MATH 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment #4 Due Wednesday, October 25, 2017

Exercise 4.1. Let $x, y \in \Re^n$, with $||x||_2 = ||y||_2 > 0$. Find a Householder transformation $Q = I - 2qq^t$ such that Qx = y.

Exercise 4.2. Let

$$A = \begin{pmatrix} 1 & 1/2 & 2\\ \sqrt{2} & -\sqrt{2}/2 & \sqrt{2}\\ 1 & -3/2 & 4 \end{pmatrix}$$

Compute the factorization A = QR where Q is orthogonal and R is upper triangular in two ways:

- a. Use three plane rotations.
- b. Use two Householder transformations.

In both cases, compute the transformations such that the diagonal entries of R will be positive, and form the matrix Q as the product of the elementary transformations.

Exercise 4.3. These questions refer to an orthogonal *projector* from \Re^n to a subspace $\mathcal{S} \subset \Re^n$.

1. Let P be a projector. Prove that for any $x \in \Re^n$

$$\|x\|_{2}^{2} = \|Px\|_{2}^{2} + \|(I-P)x\|_{2}^{2}.$$

- 2. Let P be a projector. Show $P = UU^t$, where the columns of U are orthogonal.
- 3. Let P be a projector. Show $P^2 = P$ (P is *idempotent*).
- 4. Prove if A has linearly independent columns, then $A(A^tA)^{-1}A^t$ is the projector onto Range(A).

Exercise 4.4. The classical and modified Gram-Schmidt algorithms are identical as far as the first two orthogonal vectors q_1 and q_2 are concerned, so any example which illustrates their differences must have at least 3 vectors. Let $v_1 = (1, \delta, 0, 0)^t$, $v_2 = (1, 0, \delta, 0)^t$, and $v_3 = (1, 0, 0, \delta)^t$, where $|\delta| \ll 1$. Note that these vectors are nearly linearly dependent. Suppose that δ is so small that $\delta^2 < \epsilon$, where ϵ is the unit roundoff (machine epsilon) on whatever computer is being used. Then $f\ell(1 + \delta^2) = 1$.

- **a.** Compute the vectors q_1 , q_2 and q_3 by the classical Gram-Schmidt process, making the approximation that $1 + \delta^2 \approx 1$. Next compute the inner products (q_1, q_2) , (q_1, q_3) , and (q_2, q_3) . Note that the computed q_2 and q_3 satisfy $(q_2, q_3) = 1/2$; thus they are far from orthogonal.
- **b.** Now compute the vectors q_1 , q_2 and q_3 by the modified Gram-Schmidt process, again making the approximation that $1 + \delta^2 \approx 1$, and then compute the inner products $(q_1, q_2), (q_1, q_3)$, and (q_2, q_3) . Note that the modified Gram-Schmidt process has done a reasonable job of producing a set of orthonormal vectors.