear convergence will require an increasing number of
inner iterations, and ultimately, the inner iteration time will surpass the cost of a new
factorization. However, in practice when only a modest overall accuracy is required
Newton-Richardson methods can prove to be highly effective, and we have found such
cases.

4.2. Newton-Approximate Jacobian Methods. When the partial deriva-
tives required for the computation of g′k are unavailable or expensive to compute, it
is common to approximate g′k, perhaps using finite differences ([6], page 49, [9], pages
185-186). We denote such an approximation to g′k by g̃′k.

We assume that the g̃′k satisfy

||g′k − g̃′k|| ≤
δk
k1

(4.13)

for δk < 1. Let Ak of (2.6) be written as

Ak = Ãk + ∆k(4.14)

where

Ãk =
gk + g̃′kxk
||gk||

; ∆k =
(g′k − g̃′k)xk
||gk||

.(4.15)

Following (2.6), let α̃k = ||Ãk|| and note that ||∆k|| ≤ δk; hence

αk ≤ α̃k + δk.(4.16)

If xk is obtained by the linear system

g̃′kxk = −gk,(4.17)

then α̃k = 0, corresponding to Mk = g̃′k in (1.2). Alternatively (4.17) can be solved
approximately, perhaps by a Newton-iterative method as in Section 4.1; then α̃k 6= 0
in general.

If all α̃k = 0 the δk play the role of αk in Section2. For example, if all α̃k = 0 and

δk ≤ δ0
(
||gk||
||g0||

)p
; p ∈ (0, 1], δ0 < 1,(4.18)
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then the Newton-approximate Jacobian scheme will converge with order Q− (p+ 1).
More generally, let α̃k 6= 0 and δk satisfy (4.18) with

α̃k ≤ max

{
α̃0

(
||gk||
||go||

)q
, δk

}
, α̃0 + δ0 < 1.(4.19)

In a typical situation we might have p = 0, q = 1, and δ0 small; i.e., we compute
the approximation to g′k to a fixed accuracy and use an iterative method to solve (4.17)
approximately. For the first few outer iterations, relatively few inner iterations will be
required. The inner iterations will increase until δk becomes the larger of the two terms
on the right-hand side of (4.19). From this point onward, approximately a constant
number of inner iterations will be used, and the asymptotic outer convergence will be
R-linear (Theorem 2.2). It may not be easy to estimate or compute δk; although, if
we are computing g̃′k to a fixed accuracy, we expect all δk to be approximately equal.
Since δk enters the computation only through (4.19), we see that its main purpose
is to prevent useless inner iterations. If nothing is known about δk, we can set all
δk = ε in (4.19), ε a sufficiently small number. Convergence of the outer iteration can
loosely be described as superlinear at the beginning and ultimately linear depending
on the actual values of δk. The choice of ε could have a significant effect on the total
computation cost and may require some experimentation.

4.3. Two Parameter Damping. In an earlier investigation, [1], we studied the
Newton-like method

(I/sk + g′k)xk = −gk,(4.20)

uk+1 = uk + xk,(4.21)

motivating the method by considering Euler integration on the autonomous system
of ODEs

du

dt
+ g(u) = 0; u(0) = u0.(4.22)

Under appropriate conditions, including the uniform monotonicity of g(u) on IRn in
the form

xT g′(u)x ≥ k7xTx,(4.23)

we showed that it is possible to obtain global quadratic convergence by forcing sk||gk||
to be a sufficiently small constant for all k. We used a norm reducing argument similar
to the analysis of Section 2. Here we sketch a more general treatment using the results
of Section 2.

Consider the iteration (1.2)-(1.3) with tk as in (2.1), λk ≥ 0, and

Mk = λk||gk||I + g′k.(4.24)

We call such a method two parameter damping because the λk as well as the tk limit
the change (uk+1 − uk). It is immediate from (4.24) that the αk of (2.6) satisfy

αk = λk||x||k.(4.25)

If the ||Mk|| are uniformly bounded (for all λk) as in (2.3), then

αk ≤ k1λk||g||k.(4.26)
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This shows that the λk can be chosen such that α0 < 1 and αk ≤ α0 as in Proposition
2.1. Furthermore, the Q-quadratic convergence (2.16) is also a consequence of (4.26).

