
GENERAL SPARSE ELIMINATION REQUIRES NO PERMANENT
INTEGER STORAGE ∗

RANDOLPH E. BANK† AND R.KENT SMITH‡

Abstract. General sparse elimination is designed to take maximum advantage of the sparsity
of an N ×N matrix A. Only the nonzeros of A are stored, along with some extra integer overhead to
identify the nonzero matrix elements. This extra integer storage may be avoided for the triangular
factors generated by an LDU decomposition, generally without increasing the order of complexity.
In addition to permanent storage for the nonzero elements of the factors, our procedure requires at
most 5N temporary integer storage.

Key words. sparse Gaussian elimination, sparse matrix

AMS subject classifications. 65F05, 65N20

1. Introduction. We consider the solution of

Ax = b(1.1)

where A is large sparse N × N nonsingular matrix with no special structure other
than a symmetric sparsity pattern. Such problems can be treated by general sparse
Gaussian elimination methods [1] - [6]. In such a scheme, one finds a permutation
matrix P and computes the decomposition

PAP t = LDU

where L is unit lower triangular, U is unit upper triangular, and D is diagonal. If
At = A then Lt = U . The solution of the linear system is then computed via

Lw = Pb

Dy = w

Uz = y

x = P tz

As is common in such investigations, we assume the factorization exists for any per-
mutation matrix P . This will be true, for example, if the symmetric part of A is
positive definite.

Traditionally Gaussian elimination algorithms have been partitioned into four
distinct phases:

1. Ordering (compute P)
2. Symbolic factorization
3. Numerical factorization (compute LDU)
4. Forward and backward substitution (compute x)

∗Received by the editord May 5, 1986; accepted for publication (in revised form September 22,
1986
†Department of Mathematics, University of California at San Diego, La Jolla, California 92093.

The work of this author was partly supported by the Office of Naval Research under contract N00014-
82K-0197.
‡AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

1

Several efficient hueristic algorithms are available for ordering general sparse ma-
trices, for example, the minimum degree algorithm [4, 5] Since our procedures are
independent of the choice of P , we assume for convenience that P = I, or equiva-
lently, that A has been reordered to reflect the appropriate choice of P .

To take maximum advantage of the sparsity, the matrix A is represented compu-
tationally by a linear array A containing only nonzero elements. In order to access
this data, various pointers and row/column indices are stored to establish the corre-
spondence between array entries and matrix entries.

In sparse Gaussian elimination schemes, the matrices LDU are also stored in a
linear array, U , containing only the nonzero elements. Generally, this array is much
larger than A, due to the ”fillin” which occurs during the elimination process. The
purpose of symbolic factorization is to compute an auxiliary integer data structure for
U , similar to that used for A, which allows the numeric factorization and backsolves
to be carried out statically. For the simplest schemes, the amount of integer storage
required is of the same order as the size of U , (|U |) although compression schemes
can result in significant reductions [2, 3, 4].

This paper presents an algorithm where the numeric factorization and solution
steps can be carried out without an additional permanent integer data structure.
The relevant information is computed as needed, thus eliminating the symbolic fac-
torization step. In addition to the storage required for A, U , x, b etc, the numeric
factorization algorithm uses 5 integer vectors of total length 5N , and the solution
phase requires 3 integer vectors of total length 3N . Using the ideas of Rose, Tar-
jan, and Lueker [6] the fillin is computed in an optimal O(N + |U |) time, which is
usually far less than the cost of the numerical factorization [4, 5]. The overall order
of complexity of the numerical operations in this procedure is the same as for other
general sparse schemes. While some aspects of the non-numerical complexity remain
unclear, it appears to be of the same order as the numerical complexity in the practical
problems we have solved.

The remainder of the paper is organized as follows. The data structure used to
store A is described in Section 2. This structure is a variation of the data structure
described in [1] and is based on the data structure used in the symmetric codes of
the Yale Sparse Matrix Package [2, 3]. In Section 3, we briefly review the relevant
graph theoretic results upon which our procedure is based. This is not self-contained
and assumes a basic background of the graph theoretic model of Gaussian elimination
[4, 5]. We then present our procedures and analyze their correctness and complexity.
The appendix contains a prototype fortran implementation of our procedures.

