# Math 270B: Numerical Approximation and Nonlinear Equations 

Instructor: Randolph E. Bank

Winter Quarter 2020

Homework Assignment \#1
Due Friday, January 10, 2020

Exercise 1.1. A function $f(x)=\left(x-x^{*}\right)^{m} h(x), m \geq 1$, with $h\left(x^{*}\right) \neq 0$ is said to have a root of multiplicity $m$ at $x^{*}$.
a. Prove that $x^{*}$ is a root of $f(x)$ with multiplicity $m$ if and only if $f\left(x^{*}\right)=f^{\prime}\left(x^{*}\right)=$ $\cdots=f^{m-1}\left(x^{*}\right)=0$ and $f^{m}\left(x^{*}\right) \neq 0$.
b. Prove that if $m>1$, then Newton's method is only linearly convergent.
c. Show that second order convergence is recovered for the modified Newton method

$$
x_{k+1}=x_{k}-\frac{m f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} .
$$

d. Show that second order convergence is recovered for the modified Newton method

$$
x_{k+1}=x_{k}-\frac{f^{m-1}\left(x_{k}\right)}{f^{m}\left(x_{k}\right)}
$$

e. Consider $g(x)=f(x) / f^{\prime}(x)$. Show that second order convergence is recovered for the Newton method

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}
$$

While these modifications (as well as others) speed convergence for multiple roots, they require one to know that there is a multiple root and in some cases to also to know the multiplicity $m$. This limits their use in many practical applications.

Exercise 1.2. Consider the function $f(x)=(x-\alpha)^{m}$ for $m \geq 1$. Here we will study the sensitivity of multiple roots in a simple case. Let $\epsilon$ be a small perturbation, and let $\hat{f}(x)=f(x)+\epsilon$. Analyze the zero structure of $\hat{f}$, and explain why it is very difficult in general to accurately compute multiple roots in a floating point number system.

