Math 270a: Numerical Linear Algebra

Instructor: Randolph E. Bank
Fall Quarter 2017
Homework Assignment \#2
Due Wednesday, October 11, 2017

Exercise 2.1. Let A be an $n \times n$ nonsingular matrix. Prove $P A=L D U$, where P is a permutation matrix, L is unit lower triangular, D is diagonal and U is unit upper triangular.

Exercise 2.2. Let A be an $n \times n$ symmetric, positive definite matrix and consider the partition

$$
A=\left(\begin{array}{ll}
\alpha & c^{t} \\
c & B
\end{array}\right)
$$

where α is a scalar and B is $n-1 \times n-1$. Prove the $n-1 \times n-1$ matrix

$$
S=B-\frac{c c^{t}}{\alpha}
$$

is also symmetric positive definite.
Exercise 2.3. Let A be an $n \times n$ symmetric positive definite matrix. Prove $A=L D L^{t}$, where L is unit lower triangular and D is diagonal with positive diagonal entries. (Hint: use Exercise 2.2 and induction.)

Exercise 2.4. Let A be an $n \times n$ symmetric positive definite matrix. Prove $A=L L^{t}$, where L is lower triangular with positive diagonal entries. This factorization is called the Cholesky factorization.

Exercise 2.5. Let A be an $n \times n$ symmetric, positive definite matrix, and consider the partition

$$
A=\left(\begin{array}{ll}
B & c \\
c^{t} & \alpha
\end{array}\right)
$$

where B is $n-1 \times n-1$ and α is a scalar. Let B have the decomposition $B=\bar{L} \bar{D} \bar{L}^{t}$. Use this decomposition to compute the $L D L^{t}$ decomposition of A. This is another variant of Gaussian elimination called bordering.

