Math 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment \#1
Due Wednesday October 4, 2017

Exercise 1.1. Let $\|\cdot\|$ be any vector norm and $A \in \Re^{m \times n}$. For $x \in \Re^{n}$, let $\|x\|_{A}=\|A x\|$.
a. Prove $\|x\|_{A}$ is a seminorm.
b. Prove if $\operatorname{Rank}(A)=n$, then $\|x\|_{A}$ is a norm.

Exercise 1.2. Let $A \in \Re^{n \times n}$ be symmetric and positive definite. For $x, y \in \Re^{n}$, let $(x, y)_{A}=x^{t} A y$. Prove $(\cdot, \cdot)_{A}$ is an inner product.

Exercise 1.3. Let V be a vector space with inner product (x, y) for $x, y \in V$. For $x \in V$, define $\|x\| \equiv \sqrt{(x, x)}$. Prove $\|\cdot\|$ is a norm.

Exercise 1.4. Let $A \in \Re^{m \times n}$. Prove:

$$
\begin{aligned}
& \|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|A_{i j}\right| \\
& \|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|A_{i j}\right|
\end{aligned}
$$

Exercise 1.5. Show that for a given norm, $\operatorname{Cond}(A B) \leq \operatorname{Cond}(A) \operatorname{Cond}(B)$, and that $\operatorname{Cond}(\alpha A)=\operatorname{Cond}(A)$ for all nonzero α.

Exercise 1.6. Try this computer exercise using Matlab. The Hilbert matrix H of order n is defined by

$$
H_{i j}=\int_{0}^{1} x^{i-1} x^{j-1} d x=\frac{1}{i+j-1}
$$

This matrix is the mass matrix or gram matrix for the monic polynomials $x^{k}, 0 \leq k \leq n-1$. It is easy to see that H is symmetric and positive definite. In particular, for $v \neq 0$,

$$
v^{t} H v=\int_{0}^{1} p(x)^{2} d x>0
$$

where

$$
p(x)=\sum_{i=1}^{n} v_{i} x^{i-1}
$$

Clearly $p(x) \equiv 0$ if and only if $v=0$. For $n=3, n=6, n=9$ and $n=12$, make the following computations with the Hilbert matrix (in Matlab, try the command $H=\operatorname{hilb}(n)$ to generate the matrix).
a. Form the vector $b=H e$, where $e^{t}=[1,1, \ldots, 1]$.
b. Solve the linear system $H x=b$. Compare the vectors e and x, which should be equal in exact arithmetic.
c. Compute the condition number of H.
d. Explain the observed behavior.

