Math 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment \#7
Due Wednesday, November 15, 2017

Exercise 7.1. Let A be symmetric, positive definite, with a nonzero structure given by

$$
\left(\begin{array}{llllll}
x & x & & x & & x \\
x & x & & & x & \\
& & x & & x & x \\
x & & & x & & \\
& x & x & & x & \\
x & & x & & & x
\end{array}\right)
$$

a. Compute the $J A / A$ data structures for A.
b. Find the graph of A.
c. Compute the sequence of elimination graphs corresponding to the factorization $A=$ $L D L^{t}$.

Exercise 7.2. A tree is an acyclic connected graph. Show the following simple properties of trees:
a. The path between any two vertices in a tree is unique.
b. A tree with n vertices has exactly $n-1$ edges.
c. A tree has at least one vertex of degree one (called a leaf).

Exercise 7.3. Let M be a symmetric, positive definite matrix whose graph is a tree.
a. Show the graph of a tridiagonal matrix is a tree.
b. Show the graph of an arrow matrix is a tree.
c. Prove that any symmetric, positive definite matrix whose graph is a tree can be factored as $P M P^{t}=L D L^{t}$ without fill-in.

Exercise 7.4. Let A be an $n \times n$ symmetric, positive definite matrix with nonzeros $a_{i, i}$, $1 \leq i \leq n, a_{i, i+1}=a_{i+1, i}, 1 \leq i \leq n-1$, and $a_{1, n}=a_{n, 1}$ (A is tridiagonal with two extra "corner" elements).
a. Find the graph of A.
b. Show the fill-in for any ordering of A must be $n-3$ edges.

