Math 270B: Numerical Approximation and Nonlinear Equations

Instructor: Randolph E. Bank

Winter Quarter 2018

Homework Assignment #4
Due Friday, February 2, 2018

Exercise 4.1. The *primal* form of a linear program is:

\[
\begin{align*}
\min_{Ax\geq b} & \quad c^t x \\
\end{align*}
\]

The *dual* problem is:

\[
\begin{align*}
\max_{A^t y = c, y \geq 0} & \quad b^t y \\
\end{align*}
\]

In this problem we illustrate the connection between primal and dual formulations. We assume \(A \) has full rank.

a. Find necessary conditions for the solution of the primal problem. In particular,

\[
\begin{align*}
Ax^* & \geq b, \hat{A}x^* = \hat{b} \\
c & = \hat{A}^t \lambda^* \\
\lambda^* & \geq 0
\end{align*}
\]

where \(x^* \) is the solution, \(\hat{A} \) corresponds to active constraints at the solution and \(\lambda^* \) are the corresponding Lagrange multipliers.

b. We show that \(y^* \) given by

\[
y^* = \begin{pmatrix} \lambda^* \\ 0 \end{pmatrix}
\]

is the solution of the dual problem.

Assume \(A \) be can be partitioned as \(A^t = (\hat{A}^t \bar{A}^t) \). Verify that \(y^* \) is feasible.

\[
\begin{align*}
A^t y^* & = c \\
y^* & \geq 0
\end{align*}
\]

The active constaints for the dual problem are all of the equality constraints plus the inequality constraints for which equality holds. We may express this as

\[
\begin{pmatrix} \hat{A}^t & \bar{A}^t \end{pmatrix} \begin{pmatrix} \lambda^* \\ 0 \end{pmatrix} = \begin{pmatrix} c \\ 0 \end{pmatrix}.
\]
c. Noting that $\max b^t y = \min -b^t y$, verify that the Lagrange multipliers σ for the dual problem satisfy
\[
\begin{pmatrix}
\hat{A} & 0 \\
\bar{A} & I
\end{pmatrix}
\begin{pmatrix}
\hat{\sigma} \\
\bar{\sigma}
\end{pmatrix} = -b = - \begin{pmatrix}
\hat{b} \\
\bar{b}
\end{pmatrix}
\]
Thus verify
\[
\hat{\sigma} = -x^* \\
\bar{\sigma} = \bar{A}x^* - \bar{b} > 0
\]

d. Summarize the necessary conditions for the solution of the dual problem, and show that they are satisfied by y^* and σ using parts b and c.