
AN ANALYSIS OF THE COMPOSITE STEP BICONJUGATE
GRADIENT METHOD

RANDOLPH E. BANK∗ AND TONY F. CHAN†

Abstract. The composite step biconjugate gradient method (CSBCG) is a simple modification
of the standard biconjugate gradient algorithm (BCG) which smooths the sometimes erratic con-
vergence of BCG by computing only a subset of the iterates. We show that 2 × 2 composite steps
can cure breakdowns in the biconjugate gradient method caused by (near) singularity of principal
submatrices of the tridiagonal matrix generated by the underlying Lanczos process. We also prove
a “best approximation” result for the method. Some numerical illustrations showing the effect of
roundoff error are given.

Key words. Biconjugate Gradients, Nonsymmetric Linear Systems.

AMS subject classifications. 65N20, 65F10

1. Introduction. In this paper, we give an analysis of the composite step bi-
conjugate gradient (CSBCG) method, for solving linear systems of the form

Ax = r(1)

where A is a large, sparse, nonsymmetric and indefinite, but nonsingular matrix. The
CSBCG method was introduced in [4] as a method for improving the performance of
the biconjugate gradient (BCG) method.

As is well known [29], [24], [23], [21], [11], [17], [15], [16], the BCG method can
suffer from two sources of failure, both of which can be traced to the underlying Lanc-
zos process. One type, which we call Lanczos breakdown, is caused by a breakdown of
the underlying Lanczos process. The other type of failure, which we call pivot break-
down, is simply due to the fact that the BCG method implicitly computes and uses
the LDU factorization of an indefinite tridiagonal matrix arising from the underlying
Lanczos process. Since no pivoting is used, there is the possibility of encountering
small or zero pivots in this factorization. The use of small pivots often appears as
apparently erratic convergence of the method. When a small pivot is encountered,
typically the residual norm will increase by a large amount on one iteration, only to
be reduced by a similar amount on the next step, creating a “spike” in the conver-
gence history. Such spikes can cause large cancellation errors and render the method
numerically unstable. In looking at such convergence histories, often littered with
many such spikes, it is clear that simply using 2× 2 updates to reduce the number of
these spikes should go a long way towards stabilizing the behavior of the method. It
is in fact this observation which forms the basis of the CSBCG method.

The CSBCG method is just a simple algebraic modification of the regular BCG
method which allows one to proceed from an iterate xk to the iterate xk+2 without

∗ Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA.
E-mail: rbank@ucsd.edu. The work of this author was supported by the Office of Naval Research
under contract N00014-89J-1440.
† Department of Mathematics, University of California at Los Angeles, Los Angeles, California

90024, USA. E-mail: chan@math.ucla.edu. The work of this author was supported by the Office of
Naval Research under contracts N00014-90-J-1695 and N00014-92-J-1890, the Department of Energy
under contract DE-FG03-87ER25307, the National Science Foundation under contracts ASC 90-
03002 and ASC 92-01266, and the Army Research Office under contract DAAL03-91-G-0150. Part
of this work was completed during a visit to the Computer Science Dept., The Chinese University of
Hong Kong.

1

explicitly computing xk+1 (or the residual rk+1). We show that the use of composite
steps of size 2 is sufficient to prevent pivot breakdowns, assuming that the underlying
Lanczos process doesn’t breakdown. The cost is negligible; 2×2 composite steps cost
about twice as much as 1× 1 steps, which are in turn essentially the same as steps in
the regular BCG method.

There have been several related approaches proposed in the literature to tackle
the various breakdowns of BCG. In the symmetric indefinite case, Fletcher [9] gave a
similar composite step method, although the actual stepping formulas differ in details
from ours even in this case. Also, the SYMMLQ method of Paige and Saunders [22]
eliminates pivot breakdowns by using an orthogonal factorization method to solve
and update the solution of the tridiagonal systems generated by the Lanczos pro-
cess. It should be noted that in the symmetric case, Lanczos breakdowns can be
avoided altogether, and therefore CSBCG is guaranteed not to breakdown (in ex-
act arithmetic) and can be considered as an alternative to SYMMLQ. For general
nonsymmetric matrices, Saad [25] proposed using Gaussian elimination with partial
pivoting explicitly on the Lanczos tridiagonal matrices. More recently, Freund and
Nachtigal [13] proposed the QMR method which eliminates the pivot breakdowns
by a “quasi-minimization” principle. Although the QMR method produces iterates
which are generally different from the BCG iterates, it can be viewed as an alterna-
tive method for stabilizing the BCG method. In [16], Gutknecht suggests another
alternative (unnormalized BioRes) based on using a three term recurrence which can
also overcome this type of breakdown.

