Math 270b: Numerical Approximation and Nonlinear Equations

Instructor: Randolph E. Bank

Winter Quarter 2020

Homework Assignment \#9
Due Friday, March 6, 2020

Exercise 9.1. Let

$$
\mathcal{I}(f)=\int_{0}^{1} f(x) d x
$$

We consider a numerical quadrature formula of the form

$$
\mathcal{Q}(f)=w_{1} f(1 / 3)+w_{2} f(2 / 3)+w_{3} f(1)
$$

1. Compute the weights w_{i} to maximize the order.
2. Compute the error $\mathcal{I}(f)-\mathcal{Q}(f)$. Be sure to explicitly evaluate the constant.
3. Write down the composite formula for approximating

$$
\int_{a}^{b} f(x) d x
$$

on a uniform mesh of size h.
4. Write down an expression for the error in the composite formula.

Exercise 9.2. Derive the Peano kernel for the midpoint rule:

$$
\int_{0}^{1} f(x) d x-f(1 / 2)=\int_{0}^{1} K(t) f^{\prime \prime}(t) d t
$$

where

$$
K(t)= \begin{cases}t^{2} / 2 & 0 \leq t \leq 1 / 2 \\ (1-t)^{2} / 2 & 1 / 2 \leq t \leq 1\end{cases}
$$

Exercise 9.3. Let

$$
I(f)=\int_{0}^{1} f(x) \log \left(\frac{1}{x}\right) d x
$$

1. Derive the two point Gaussian quadrature rule for approximating this integral, where the weight function is $w(x)=\log \left(\frac{1}{x}\right)$
2. Determine the order of this formula.
3. Suppose we wish to compute

$$
\int_{0}^{a} f(x) \log \left(\frac{1}{x}\right) d x=\int_{0}^{h} f(x) \log \left(\frac{1}{x}\right) d x+\int_{h}^{a} f(x) \log \left(\frac{1}{x}\right) d x
$$

Show how the special rule derived above could be combined with a standard rule (e.g. 2-point Gaussian Quadrature with weight function 1) to make a composite formula.

Exercise 9.4. Suppose we have a numerical procedure for approximating a number \mathcal{X} by \mathcal{X}_{h}. It is (somehow) known that the approximation error is given by an asymptotic expansion of the form

$$
\mathcal{X}-\mathcal{X}_{h}=c_{1} h+c_{2} h^{2}+\cdots+c_{k} h^{k} \ldots
$$

where h is a small parameter characterizing the discretization. Devise a Richardson Extrapolation scheme for computing higher order approximations of \mathcal{X} given first order approximations for $h_{j}=h_{0} / 3^{j}, j=0,1,2, \ldots$.