2. A Sparse Matrix Data Structure. Let A be an N × N matrix with el-
ements aij . We assume A is sparse with a symmetric sparsity structure; that is,
both aij and aji are to be treated as non-zero elements (i.e. stored and processed) if
|aij |+ |aji| > 0. We further assume that the diagonal entries aii are non-zero.

In our scheme the nonzero entries of A are stored in a linear array A, and accessed
through an integer array JA. Let ηi be the number of non-zeroes in the strict upper
triangular part of column i, and set η =

∑N
i=1 ηi. The array JA is of length N + 1+η

and the array A is of length N + 1 + η if At = A. If At 6= A, then the array A is of
length N + 1 + 2η. The entries of JA(i) 1 ≤ i ≤ N + 1 are pointers defined as follows:

JA(1) = N + 2

JA(i+ 1) = JA(i) + ηi, 1 ≤ i ≤ N

The locations JA(i) to JA(i+ 1)− 1 contain the ηi row indices corresponding to the

2

column i in the strictly upper triangular matrix.
In a similar manner, the array A is defined as follows:

A(i) = aii

A(N + 1) is arbitrary

A(k) = aji, j = JA(k), JA(i) ≤ k ≤ JA(i+ 1)− 1

If At 6= A, then

A(k + η) = aij , j = JA(k), JA(i) ≤ k ≤ JA(i+ 1)− 1

In words, the A array stores the diagonal first, followed by the strict upper triangle
stored column-wise. If At 6= A, then this is followed by the strict lower triangle stored
row-wise. Since A is structurally symmetric, the row indexes for the upper triangle
are identical to the column indexes for the lower triangle, and hence need not be
duplicated in storage.

As an example, let

A =

a11 a12 a13 0 0
a21 a22 0 a24 0
a31 0 a33 a34 a35
0 a42 a43 a44 0
0 0 a53 0 a55

Then

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
JA 7 7 8 9 11 12 1 1 2 3 3
A a11 a22 a33 a44 a55 a12 a13 a24 a34 a35 a21 a31 a42 a43 a53

Diagonal Upper Triangle Lower Triangle

This data structure is similar to the data structure described in [1], except that
the roles of the rows and columns have been reversed. The data structure has a
number of interesting features which we briefly summarize below.

1. For symmetric matrices this data structure saves N integer storage locations
compared to the data structure used by the symmetric Yale Sparse Matrix
codes [2, 3], which store all entries for a given row in consecutive locations in
A. For nonsymmetric matrices, about half of the integer storage is saved.

2. For many matrix calculations a single indirect address computation in JA can
be used to process both a lower and a upper triangular element in A. This
loop unrolling technique can save overhead costs on vector machines such at
the Cray. For example, the following procedure1 computes y = Ax:

procedure MULT (N,A, x, y)
1. for i← 1 to N
2. y(i)← A(i)x(i)
3. lshift← JA(N + 1)− JA(1)
4. ushift← 0
5. for i← 1 to N

1In this paper, we adopt the convention that zero trip loops are not executed.

3

6. for k ← JA(i) to JA(i+ 1)− 1
7. j ← JA(k)
8. y(i)← y(i) +A(k + lshift)x(j)
9. y(j)← y(j) +A(k + ushift)x(i)

end MULT
For symmetric matrices, set lshift ← 0 in line 3. Also, y = At x may be
readily computed by setting, lshift← 0, ushift← JA(N + 1)− JA(1).

3. When solving 1.1 by iterative methods like SSOR, independent access to the
diagonal, lower triangular and upper triangular parts of A is required. These
components are easily accessible in our data structure but may be somewhat
more complicated and expensive with other sparse storage schemes.