Lanczos breakdowns are much more difficult to eliminate. Recently, there have
been a lot of work on the nature of the Lanczos breakdown [23], [17], [15], as well
as various look-ahead techniques for remedying it [13], [24], [21], [12], [18], [11], [17],
[15], [5], [6]. However, the resulting algorithm is usually much more complicated than
the BCG method and still not able to eliminate breakdowns that require look-ahead
steps with arbitrary size (incurable breakdowns).

Here is an outline of our paper. In Section 2, we consider the factorization of
general nonsingular tridiagonal matrices. There we show that such matrices can
successfully be factored without pivoting if one allows the occasional use of 2 × 2
pivots. This becomes the theoretical basis of the composite step method. In Section 3
we derive the CSBCG method from the underlying nonsymmetric Lanczos process.
Under the assumption that there is no failure of the Lanczos process, we see that the
use of 2 × 2 pivots or composite steps solves the problem of small or zero pivots in
the BCG method.

In Section 4, we present an analysis of the convergence of the CSBCG method.
With minor modification, our theorems can also be applied to the regular BCG
method. The theory applies for systems of the form (1) and allows general nonsingu-
lar preconditioners. The only assumption is that the underlying Lanczos process does
not breakdown. We show that the CSBCG method produces iterates that are within
a fixed constant factor of being optimal within the Krylov subspace, a so-called “best
approximation” result. The key to our analysis is the use of the Babuška-Brezzi inf-
sup condition. Using this condition, the convergence behavior of the CSBCG method
can be analyzed in a fashion analogous to the convergence of Petrov-Galerkin finite
element methods [1]. In fact, the analysis is easier in the present case because all the
spaces involved are of finite dimension.

To our knowledge, this is the first “best approximation” convergence result to
be given for the BCG method [11]. When specialized to the symmetric case, it is

2

similar in content, but not quite as sharp, as the well-known convergence results for
the conjugate gradient method [8]. One interesting point is that in the symmetric
case, our theory includes the case of a symmetric indefinite matrix preconditioned by
a symmetric indefinite matrix (as opposed to a symmetric positive definite precondi-
tioner).

It is important to emphasize that mathematically, the CSBCG method is re-
ally a relatively simple modification of the regular BCG method which allows the
computation of a subset of the iterates. In exact arithmetic, it perhaps should not
be regarded so much as a “new” algorithm as an interesting variant of an old one.
On the other hand, smoothing the convergence history through the reduction of the
number of spikes is practically a very desirable improvement in the procedure. In
Section 5, we present three of many possible implementations of the CSBCG method.
These three differ in their choice of the basis vectors for the two dimensional spaces
used for the 2 × 2 composite steps. We also discuss how we decide between taking
a regular or a composite step. In Section 6, we present some numerical examples
indicating the influence of roundoff error on the BCG and composite step methods.
Interestingly, while all three variants are identical mathematically, they often exhibit
different convergence histories when applied to the same problem. Practically, details
of implementation appear to be rather critical with respect to roundoff error. Trying
to determine the best (or a least a very good) implementation with respect to roundoff
from a large number of reasonable choices is an area of current interest for us.

2. The Factorization of a Tridiagonal Matrix. In this section we analyze the
possible breakdown in the factorization without pivoting of an nonsingular tridiagonal
matrix, and show how the problem can be corrected by the occasional use of 2 × 2
block pivots. This idea is similar to one used by Bunch [7] for the case of symmetric
indefinite matrices. Most of the analysis is elementary, and is included mainly for
completeness.

Let Tn be the n× n nonsingular tridiagonal matrix given by

Tn =

α1 β1

γ1 α2 β2

. . .
. . .

. . .

