# Math 270b: Numerical Approximation and Nonlinear Equations 

Instructor: Randolph E. Bank

Winter Quarter 2020

Homework Assignment \#5
Due Friday, February 7, 2020

Exercise 5.1. In this problem, we will compute several linear approximations to the function $f(x)=\sqrt{x}$ on the interval $0 \leq x \leq 1$. Let $\mathcal{S}$ be the 2-dimensional space of linear polynomials. Use the basis functions $\phi_{1}(x)=1$ and $\phi_{2}(x)=x$.

1. Compute the linear interpolant which interpolates $f(x)$ at $x=0$ and $x=1$.
2. Define the $\mathcal{L}^{2}$ norm by

$$
(f, g)=\int_{0}^{1} f g d x, \quad\|f\|_{2}=\sqrt{(f, f)}
$$

Compute the best approximation $f^{*} \in \mathcal{S}$

$$
\left\|f-f^{*}\right\|_{2}=\min _{v \in \mathcal{S}}\|f-v\|_{2}
$$

3. Define the $\mathcal{L}^{\infty}$ norm by

$$
\|f\|_{\infty}=\max _{0 \leq x \leq 1}|f(x)|
$$

Compute the best approximation $f^{\infty} \in \mathcal{S}$

$$
\left\|f-f^{\infty}\right\|_{\infty}=\min _{v \in \mathcal{S}}\|f-v\|_{\infty}
$$

Exercise 5.2. In this problem we will consider the case of Hermite interpolation. In this problem, we are given $n+1$ distinct knots $x_{i}, 0 \leq i \leq n$ with corresponding function values $f\left(x_{i}\right)$ and derivative values $f^{\prime}\left(x_{i}\right)$. Let $\mathcal{S}$ be the space of polynomials of degree $2 n+1$ (note the dimension of this space is $2 n+2$ ). We will analyze the interpolant $f^{*} \in \mathcal{S}$ which satisfies the interpolation conditions $f^{*}\left(x_{i}\right)=f\left(x_{i}\right)$ for $0 \leq i \leq n$, and $f^{*^{\prime}}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)$ for $0 \leq i \leq n$.

1. Find a value function $V_{i}(x) \in \mathcal{S}$ that satisfies $V_{i}\left(x_{j}\right)=\delta_{i j}$ and $V_{i}^{\prime}\left(x_{j}\right)=0$. (Try a function of the form $V_{i}(x)=L_{i}^{2}(x)(a x+b)$, where $L_{i}(x)$ is the Lagrange nodal basis function, and a polynomial of degree $n$, defined in class and $a$ and $b$ are coefficients to be determined)
2. Find a slope function $S_{i}(x) \in \mathcal{S}$ that satisfies $S_{i}\left(x_{j}\right)=0$ and $S_{i}^{\prime}\left(x_{j}\right)=\delta_{i j}$. (Again, try a function of the form $\left.S_{i}(x)=L_{i}^{2}(x)(c x+d)\right)$.
3. Show

$$
f^{*}=\sum_{i=0}^{n} f\left(x_{i}\right) V_{i}(x)+f^{\prime}\left(x_{i}\right) S_{i}(x)
$$

4. Prove for $f \in \mathcal{C}^{2 n+2}$

$$
f(x)-f^{*}(x)=\frac{f^{2 n+2}\left(\xi_{x}\right)}{(2 n+2)!} \omega(x) \quad \text { where } \quad \omega(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)^{2}
$$

Exercise 5.3. Let $f(x)=x^{3}$, and consider the knots $x_{0}=-1, x_{1}=0, x_{2}=1$.

1. Compute the quadratic interpolant using the nodal Lagrange basis functions.
2. Compute a divided difference table for the data. Evaluate the interpolant using the upper diagonal, the lower diagonal, and a third path of your choice through the center portion of the difference table. Verify that all interpolants are the same function.
3. Add the knot $x_{3}=-2$ to the difference table. update the interpolant. Then add the knot $x_{4}=2$ to the difference table, and update the interpolant once more. Explain your results.

Exercise 5.4. Let $\mathcal{I}$ denote the interpolation operator, taking as argument a function $f$ and yielding the Lagrange interpolant $\mathcal{I}(f)=f^{*}$. Prove the $\mathcal{I}$ is a linear operator. (i.e., that $\mathcal{I}(\alpha f+\beta g)=\alpha \mathcal{I}(f)+\beta \mathcal{I}(g)$, where $\alpha$ and $\beta$ are scalars and $f$ and $g$ are functions).