4. It is often convenient to view A as a bordered matrix of the form

A =

(
Ā c
rt d

)
where Ā is an (N − 1) × (N − 1) matrix, c and r are N − 1 vectors and d
is a scalar. In some applications Ā is “fixed” while c, r and d may change,
requiring an update of the numeric factorization. Since the nonzeros of c and
r are stored in consecutive locations in U , the factorization is easy to update.

Our data structure for storing the factored matrix U , is analogous to the real
array A. The diagonal elements of D are stored first, followed by the strictly upper
triangular part of U , stored column-wise. For nonsymmetric problems, this is followed
by the strictly lower triangular part of L, stored row-wise. The diagonal elements of
U and L are unity and therefore not stored. As we will see in the next section, an
analogue for the complete integer data structure JA is not required.

3. A Sparse Gaussian Elimination Procedure. Let G = (V,E) denote the
ordered, undirected graph corresponding to the matrix A. V is the vertex set {vi}Ni=1,
and E is the edge set with eij(= eji) ∈ E if and only if |aij | + |aji| 6= 0, i 6= j. For
each vertex vi ∈ V , adjG(vi) = {k|eik ∈ E} is the index set of vertices adjacent to vi
in G.

Gaussian elimination on A corresponds to a sequence of elimination graphs Gi,
0 ≤ i ≤ N − 1, defined inductively as follows (with G0 ≡ G): to create Gi from Gi−1,
remove vi and all its incident edges from Gi−1, and add new edges as required to
pairwise connect all vertices in adjGi−1

(vi) (see [4, 5]).
Let F denote the set of edges added during the elimination process, and let

G′ = (V,E ∪ F). Gaussian elimination applied to G′ produces no additional fillin
edges. Thus the object of symbolic factorization in this context is to compute the set
E ∪ F .

Following Rose, Tarjan and Lueker [6], we define the function m(i), by

m(i) = min{k > i|k ∈ adjG′(vi)}, 1 ≤ i ≤ N − 1(3.1)

Note that m(i) can also be defined as min{k ∈ adjGi−1
(vi)}. The following character-

ization of the set E ∪ F , although not explicitly given in [6], is implicit in that work
(see lemma 5 of [6] and also [3, 4]).

Theorem 3.1. Let G = (V,E) be the ordered, undirected graph corresponding to
A, and let F denote the set of fillin edges generated by Gaussian elimination. Then
eij ∈ E ∪ F , i < j, if and only if

(i) eij ∈ E or

4

(ii) there exists a sequence (k1, k2...kp) such that
(a) k1 = `, kp = j, e`j ∈ E
(b) i = kq for some 2 ≤ q ≤ p− 1
(c) kq = m(kq−1), 2 ≤ q ≤ p

Theorem 3.1 and its variations form the basis of the optimal algorithms for com-
puting E ∪ F ; see [3, 4, 6] for several such algorithms.

Another optimal order algorithm for computing |U |, consistent with the storage
scheme described in Section 2, is presented below. The algorithm uses 3 integer arrays
– M of length N − 1, LIST of length N , and JU of length N + 1. The array JU is
not necessary for computing |E ∪F |, but plays an important role in the factorization
and solution steps based upon

procedure FILLIN(N, JA, JU,M,LIST)

1. M(i)← 0, 1 ≤ i ≤ N − 1
2. LIST (i)← 0, 1 ≤ i ≤ N
3. JU(1)← N + 1
4. for i← 1 to N
5. length← 0
6. LIST (i)← i
7. for j ← JA(i) to JA(i+ 1)− 1
8. k ← JA(j)
9. while LIST (k) = 0 do

10. LIST (k)← LIST (i)
12. LIST (i)← k
12. length← length+ 1
13. If M(k) = 0, then M(k)← i
14. k ←M(k)
15. JU(i+ 1)← JU(i) + length
16. k ← i
17. for j ← 1 to length+ 1
18. ksave← k
19. k ← LIST (k)
20. LIST (ksave)← 0

end FILLIN

Theorem 3.2. Procedure FILLIN correctly computes |E ∪F | in O(N + |E ∪F |)
time.