γn−2 αn−1 βn−1

γn−1 αn

 .(2)

Theorem 2.1. Let Tk, 1 ≤ k ≤ n be the upper left principal submatrices of
a nonsingular tridiagonal matrix Tn as in (2). Then Tk−1 and Tk cannot both be
singular.

Proof. let

ρk = Det(Tk)

for 1 ≤ k ≤ n. It is easy to check [29], using expansion by minors, that the ρk’s satisfy
the well known recurrence relation

ρk = αkρk−1 − βk−1γk−1ρk−2

for 1 ≤ k ≤ n, with the conventions ρ−1 = 0, ρ0 = β0 = γ0 = 1. If ρk−2 = ρk−1 = 0,
then ρk = ρk+1 = · · · = ρn = 0, contradicting the supposed nonsingularity of Tn.
The main result in this section is:

3

Theorem 2.2. Let Tn be the nonsingular tridiagonal matrix given in (2). Then
Tn can be factored as

Tn = LnDnUn(3)

where Ln is unit lower block bidiagonal, Un is unit upper block bidiagonal, and Dn is
block diagonal, with 1× 1 and 2× 2 diagonal blocks.

Proof. Theorems related to Theorem 2.2 appear in Bunch [7] and Gutknecht [15].
The proof is by induction. The cases n = 1 and n = 2 are clear. There are two
possibilities for the induction step. First, suppose α1 6= 0. Then one has

Tn =

[
1 0

cn−1 In−1

] [
α1 0
0 Tn−1

] [
1 rtn−1

0 In−1

]
where

ctn−1 = [γ1/α1 0 . . . 0]

rtn−1 = [β1/α1 0 . . . 0]

and

Tn−1 =

α2 − β1γ1

α1
β2

γ2 α3 β3

. . .
. . .

. . .

γn−2 αn−1 βn−1

γn−1 αn

 .

Since Det(Tn) = α1 · Det(Tn−1), Tn−1 is nonsingular and the induction hypothesis
yields

Tn−1 = Ln−1Dn−1Un−1

and it follows that

Tn =

[
1 0

cn−1 Ln−1

] [
α1 0
0 Dn−1

] [
1 rtn−1

0 Un−1

]
.

On the other hand, suppose that α1 = 0. Then γ1β1 6= 0; otherwise, Tn would be
singular. In this case we can use a 2× 2 pivot and factor Tn as

Tn =

[
I2 0

Cn−2 In−2

] [
D2 0
0 Tn−2

] [
I2 Rtn−2

0 In−2

]
where

D2 =

[
α1 β1

γ1 α2

]
Ctn−2 = D−t2

[
0 0 . . . 0
γ2 0 . . . 0

]
Rtn−2 = D−1

2

[
0 0 . . . 0
β2 0 . . . 0

]
4

and

Tn−2 =

α3 − β2γ2α1

α1α2−γ1β1
β3

γ3 α4 β4

. . .
. . .

. . .

γn−2 αn−1 βn−1

γn−1 αn

 .

We have included terms with α1 to illustrate its impact when α1 is “small” but
nonzero. In any event, Det(Tn) = Det(D2) ·Det(Tn−2), so Tn−2 is nonsingular and
it follows from the induction hypothesis that

Tn−2 = Ln−2Dn−2Un−2

and

Tn =

[
I2 0

Cn−2 Ln−2

] [
D2 0
0 Dn−2

] [
I2 Rtn−2

0 Un−2

]
.

Corollary 2.3. Suppose Tn is singular, but Tn−1 is nonsingular. Then

Tn = LnDnUn(4)

where Ln is unit lower block bidiagonal, Un is unit upper block bidiagonal, and Dn is
block diagonal, with 1× 1 and 2× 2 diagonal blocks, and in particular, the last block
of Dn is the 1× 1 zero matrix.

Proof. We know that Tn−1 = Ln−1Dn−1Un−1 by Theorem 2.2. Thus

Tn =

[
Tn−1 βn−1en−1

γn−1e
t
n−1 αn

]
=

[
Ln−1 0
rtn−1 1

] [
Dn−1 0

0 dn

] [
Un−1 cn−1

0 1

]
where

U tn−1D
t
n−1rn−1 = γn−1en−1

Ln−1Dn−1cn−1 = βn−1en−1

dn = αn − rtn−1Dn−1cn−1

= αn − βn−1γn−1e
t
n−1T

−1
n−1en−1.