The above discussion can be made more precise by seeking a relation between the
uniform bound k1 and λk. Suppose that g(u) is uniformly monotone as in (4.23) on
S0. Then, in the 2-norm,

||M−1k ||2 ≤ (λk||gk||2 + k7)−1(4.27)

and

αk = λk||xk|| ≤
λk||gk||2

λk||gk||2 + k7
< min(1, k−17 λk||gk||2).(4.28)

Consider the sequence of λk with 0 ≤ λk ≤ λ0. Note that the αk are easily computable
and all αk < 1, although it may not be the case that all αk ≤ α0. This requires a minor
modification in Proposition 2.1. We will assume that for each k ≥ 0, δ ∈ (0, 1 − α̂k)
where α̂k = maxj≤k αj . Note the sup α̂k < 1 by (4.28) and the induction argument
leading to (2.20). Since we do not know α̂k a priori, we may be required to change
(decrease) δ dynamically as the iteration proceeds; that is, if for some αk, δ ≥ 1−αk.
Such decreases in δ cause no convergence problems since (3.1) continues to hold if δ
is decreased in subsequent iterations.

It is possible to show that for λk = λ0, k ≥ 0, with λ0 sufficiently large, tk
can be chosen as tk = 1 for all k. One starts with (2.13) and uses (4.28) and
βk ≤ (k2/2)(λ0||gk||2 + k7)−2 as in [1], Section 3. However, such an analysis (with-
out the explicit damping parameter tk) is more existential than the two parameter
analysis sketched above, mainly since the sufficient decrease parameter analogues to
δ of (2.20) depends on the usually unknown constant k7. In practice, there seems to
be no advantage in using only λ damping, whereas two parameter damping may be
advantageous when the g′k themselves are numerically ill-conditioned.

5. Numerical Remarks. The methods described in this work and our earlier
presentation [1], are part of a larger study aimed at solving effectively the coupled par-
tial differential equations arising in semiconductor device modelling. These equations
often take the form

−∆u+ eu−v − ew−u = k(x, y)(5.1)

−∇ · (µneu−v∇v) = 0(5.2)

−∇ · (µpew−u∇w) = 0(5.3)

Here u, v, and w are functions of (x, y) ∈ D ⊆ IR2, as are the known functions µn, µp
and k(x, y), and D is a union of rectangles. The function k(x, y) is the doping profile
of the device; (5.1) is a nonlinear Poisson equation and (5.2)-(5.3) are continuity
equations.

Equations (5.1)-(5.3) have be attacked numerically on two discretization fronts.
Finite differences are used in W. Fichtner’s simulation package; the now routine solu-
tion of the coupled equations is reported in [8, 7]. In this package, Newton-Richardson
and Newton-block SOR methods (as in Section 4) have proved to be particularly ef-
fective.

The device equations, especially (5.1), have also been attacked by a nonlinear
multilevel iteration package using piecewise linear elements on triangles. This package
has been designed concurrently with developing analysis presented in this paper and
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is an extension of the linear package described in [2]. The package presently solves a
single nonlinear PDE of the form

−∇ · (a(x, y)∇u) + f(u, ux, uy) = 0(5.4)

on a connected region Ω in IR2 with standard elliptic boundary conditions; the formal
generalization to the case

−∇ · (a(x, y, u, ux, uy)∇u) + f(u, ux, uy) = 0(5.5)

is straightforward. A special Newton-multilevel iterative method, along the lines
discussed in Section 4, is used to solve the discrete equations. Details will be presented
elsewhere.

To illustrate the use of the Newton-multilevel iteration package and Algorithm
Global, consider, as in [1], Section 4, the p − n junction problem of the form (5.1)
above. The functions v, w, and k are given, and the domain and boundary conditions
are shown in Figure 5.1. Recall that the doping profile k(x, y), and the solution
gradient, ∇u(x, y), vary over several orders of magnitude in a small region near the
junction, and there is a notable singularity due to the change in boundary conditions
along the upper boundary.

�

u = ρ1

un = 0un = 0

un = 0u = ρ0

← Junction

Fig. 5.1. p− n junction problem with boundary conditions

We consider only the level-one nonuniform grid with n = 25 vertices (unknowns)
and a (very poor) initial guess, u0 = 0. (The higher levels are less interesting.) We
use Algorithm Global as in Section 4 with the modification (3.2)-(3.3) in line (7).
The xk are computed by a sparse LU factorization of g′k. The convergence trace is
presented in Table 5.1.

The relatively large number of iterations necessary in this experiment compared
with the experiments reported in [1], Section 4, is a direct consequence of taking u0 = 0
rather than attempting to even roughly interpolate the boundary values ρ0 and ρ1
as we did before. This also leads to more searching (evals) than might otherwise be
expected.

As a cautionary remark, we report that failing to dynamically change K (i.e.,
taking Kk = K0 for all k) led to time overrun termination after k = 320, tk =
1.106(−4) and ||gk|| = 4.57(6) in the same experiment.
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