Math 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment \#4
Due Wednesday, October 25, 2017

Exercise 4.1. Let $x, y \in \Re^{n}$, with $\|x\|_{2}=\|y\|_{2}>0$. Find a Householder transformation $Q=I-2 q q^{t}$ such that $Q x=y$.

Exercise 4.2. Let

$$
A=\left(\begin{array}{ccc}
1 & 1 / 2 & 2 \\
\sqrt{2} & -\sqrt{2} / 2 & \sqrt{2} \\
1 & -3 / 2 & 4
\end{array}\right)
$$

Compute the factorization $A=Q R$ where Q is orthogonal and R is upper triangular in two ways:
a. Use three plane rotations.
b. Use two Householder transformations.

In both cases, compute the transformations such that the diagonal entries of R will be positive, and form the matrix Q as the product of the elementary transformations.

Exercise 4.3. These questions refer to an orthogonal projector from \Re^{n} to a subspace $\mathcal{S} \subset \Re^{n}$.

1. Let P be a projector. Prove that for any $x \in \Re^{n}$

$$
\|x\|_{2}^{2}=\|P x\|_{2}^{2}+\|(I-P) x\|_{2}^{2} .
$$

2. Let P be a projector. Show $P=U U^{t}$, where the columns of U are orthogonal.
3. Let P be a projector. Show $P^{2}=P(P$ is idempotent $)$.
4. Prove if A has linearly independent columns, then $A\left(A^{t} A\right)^{-1} A^{t}$ is the projector onto Range (A).

Exercise 4.4. The classical and modified Gram-Schmidt algorithms are identical as far as the first two orthogonal vectors q_{1} and q_{2} are concerned, so any example which illustrates their differences must have at least 3 vectors. Let $v_{1}=(1, \delta, 0,0)^{t}, v_{2}=(1,0, \delta, 0)^{t}$, and $v_{3}=(1,0,0, \delta)^{t}$, where $|\delta| \ll 1$. Note that these vectors are nearly linearly dependent. Suppose that δ is so small that $\delta^{2}<\epsilon$, where ϵ is the unit roundoff (machine epsilon) on whatever computer is being used. Then $f \ell\left(1+\delta^{2}\right)=1$.
a. Compute the vectors q_{1}, q_{2} and q_{3} by the classical Gram-Schmidt process, making the approximation that $1+\delta^{2} \approx 1$. Next compute the inner products $\left(q_{1}, q_{2}\right),\left(q_{1}, q_{3}\right)$, and $\left(q_{2}, q_{3}\right)$. Note that the computed q_{2} and q_{3} satisfy $\left(q_{2}, q_{3}\right)=1 / 2$; thus they are far from orthogonal.
b. Now compute the vectors q_{1}, q_{2} and q_{3} by the modified Gram-Schmidt process, again making the approximation that $1+\delta^{2} \approx 1$, and then compute the inner products $\left(q_{1}, q_{2}\right),\left(q_{1}, q_{3}\right)$, and $\left(q_{2}, q_{3}\right)$. Note that the modified Gram-Schmidt process has done a reasonable job of producing a set of orthonormal vectors.