Proof. We show by induction that FILLIN correctly computes the set Si =
{k|m(k) = i} ; thus m(k) is computed correctly, and the correctness of the overall
procedure then follows from Theorem 3.1. The case i = 1 is trivial, we assume the
sets Sk, 1 ≤ k ≤ i− 1 have been correctly computed.

In processing column i, we start with the seed index, k ← JA(j), line 8, corre-
sponding to edges in E, and simply begin to apply Theorem 3.1 generate those edges
in F for this column. During this process we may encounter indices for which m(k)
has been previously defined. If an undefined value of m(k) is found, line 13, then we
set m(k) = i ; if m(k) < i, it would have been previously defined, and if m(k) > i, it
would violate the definition of m (equation (3.1)). Thus Si is correctly defined.

Each edge found is added to the linked list LIST , so edges are counted exactly
once. By setting LIST (i)← i on line 6, no edges eki with k > i will be found. Thus
LIST contains the row indices of the nonzero elements in column i of U (row i in
L) on completion of the loop beginning at line 7. The ”cleanup” loop (lines 16-20)

5

merely reinitializes the LIST array. The array JU contains pointers to U which are
analogous to the first N + 1 entries in JA.

As for the complexity, the two inner loops (lines 7-14 and 17-20) require O(1) work
for each found edge, and each edge in E ∪ F is found exactly once. The remaining
computations are obviously O(N).

4. Applications. Procedure FILLIN forms the basis for the numerical factor-
ization and solution steps in Gaussian elimination. The need for a separate symbolic
factorization routine is eliminated by embedding floating point matrix operations in-
volving U in the procedure. In this section, we consider several variations on the
procedure FILLIN .

4.1. Solution Step. First consider the solution phase from a given LDU factor-
ization. The strategy is to construct the relevant integer arrays while solving Ly = b.
These arrays may then be used in the solution of the triangular system, Ux = z. Since
the order of the elements in the triangular systems is arbitrary, the elements in U are
processed in the order in which they were created in procedure FILLIN . To solve
Ly = b for symmetric matrices, the cleanup loop (lines 16-20 in FILLIN) could be
replaced by:

16. k ← i
17. sum← 0
18. for j ← JU(i) to JU(i+ 1)− 1
19. ksave← k
20. k ← LIST (k)
21. LIST (ksave)← 0
22. sum← sum+ U(j)y(k)
23. y(i)← b(i)− sum
24. LIST (k)← 0

The solution of Ux = z follows the same general pattern except that the columns are
processed in the reverse order. This presents no difficulty since the arrays M and JU
have been previously computed. Finally, note that by adding the lshift and ushift
parameters as in procedure MULT , the same code can treat symmetric problems,
and nonsymmetric problems for A and At.

4.2. Numeric Factorization. We now consider the prototype elimination step
in the numerical factorization procedure. Let Ā denote the upper left k× k principal
submatrix of A and L̄D̄Ū denote its factorization. At the k+ 1-st step we inductively
factor the upper left (k + 1)× (k + 1) submatrix of A as(

Ā c
rt d

)
=

(
L̄ 0
r̄t 1

)(
D̄ 0
0 d̄

)(
Ū c̄
0 1

)
where

L̄D̄c̄ = c,

Ū tD̄r̄ = r,

d̄ = d− r̄tD̄c̄

Since L̄D̄Ū have previously been computed, this step requires the solution of at most
two lower triangular systems of equations. The vectors c̄ and r̄ are sparse, say with
p nonzeros. Note that the nonzeros of c and r are a subset of those in c̄ and r̄. Thus
the linear systems can be reduced to p× p lower triangular systems by deleting rows

6

and columns corresponding to zero elements in c̄ and r̄. These p × p subsystems
are solved by forward substitution, taking advantage of any structural zeros that
remain. The inner product used to compute d̄ is similarly reduced to length p, and
the multiplication by D̄ is easy to avoid using intermediate values generated in the
computation of c̄ and r̄.

