MATH 270B: Numerical Approximation and Nonlinear Equations

Instructor: Randolph E. Bank

Winter Quarter 2020

Homework Assignment #7 Due Friday, February 21, 2020

Exercise 7.1. Suppose we wish the approximate the function $f(x) = e^x$ on the interval $0 \le x \le 1$ using piecewise polynomial approximation on a uniform mesh of n+1 knots (h=1/n).

1. If we use \mathcal{C}^0 piecewise linear interpolation, compute the smallest value of n such that

$$||f - \mathcal{I}_1(f)||_{\infty} \le 10^{-6}$$

2. If we use \mathcal{C}^1 piecewise cubic interpolation, compute the smallest value of n such that

$$||f - \mathcal{I}_3(f)||_{\infty} \le 10^{-6}$$

3. Give a brief comparison of the relative efficiency of these two methods.

Exercise 7.2. In this problem we will analyze the case of continuous piecewise *quadratic* interpolation on a mesh of n+1 knots $x_0 < x_1 < \cdots < x_n$. We will also need the interval midpoints $x_{i+1/2} = (x_i + x_{i+1})/2$.

- 1. Show the the dimension of the space S of continuous piecewise quadratic polynomials is N=2n+1.
- 2. Next compute the *nodal* basis functions. There are two types: *hat functions*, which satisfy

$$\phi_i(x_i) = \delta_{ii} \qquad \phi_i(x_{i+1/2}) = 0 \qquad 0 \le i \le n,$$

and bump functions, which satisfy

$$\phi_{i+1/2}(x_j) = 0$$
 $\phi_{i+1/2}(x_{j+1/2}) = \delta_{ij}$ $0 \le i \le n-1$.

Draw a picture of both types of basis functions.

3. Let f^* be the continuous piecewise quadratic interpolant for f. Prove

$$||f - f^*||_{\infty} \le Ch^3 ||f'''||_{\infty}$$

 $||f' - f^{*'}||_{\infty} < Ch^2 ||f'''||_{\infty}$

4. Prove

$$||f - f^*||_2 \le Ch^3 ||f'''||_2$$

 $||f' - f^{*'}||_2 \le Ch^2 ||f'''||_2$

2 Mathematics 270b

Exercise 7.3. In this problem we will analyze the case of C^1 piecewise *quadratic* approximation on a mesh of n+1 knots $x_0 < x_1 < \cdots < x_n$.

- 1. Show the the dimension of the space S of C^1 piecewise quadratic polynomials is N = n + 2.
- 2. As with cubic splines, there are no simple nodal basic functions for this space. Show that the minimum support for a quadratic spline basis function is three intervals.
- 3. Compute the quadratic spline basis functions.