Math 270b: Numerical Approximation and Nonlinear Equations

Instructor: Randolph E. Bank
Winter Quarter 2020
Homework Assignment \#4
Due Friday, January 31, 2020

Exercise 4.1. The primal form of a linear program is:

$$
\min _{A x \geq b} c^{t} x
$$

The dual problem is:

$$
\max _{A^{t} y=c, y \geq 0} b^{t} y
$$

In this problem we illustrate the connection between primal and dual formulations. We assume A has full rank.
a. Find necessary conditions for the solution of the primal problem. In particular,

$$
\begin{gathered}
A x^{*} \geq b, \hat{A} x^{*}=\hat{b} \\
c=\hat{A}^{t} \lambda^{*} \\
\lambda^{*} \geq 0
\end{gathered}
$$

where x^{*} is the solution, \hat{A} corresponds to active constraints at the solution and λ^{*} are the corresponding Lagrange multipliers.
b. We show that y^{*} given by

$$
y^{*}=\binom{\lambda^{*}}{0}
$$

is the solution of the dual problem.
Assume A be can be partitioned as $A^{t}=\left(\hat{A}^{t} \bar{A}^{t}\right)$. Verify that y^{*} is feasible.

$$
\begin{gathered}
A^{t} y^{*}=c \\
y^{*} \geq 0
\end{gathered}
$$

The active constaints for the dual problem are all of the equality constraints plus the inequality constraints for which equality holds. We may express this as

$$
\left(\begin{array}{cc}
\hat{A}^{t} & \bar{A}^{t} \\
0 & I
\end{array}\right)\binom{\lambda^{*}}{0}=\binom{c}{0} .
$$

c. Noting that max $b^{t} y=\min -b^{t} y$, verify that the Lagrange multipliers σ for the dual problem satisfy

$$
\left(\begin{array}{cc}
\hat{A} & 0 \\
\bar{A} & I
\end{array}\right)\binom{\hat{\sigma}}{\bar{\sigma}}=-b=-\binom{\hat{b}}{\bar{b}}
$$

Thus verify

$$
\begin{gathered}
\hat{\sigma}=-x^{*} \\
\bar{\sigma}=\bar{A} x^{*}-\bar{b}>0
\end{gathered}
$$

d. Summarize the necessary conditions for the solution of the dual problem, and show that they are satisfied by y^{*} and σ using parts b and c .

