MATH 270A: Numerical Linear Algebra

Instructor: Randolph E. Bank

Fall Quarter 2017

Homework Assignment #1 Due Wednesday October 4, 2017

Exercise 1.1. Let $\|\cdot\|$ be any vector norm and $A \in \Re^{m \times n}$. For $x \in \Re^n$, let $\|x\|_A = \|Ax\|$.

- **a.** Prove $||x||_A$ is a seminorm.
- **b.** Prove if Rank(A) = n, then $||x||_A$ is a norm.

Exercise 1.2. Let $A \in \Re^{n \times n}$ be symmetric and positive definite. For $x, y \in \Re^n$, let $(x, y)_A = x^t A y$. Prove $(\cdot, \cdot)_A$ is an inner product.

Exercise 1.3. Let V be a vector space with inner product (x, y) for $x, y \in V$. For $x \in V$, define $||x|| \equiv \sqrt{(x, x)}$. Prove $|| \cdot ||$ is a norm.

Exercise 1.4. Let $A \in \Re^{m \times n}$. Prove:

$$\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |A_{ij}|$$
$$\|A\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |A_{ij}|$$

Exercise 1.5. Show that for a given norm, $Cond(AB) \leq Cond(A)Cond(B)$, and that $Cond(\alpha A) = Cond(A)$ for all nonzero α .

Exercise 1.6. Try this computer exercise using Matlab. The *Hilbert matrix* H of order n is defined by

$$H_{ij} = \int_0^1 x^{i-1} x^{j-1} \, dx = \frac{1}{i+j-1}$$

This matrix is the mass matrix or gram matrix for the monic polynomials x^k , $0 \le k \le n-1$. It is easy to see that H is symmetric and positive definite. In particular, for $v \ne 0$,

$$v^t H v = \int_0^1 p(x)^2 \, dx > 0$$

where

$$p(x) = \sum_{i=1}^{n} v_i x^{i-1}$$

Clearly $p(x) \equiv 0$ if and only if v = 0. For n = 3, n = 6, n = 9 and n = 12, make the following computations with the Hilbert matrix (in Matlab, try the command H = hilb(n) to generate the matrix).

- **a.** Form the vector b = He, where $e^t = [1, 1, ..., 1]$.
- **b.** Solve the linear system Hx = b. Compare the vectors e and x, which should be equal in exact arithmetic.
- **c.** Compute the condition number of H.
- ${\bf d.}$ Explain the observed behavior.