MATH 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment #7 Due Wednesday, November 15, 2017

Exercise 7.1. Let A be symmetric, positive definite, with a nonzero structure given by

$\int x$	x		x		x
x	x			x	
		x		x	x
x			x		
	x	x		x	
$\backslash x$		x			x

- a. Compute the JA/A data structures for A.
- b. Find the graph of A.
- c. Compute the sequence of elimination graphs corresponding to the factorization $A = LDL^t$.

Exercise 7.2. A *tree* is an acyclic connected graph. Show the following simple properties of trees:

- a. The path between any two vertices in a tree is unique.
- b. A tree with n vertices has exactly n-1 edges.
- c. A tree has at least one vertex of degree one (called a *leaf*).

Exercise 7.3. Let M be a symmetric, positive definite matrix whose graph is a tree.

- a. Show the graph of a tridiagonal matrix is a tree.
- b. Show the graph of an arrow matrix is a tree.
- c. Prove that any symmetric, positive definite matrix whose graph is a tree can be factored as $PMP^t = LDL^t$ without fill-in.

Exercise 7.4. Let A be an $n \times n$ symmetric, positive definite matrix with nonzeros $a_{i,i}$, $1 \leq i \leq n$, $a_{i,i+1} = a_{i+1,i}$, $1 \leq i \leq n-1$, and $a_{1,n} = a_{n,1}$ (A is tridiagonal with two extra "corner" elements).

- a. Find the graph of A.
- b. Show the fill-in for any ordering of A must be n-3 edges.