Math 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment \#8
Due Wednesday, November 22, 2017

Exercise 8.1. Let T by an $N \times N$ constant coefficient tridiagonal matrix with $T_{i i}=a$ and $T_{i+1 i}=T_{i-1 i}=b$.
a. Show by direct substitution that the eigenvalues of T are given by

$$
\lambda_{k}=a+2 * b \cos \left(\frac{k \pi}{N+1}\right)
$$

and corresponding (normalized) eigenvectors ψ_{k} given by

$$
\psi_{k}=\sqrt{\frac{2}{N+1}}\left(\begin{array}{c}
\sin \left(\frac{k \pi}{N+1}\right) \\
\sin \left(\frac{2 k \pi}{N+1}\right) \\
\sin \left(\frac{3 k \pi}{N+1}\right) \\
\vdots \\
\sin \left(\frac{N k \pi}{N+1}\right)
\end{array}\right)
$$

b. Using part a, verify the decomposition

$$
T=Q \Lambda Q
$$

where Q is a symmetric, orthogonal matrix with columns ψ_{k}, and Λ is a diagonal matrix with $\Lambda_{k k}=\lambda_{k}$. The orthogonal matrix Q is sometimes called the discrete sine transform.

Exercise 8.2. Let T be the $N \times N$ tridiagonal matrix with $T_{i i}=2$ and $T_{i i-1}=T_{i i+1}=-1$, and consider the solution of $T x=b$. Let $T=D-L-L^{t}$, where D is diagonal and L is strictly lower triangular.
a. Compute the spectral radius of the Jacobi iteration

$$
D x_{k}=\left(L+L^{t}\right) x_{k-1}+b
$$

b. Now consider the Gauss-Seidel method

$$
(D-L) x_{k}=L^{t} x_{k-1}+b
$$

Compute the spectral radius of the Gauss-Seidel iteration matrix. To do this, first reduce the problem to showing that the spectral radius is the largest value of λ such that

$$
\operatorname{Det}\left(\lambda D-\lambda L-L^{t}\right)=\operatorname{Det}(\hat{T})=0
$$

Next, symmetrize \hat{T} using a diagonal similarity transformation $\bar{T}=S \hat{T} S^{-1}$. Finally, diagonalize \bar{T} using the matrix Q above, $\Sigma=Q^{t} \bar{T} Q$.

Exercise 8.3. Compute work estimates for solving $T x=b$ by the Jacobi and Gauss-Seidel methods, starting from an initial guess $x_{0}=0$ and reducing the initial error by 10^{-6}. Here T is a the symmetric $N \times N$ tridiagonal matrix with $T_{i i}=2$, and $T_{i i-1}=T_{i i+1}=-1$.

