Math 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment \#9
Due Wednesday, November 29, 2017

Exercise 9.1. In this problem, we will (approximately) analyze the SSOR iteration in the tridiagonal case. Let T and M be $N \times N$ tridiagonal matrices with $T_{i i}=a, T_{i+1 i}=T_{i-1 i}=b$, $M_{i i}=c$, and $M_{i+1 i}=M_{i-1 i}=d$.
a. Consider the matrix $G=I-M^{-1} T$. Show that the eigenvalues and eigenvectors of G satisfy

$$
(M-T) x=\lambda M x
$$

b. Next show the eigenvalues satisfy

$$
\lambda=1-\frac{a+2 b \cos \theta}{c+2 d \cos \theta}
$$

where $\theta=k \pi /(N+1), 1 \leq k \leq N$. (For this use Exercise 8.1b).
c. Let $a=2, b=-1$, and $T=D-L-L^{t}$. The SSOR matrix is

$$
M=\omega^{-1}(2-\omega)^{-1}(D-\omega L) D^{-1}\left(D-\omega L^{t}\right)
$$

By direct computation, show M is tridiagonal with constant diagonals, except for M_{11}.
d. Approximating M by a tridiagonal matrix with constant diagonals, compute the (approximate) eigenvalues of G for the case $\omega=1$ using part b. In particular, by finding the largest eigenvalue, show that the rate of convergence is $1-\beta h^{2}$ where $h=1 /(N+1)$ and $\beta=O(1)$.
e. The best value of ω is known to be of the form $2-\alpha h$. For $\omega=2-\alpha h$, show the rate of convergence is $1-\hat{\beta} h$. As above, we will approximate M by a tridiagonal matrix with constant diagonals. The algebra can then be simplified by using the identity $1-\cos \theta=2 \sin ^{2}(\theta / 2)$ and first showing that

$$
\lambda=1-\frac{\omega(2-\omega) 8 \sin ^{2}(\theta / 2)}{(2-\omega)^{2}+\omega 8 \sin ^{2}(\theta / 2)}
$$

(you must derive this expression for yourself). Then substitute $\omega=2-\alpha h$, and find the largest eigenvalue with respect to θ.

