Exercise 5.1. In this problem, we will compute several linear approximations to the function \(f(x) = \sqrt{x} \) on the interval \(0 \leq x \leq 1 \). Let \(S \) be the 2-dimensional space of linear polynomials. Use the basis functions \(\phi_1(x) = 1 \) and \(\phi_2(x) = x \).

1. Compute the linear interpolant which interpolates \(f(x) \) at \(x = 0 \) and \(x = 1 \).
2. Define the \(L^2 \) norm by
 \[
 (f, g) = \int_0^1 fg \, dx, \quad ||f||_2 = \sqrt{(f, f)}.
 \]
 Compute the best approximation \(f^* \in S \)
 \[
 ||f - f^*||_2 = \min_{v \in S} ||f - v||_2
 \]
3. Define the \(L^\infty \) norm by
 \[
 ||f||_\infty = \max_{0 \leq x \leq 1} |f(x)|
 \]
 Compute the best approximation \(f^\infty \in S \)
 \[
 ||f - f^\infty||_\infty = \min_{v \in S} ||f - v||_\infty
 \]

Exercise 5.2. In this problem we will consider the case of Hermite interpolation. In this problem, we are given \(n + 1 \) distinct knots \(x_i \), \(0 \leq i \leq n \) with corresponding function values \(f(x_i) \) and derivative values \(f'(x_i) \). Let \(S \) be the space of polynomials of degree \(2n + 1 \) (note the dimension of this space is \(2n + 2 \)). We will analyze the interpolant \(f^* \in S \) which satisfies the interpolation conditions \(f^*(x_i) = f(x_i) \) for \(0 \leq i \leq n \), and \(f'^*(x_i) = f'(x_i) \) for \(0 \leq i \leq n \).

1. Find a value function \(V_i(x) \in S \) that satisfies \(V_i(x_j) = \delta_{ij} \) and \(V_i'(x_j) = 0 \). (Try a function of the form \(V_i(x) = L_i^2(x)(ax + b) \), where \(L_i(x) \) is the Lagrange nodal basis function, and a polynomial of degree \(n \), defined in class and \(a \) and \(b \) are coefficients to be determined)
2. Find a slope function \(S_i(x) \in S \) that satisfies \(S_i(x_j) = 0 \) and \(S_i'(x_j) = \delta_{ij} \). (Again, try a function of the form \(S_i(x) = L_i^2(x)(cx + d) \)).
3. Show

\[f^* = \sum_{i=0}^{n} f(x_i)V_i(x) + f'(x_i)S_i(x) \]

4. Prove for \(f \in C^{2n+2} \)

\[f(x) - f^*(x) = \frac{f^{2n+2}(\xi_x)}{(2n+2)!} \omega(x) \quad \text{where} \quad \omega(x) = \prod_{i=0}^{n}(x - x_i)^2 \]

Exercise 5.3. Let \(f(x) = x^3 \), and consider the knots \(x_0 = -1, x_1 = 0, x_2 = 1 \).

1. Compute the quadratic interpolant using the nodal Lagrange basis functions.
2. Compute a divided difference table for the data. Evaluate the interpolant using the upper diagonal, the lower diagonal, and a third path of your choice through the center portion of the difference table. Verify that all interpolants are the same function.
3. Add the knot \(x_3 = -2 \) to the difference table. Update the interpolant. Then add the knot \(x_4 = 2 \) to the difference table, and update the interpolant once more. Explain your results.

Exercise 5.4. Let \(I \) denote the interpolation *operator*, taking as argument a function \(f \) and yielding the Lagrange interpolant \(I(f) = f^* \). Prove the \(I \) is a *linear* operator. (i.e., that \(I(\alpha f + \beta g) = \alpha I(f) + \beta I(g) \), where \(\alpha \) and \(\beta \) are scalars and \(f \) and \(g \) are functions).