To take advantage of the sparsity of these systems, the column indices associated
with r̄ and c̄ are first generated by FILLIN . The resulting list of indices, ORDER,
must be ordered in increasing k for the solution of the triangular systems. The
sorting procedure is quite simple since the lists of indices corresponding to each seed
index, k ← JA(i), are already sorted. The problem is thus one of merging a few
ordered lists. Furthermore, once an element common to both lists is encountered, the
remainder of both lists is identical (by Theorem 3.1) and the merging process can
be terminated. If ORDER contains p entries, the cost of this ordering is certainly
bounded by O(p log p), the cost of sorting a set of p completely unordered indices.
This cost is usually much less than the cost of the numerical computations. Since
LIST is unordered with respect to the nonzeros in U , an additional vector, INDEX,
which points to the location in U of each element is required.

If the seed indices in JA are ordered by decreasing size, then the sorting at this
stage can be avoided entirely. To do this, one should process the seed indices in JA
in reverse order (i.e., by increasing size) and order the indices as they are generated.
This will not in general order all the indices by increasing size, but it will implicitly
produce a permutation under whose application the lower triangular matrix remains
lower triangular, and the forward substitution can proceed in the usual fashion.

The second step in the factorization procedure is to construct a linked list , LIST ,
of indices for each k < i on the list ORDER. In this process, only indices which lie
in the intersection of ORDER are needed. At the moment, we have no simple way
to avoid the computation of the entire linked list for each column k, and intersecting
it with that for column i. The intersection procedure itself is very efficient and can
be done in O(1) work per entry of LIST . On typical finite element pde problems,
between 50-60% of the row indices computed in this step are discarded. Since for this
class of problems, the percentage seems to remain bounded independent of N , the
order of complexity of the numerical factorization is unimpaired. However, since this
computation contributes to the highest order term, it has significant impact on the
overall performance of the algorithm. At present, we have no meaningful theoretical
bound on the non-numerical complexity of this step, and this remains the weakest
aspect of our procedure.

The numerical factorization requires 5 integer arrays – M , LIST and JU as in
FILLIN , plus ORDER and INDEX as described above. Both these arrays are of
length N , so that a total of 5N temporary integer storage is used.

4.3. Incomplete Factorization. The procedure FILLIN can be adapted in
a simple way to compute storage for incomplete LDU factorizations to be used as
preconditioned iterative methods for solving (1.1). In particular, an incomplete LDU
factorization can be computed simply by limiting the length of the sequences generated
by the seed indices. For example, if the length is bounded by one, only the seed indices
themselves are allowed, and the sparsity pattern is the same as for A. If the length
is bounded by two, k and m(k) are allowed for each seed index k. This corresponds
to allowing one extra level of fillin in the incomplete factorization. In general, if the
length is bounded by p, then a maximum of p − 1 extra levels of fillin are allowed.
If there is a constraint on total storage, this procedure could be used in an iterative

7

fashion to determine the maximum fillin level, p, that could be accommodated. All the
results of this section carry over transparently to the case of incomplete factorizations.

4.4. Symbolic Factorization. The algorithms presented in the proceeding sec-
tions are designed to minimize the storage requirements of sparse Gaussian elimination
methods. However, it may be desirable to trade space for time by allowing some per-
manent integer storage. One must be cautious in this approach, since the advantage
of our scheme may be diluted if this storage is comparable to standard compressed
storage schemes [3].

One possibility is to define an integer data structure JL, of length N +1+η, (the
same length as JA) as follows:

JL(i) = m(i), 1 ≤ i ≤ N − 1,
JL(k − 1) = starting index in U of seed JA(k), N + 2 ≤ k ≤ N + 1 + η.
JL(N + 1 + η) = 1+ ending index in U of seed JA(N + 1 + η).

