Math 270b: Numerical Approximation and Nonlinear Equations

Instructor: Randolph E. Bank

Winter Quarter 2020

Homework Assignment \#3
Due Friday, January 24, 2020

Exercise 3.1. In this problem we consider the approximate solution of the two boundary value problem

$$
-u^{\prime \prime}+e^{u-v}-e^{w-u}-f=0
$$

for $0<x<0.15$, where

$$
\begin{aligned}
f(x) & = \begin{cases}f_{\ell} & 0 \leq x \leq 0.0075 \\
f_{r} & 0.0075<x \leq 0.15\end{cases} \\
v(x) & = \begin{cases}\nu & 0 \leq x \leq 0.015 \\
0 & 0.015<x \leq 0.15\end{cases} \\
w(x) & = \begin{cases}\nu & 0 \leq x \leq 0.0025 \\
0 & 0.0025<x \leq 0.15\end{cases} \\
u(0) & =\nu+\ln \left|f_{\ell}\right| \\
u(0.15) & =-\ln \left|f_{r}\right|
\end{aligned}
$$

Let $n=59, h=0.0025$, and $x_{i}=i h, 0 \leq i \leq 60$. Using the finite difference method, we will compute a vector U, with $U_{i} \approx u\left(x_{i}\right) 1 \leq i \leq 59$. The unknowns U_{i} satisfy the nonlinear system of difference equations

$$
G_{i}(U)=\frac{2 U_{i}-U_{i+1}-U_{i-1}}{h^{2}}+e^{U_{i}-V_{i}}-e^{W_{i}-U_{i}}-F_{i}=0
$$

for $1 \leq i \leq 59$. Note

$$
\begin{aligned}
F_{i}=f\left(x_{i}\right) & = \begin{cases}f_{\ell} & 1 \leq i \leq 3 \\
f_{r} & 4 \leq i \leq 59\end{cases} \\
V_{i}=v\left(x_{i}\right) & = \begin{cases}\nu & 1 \leq i \leq 6 \\
0 & 7 \leq i \leq 59\end{cases} \\
W_{i}=w\left(x_{i}\right) & = \begin{cases}\nu & i=1 \\
0 & 2 \leq i \leq 59\end{cases} \\
U_{0}=u(0) & =\nu+\ln \left|f_{\ell}\right| \\
U_{60}=u(0.15) & =-\ln \left|f_{r}\right|
\end{aligned}
$$

Solve this system of equations by Newton's method (with line search or with $\alpha_{k}=(1+$ $\left.\kappa\left\|g_{k}\right\|\right)^{-1}$ as described in class) for the following four cases:

case	ν	f_{ℓ}	f_{r}
1	0	10^{2}	-10^{1}
2	0	10^{6}	-10^{3}
3	40	10^{6}	-10^{3}
4	100	10^{6}	-10^{3}

Note that the Jacobian matrix is a symmetric positive definite tridiagonal matrix

$$
T=\left(\begin{array}{ccccc}
d_{1} & c & & & \\
c & d_{2} & c & & \\
& \ddots & \ddots & \ddots & \\
& & c & d_{58} & c \\
& & & c & d_{59}
\end{array}\right)
$$

with $c=-1 / h^{2}$ and $d_{i}=2 / h^{2}+e^{U_{i}-v\left(x_{i}\right)}+e^{w\left(x_{i}\right)-U_{i}}$. Iterate for maxit $=200$ iterations or until $\left\|U^{k}-U^{k-1}\right\| /\left\|U^{k}\right\| \leq \epsilon$ with $\epsilon=10^{-8}$, where U^{k} is the approximate solution at the k-th Newton step. Use initial guess $\left(v\left(x_{i}\right)+w\left(x_{i}\right)\right) / 2$. To have some idea of how the iteration is behaving, print $\left\|U^{k}-U^{k-1}\right\| /\left\|U^{k}\right\|$ for each value of k.

