MATH 270B: Numerical Approximation and Nonlinear Equations

Instructor: Randolph E. Bank

Winter Quarter 2020 Final Examination Wednesday, March 18, 2020

	#1	25	
	#2	25	
	#3	25	
	#4	25	
NAME	#5	25	
SIGNATURE	#6	25	
	#7	25	

25

200

#8 Total **Question 1.** Let $\phi(\vec{x})$ be a scalar function of the vector variable \vec{x} . Suppose $\phi(\vec{x})$ is continuous with continuous first and second partial derivatives, and suppose that the Hessian is symmetric and uniformly positive definite.

- 1. Formally define Newton's method with line search for solving the optimization problem $\min_{\vec{x}} \phi(\vec{x})$.
- 2. Let \vec{p}_k be the Newton search direction. Show that $\partial \phi(\vec{x}_k + \alpha \vec{p}_k)/\partial \alpha < 0$ at $\alpha = 0$. Why is this fact significant for the line search?

Question 2. Let $\phi(x)$ be a scalar function of the *n*-vector variable *x*. Suppose $\phi(x)$ is continuous with continuous first and second partial derivatives, and suppose that the Hessian is symmetric and uniformly positive definite. Let *A* be an $m \times n$ matrix, n > m of full rank. Consider the equality constrained optimization problem

$$\min_{Ax=b}\phi(x)$$

a. Formally define the Lagrangian for this problem.

- **b.** State the necessary conditions for existence and uniqueness of a solution.
- c. Derive Newton's Method (KKT system) for solving this problem.

Question 3. Let f(x) be a vector function of a vector variable x. Assume f(x) is continuous and differentiable, and that the Jacobian J(x) is continuous in the ball $\mathcal{B} = \{x | \|x - x^*\| \leq \delta$ for some $\delta > 0$. More specifically, assume:

- 1. $f(x^*) = 0$.
- 2. $||J(x)^{-1}|| \leq M$ for all $x \in \mathcal{B}$.
- 3. $||J(x) J(y)|| \le \gamma ||x y||$ for all $x, y \in \mathcal{B}$.

Assume the sequence x_k is generated from a starting vector $x_0 \in \mathcal{B}$ using Newton's method without line search. Using Taylor's theorem, prove

$$\|e_{k+1}\| \le \frac{M\gamma}{2} \|e_k\|^2$$

where $e_k = x^* - x_k$. Hint: $f(x) = f(y) + \int_0^1 J(\theta x + (1 - \theta)y)(x - y)d\theta$

Question 4. We consider the approximation of $x^3 + 2$ on $0 \le x \le 2$ by quadratic polynomials. We will use the uniform mesh $x_0 = 0$, $x_1 = 1$ and $x_2 = 2$.

- **a.** Compute the interpolant using the Lagrange nodal basis.
- **b.** Compute the interpolant using a divided difference table.

Question 5. Let $f \in C^2(I)$, I = [a, b], and let $x_i = a + ih$, $0 \le i \le n$, h = (b - a)/n be a uniform mesh on I. Let \tilde{f} denote the continuous piecewise linear polynomial interpolant of f with respect to this mesh. Using the Peano Kernel Theorem, prove:

$$||f - \tilde{f}||_{\mathcal{L}_2(I)} \le Ch^2 ||f''||_{\mathcal{L}_2(I)}$$

Question 6. Suppose we are given an inner product (f, g), and corresponding norm $||f|| = \sqrt{(f, f)}$ defined on a vector space \mathcal{V} . Let $\mathcal{S} \subset \mathcal{V}$ be a finite dimensional subspace. Let $f \in \mathcal{V}$, and let $f^* \in \mathcal{S}$ be the least squares approximation of f satisfying

$$||f - f^*|| = \min_{v \in S} ||f - v||$$

Prove the orthogonality relation

$$(f - f^*, v) = 0$$

for all $v \in S$ (This shows that f^* is the *orthogonal projection* of f onto S). Hint: consider $||f - (f^* + \epsilon v)||^2$, where $v \in S$ and $\epsilon \in \mathbb{R}^1$.

Question 7. Let

$$\mathcal{I}(f) = \int_{-1}^{1} f(x) dx$$

We consider a Gaussian quadrature formula of the form

$$\mathcal{Q}(f) = w_1 f(x_1) + w_2 f(x_2)$$

- **a.** Compute the weights w_i and the knots x_i for the Gaussian quadrature formula.
- **b.** Compute the error $\mathcal{I}(f) \mathcal{Q}(f)$. Be sure to explicitly evaluate the constant.

Question 8. The composite trapazoid rule $T_h(f)$ on a uniform mesh of size h = (b-a)/n is known (via the Euler-Maclaurin Summation formula) to satisfy

$$I(f) = \int_{a}^{b} f(x) \, dx = T_{h}(f) + \sum_{k=1}^{r} c_{2k} h^{2k} \{ f^{2k-1}(b) - f^{2k-1}(a) \} + O(h^{2r+2}).$$

for $f \in \mathcal{C}^{2r}[a, b]$,

$$T_h(f) = \frac{h}{2}f(x_0) + h\sum_{k=1}^{n-1}f(x_k) + \frac{h}{2}f(x_n),$$

and $x_k = a + kh$, $0 \le k \le n$. Derive a Richardson Extrapolation Procedure for computing higher order approximations to I(f).