Once generated, JL eliminates the need for the M , LIST , and JU arrays in subse-
quent calculations, and its creation can be regarded as a symbolic factorization. In
many problems, there is little or no storage penalty except that now the storage is
permanent rather than temporary. For 5 point finite difference matrices, JL is about
3N in length, as is the combined storage of M , LIST and JU . In the numerical
factorization, only one additional array of length N , INDEX, is required. The use
of the JL array is illustrated in the algorithm for solving Ly = b

procedure LSOLV E(N, JA, JL,U, y, b)
1. for i← 1 to N
2. sum← 0
3. for j ← JA(i) to JA(i+ 1)− 1
4. k ← JA(j)
5. for l← JL(j − 1) to JL(j)− 1
6. sum← sum+ U(l)y(k)
7. k ← JL(k)
8. y(i)← b(i)− sum

end LSOLV E
The order of complexity of LSOLV E is obviously the same as in the previous

example, but the non-numerical overhead is reduced. At present, the compromise
between storage and computational efficiency is still an open question and deserves
further study.

Appendix: Sample fortran program. This appendix contains three sample
fortran routines for sparse Gaussian elimination. To illustrate the algorithms pre-
sented in this paper, we assume the arrays JA and A have been reordered to reflect
an appropriate choice of the permutation matrix P . Furthermore, the row indices
for each column in JA are given in descending order, to avoid sorting in the numer-
ical factorization step. Subroutine FILLIN computes the JL array as described in
section 4.4. Subroutine FACTOR computes the numerical factorization. Subroutine
SOLVE performs the forward and backward substitution.

subroutine FILLIN (n, ja, jl, list)

integer ja(*), jl(*), list(*), uptr

c

c compute jl

c

c input: n, ja

8

c output: jl

c workspace: list(n)

c

c remarks:

c

c 1. for convenience, jl(n) is the size of the strict

c upper triangular part of the factored matrix

c

c 2. the row indices for each column in ja are assumed

c to be in decreasing order

c

c initialize

c

do 10 i = 1, n

jl(i) = 0

10 list(i) = 0

c

c the main loop

c

jl(n+1) = n + 2

do 50 i = 1, n

if (ja(i) .ge. ja(i+1)) go to 50

c

c loop over seed indices in decreasing order

c

list(i) = i

length = 1

do 30 iseed = ja(i), ja(i+1)-1

k = ja(iseed)

uptr = jl(iseed-1)

20 list(k) = list(i)

list(i) = k

uptr = uptr + 1

length = length + 1

if (jl(k) .eq. 0) jl(k) = i

k = jl(k)

if (list(k) .eq. 0) go to 20

30 jl(iseed) = uptr

c

c clean up loop for list array

c

k = i

do 40 j = 1, length

ksave = k

k = list(k)

40 list(ksave) = 0

50 continue

c

c compute size of upper triangle

9

c

lenjl = n + 1 + ja(n+1) - ja(1)

jl(n) = jl(lenjl) - jl(n+1)

return

end

subroutine FACTOR (n, isym, ja, a, jl, u, index, ierr)

integer ja(*), jl(*), index(*), ashift, ushift

real a(*), u(*), dsum, usum, lsum

c

c compute u

c

c input: n, isym, ja, a, jl

c output: u, ierr

c workspace: index(n)

c

c remarks:

c

c 1. isym = 0 means nonsymmetric storage for a and u

c isym = 1 means symmetric storage for a and u

c

c 2. ierr = 0 is a normal return

c ierr = i means the i-th diagonal element of the

c factored matrix was zero

c

c 3. for symmetric matrices, the computation of lsum in the

c do 60 loop, and the computation of u(indexk+ushift) in

c the do 80 loop are redundant

c

ierr = 0

c

c compute offsets for a and u

c

if (isym .eq. 1) then

ashift = 0

ushift = 0

lenu = n + 1 + jl(n)

else

ashift = ja(n+1) - ja(1)

ushift = jl(n)

lenu = n + 1 + 2 * jl(n)

end if

c

c initialize

c

do 10 i = 1, lenu

10 u(i) = 0.0e0

do 20 i = 1, n

20 index(i) = 0

10

c

c the main loop

c

do 100 i = 1, n

dsum = 0.0e0

if (ja(i) .ge. ja(i+1)) go to 90

c

c loop over seed indices for column i in increasing order

c

do 60 iseed = ja(i+1)-1, ja(i), -1

k = ja(iseed)

