Math 270a: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment \#5
Due Wednesday, November 1, 2017

Exercise 5.1. Let

$$
v=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \quad \text { and } \quad w=\binom{3}{1}
$$

Let $A=v w^{t}$ be a 3×2 matrix of rank 1 .
a. Compute the generalized inverse A^{\dagger} by computing the generalized inverses of the rank 1 matrices v and w^{t}.
b. Compute the singular value decomposition $A=Q \Lambda \hat{Q}$.
c. Compute the generalized inverse A^{\dagger} using the inverses of Q and \hat{Q} and the generalized inverse of Λ.
Exercise 5.2. A monic polynomial is one whose highest degree term has coefficient 1. Thus

$$
p(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}
$$

is monic. With the monic polynomial p, we associate the $n \times n$ companion matrix A defined by

$$
A=\left(\begin{array}{ccccc}
1 & & & \\
& & 1 & & \\
& & & \ddots & \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right)
$$

The empty spaces are zeroes. Notice that A has the coefficients of $-p$ in the last row. The diagonal of ones is not the main diagonal but rather the elements $A_{k, k+1}, 1 \leq k \leq n-1$. Prove (by induction, using expansion by minors) that $\operatorname{det}(I \lambda-A)=p(\lambda)$. Thus the zeroes of p are the eigenvalues of A.

Exercise 5.3. Let A be an $N \times N$ real matrix with a complex conjugate pair of eigenvalues $\alpha \pm i \beta$ and corresponding eigenvectors $x \pm i y$. Verify that span $\{x, y\}$ is an invariant subspace of A.
Exercise 5.4. A be and $N \times N$ real matrix. Prove there exists an orthogonal matrix Q such that $A=Q T Q^{t}$, where T is a real block upper triangular matrix with 1×1 and 2×2 diagonal blocks, and each 2×2 block corresponds to a pair of complex conjugate eigenvalues. Hint: use induction. We need 2 base cases: 1×1 and 2×2. The induction step also has two cases. The 1×1 case is similar to the proof given is class. The 2×2 case makes use of the previous exercise.