c

c move off diagonal entries from a to u

c

u(jl(iseed-1)) = a(iseed)

u(jl(iseed-1)+ushift) = a(iseed+ashift)

c

do 50 indexk = jl(iseed-1), jl(iseed)-1

index(k) = indexk

if (ja(k) .ge. ja(k+1)) go to 50

lsum = u(indexk+ushift)

usum = u(indexk)

c

c loop over seed indices for column k in decreasing order

c

do 40 kseed = ja(k), ja(k+1)-1

j = ja(kseed)

do 30 indexj = jl(kseed-1), jl(kseed)-1

c

c test for intersection between columns i and k

c

if (index(j) .gt. 0) then

lsum = lsum - u(indexj) * u(index(j)+ushift)

usum = usum - u(indexj+ushift) * u(index(j))

end if

c

30 j = jl(j)

40 continue

u(indexk+ushift) = lsum

u(indexk) = usum

50 k = jl(k)

60 continue

c

c clean up loop for index array, compute diagonal

c

do 80 iseed = ja(i), ja(i+1)-1

k = ja(iseed)

do 70 indexk = jl(iseed-1), jl(iseed)-1

c

11

usave = u(indexk+ushift)

u(indexk) = u(indexk) * u(k)

u(indexk+ushift) = usave * u(k)

dsum = dsum + u(indexk) * usave

index(k) = 0

c

70 k = jl(k)

80 continue

c

90 u(i) = a(i) - dsum

if (u(i) .eq. 0.0e0) go to 200

u(i) = 1.0e0 / u(i)

100 continue

return

c

c error return

c

200 ierr = i

return

end

subroutine SOLVE (n, isym, ja, jl, u, x, b)

integer ja(*), jl(*), ushift, lshift

real u(*), x(*), b(*)

c

c compute the solution x of a * x = b

c

c input: n, isym, ja, jl, u, b

c output: x

c

c remark: isym = 1 means symmetric storage is used for u

c isym = 0 means nonsymmetric storage is used for u

c isym = -1 means nonsymmetric storage is used, and the

c problem is to be solved with the transpose of a

c

c compute offsets for u

c

if (isym .eq. 0) then

lshift = jl(n)

else

lshift = 0

end if

if (isym .eq. -1) then

ushift = jl(n)

else

ushift = 0

end if

c

c lower triangular system

12

c

do 30 i = 1, n

sum = 0.0e0

if (ja(i) .ge. ja(i+1)) go to 30

do 20 iseed = ja(i), ja(i+1)-1

k = ja(iseed)

do 10 j = jl(iseed-1), jl(iseed)-1

sum = sum + u(j+lshift) * x(k)

10 k = jl(k)

20 continue

30 x(i) = b(i) - sum

c

c diagonal system

c

do 40 i = 1, n

40 x(i) = u(i) * x(i)

c

c upper triangular system

c

do 70 i = n, 1, -1

if (ja(i) .ge. ja(i+1)) go to 70

do 60 iseed = ja(i), ja(i+1)-1

k = ja(iseed)

do 50 j = jl(iseed-1), jl(iseed)-1

x(k) = x(k) - u(j+ushift) * x(i)

50 k = jl(k)

60 continue

70 continue

return

end

REFERENCES

[1] R. E. Bank, W. M. Coughran, W. Fichtner, E. H. Grosse, and R. K. Smith, Transient
simulation of silicon devices and circuits, IEEE Trans. on Electron Devices, ED-32 (1985),
pp. 1992–2005.

[2] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale sparse matrix
package I: The symmetric codes, Internat. J. Numer. Meth. Engrg., 18 (1982), pp. 1145–
1151.

[3] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman, Algorithms and data structures for sparse
symmetric Gaussian elimination, SIAM J. Sci. Stat. Comput., 2 (1982), pp. 225–237.

[4] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice
Hall, Englewood Cliffs, NJ, 1981.

[5] D. J. Rose, A graph theoretic study of the numeric solution of sparse positive definite systems,
in Graph Theory and Computing, Academic Press, New York, 1972.

[6] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 226–283.

13