Since Tn is singular, 0 = Det(Tn) = Det(Dn) = Det(Dn−1)dn. Since Det(Dn−1) 6= 0,
it follows that dn = 0.

In the biconjugate gradient method, one does not have the complete matrix Tn
given a priori; rather, it is (implicitly) computed in bordered form and simultaneously
factored. Only the most current part of the factorization is on hand, as earlier parts
are discarded (overwritten) when they are no longer needed (see Sec. 3). Corollary
2.3 insures that if Tk is singular, it can still be factored, and we can recognize its
singularity by examining only the last diagonal entry (and potential next pivot) dk.
If dk = 0, then we can “wait” until the bordering (Lanczos) process provides the last
row and column of Tk+1, knowing that the 2× 2 block[

dk βk
γk αk+1

]
5

will be nonsingular (by Theorem 2.2) and can be used as a 2× 2 pivot.
We next prove a technical result concerning a special choice of the γk’s in Tn

which leads to a particularly simple form of Ln. We will use this result in Section 3
to make the connection between the Lanczos procedure and the BCG algorithm.

Corollary 2.4. Let Tk denote the upper left principal submatrix of order k of
Tn. Suppose that for those values of k for which Tk is nonsingular, the subdiagonal
entry γk of Tn satisfies

γk = −(etkT
−1
k e1)−1.(5)

Then the diagonal blocks of Ln are either 1 × 1 or 2 × 2 identity matrices and the
subdiagonal blocks have the forms[

−1
]
,

[
−1
0

]
,
[
−1 dk/γk

]
,

[
−1 dk/γk
0 0

]
.(6)

Proof. We shall only give a sketch the proof, which is based on induction. First
note, that for those values of k for which Tk is nonsingular, by Theorem 2.2 we have
the factorization Tk = LkDkUk where Dk is nonsingular. The case of the first matrix
(L1 or L2 depending on whether the first block is 1× 1 or 2× 2) trivially satisfies the
corollary. We thus assume Tk is nonsingular, with Lk having subdiagonal blocks of
the form (6). We must show that if γk satisfies (5), then the next nonzero subdiagonal
block in Lk+1 (or Lk+2) has one of the forms given in (6).

First, it is easy to check that the vector hk satisfying Lkhk = e1 has blocks of
the form [1] and [1 0]t; note in particular that the entries dj/γj in any 1× 2 or 2× 2
subdiagonal blocks of Lk have no influence on hk. Since etkU

−1
k = etk, (5) reduces to

one of the forms

γk = −dk

γk = −

{
[0 1]

[
dk−1 βk−1

γk−1 αk

]−1 [
1
0

]}−1

= (dk−1αk − βk−1γk−1)/γk−1

depending on whether the last diagonal block in Tk was 1× 1 or 2× 2. Then we have
the factorization

Tk+1 =

[
Tk βkek
γke

t
k αk+1

]
=

[
Lk 0
rtk 1

] [
Dk 0
0 dk+1

] [
Uk ck
0 1

]
where rtkDkUk = γke

t
k, LkDkck = βkek, and dk+1 = αk+1 − rtkDkck. Note that this

factorization exists even if Tk+1 is singular, by Corollary 2.3. In any event, it follows
that

rtk = γke
t
kU
−1
k D−1

k

= γke
t
kD
−1
k .

Thus the nonzeroes in rk must have one of the forms[
−1

]
,
[
−1 dk−1/γk−1

]
6

depending again on whether the last block of Tk is 1× 1 or 2× 2.
We remark that the condition dk = 0 forces a 2 × 2 step, but we have explicitly

included dk in the subdiagonal blocks to indicate what happens if a 2 × 2 step is
chosen when dk is small but nonzero. In such cases, we need not assume γk satisfies
(5), even though Tk is formally nonsingular.

3. The Preconditioned Biconjugate Gradient Algorithm in Relation to
the Lanczos Algorithm. In this section, we develop the preconditioned composite
step biconjugate gradient method (CSBCG) from the underlying Lanczos process.
The Lanczos process and biconjugate gradient method are described in detail in [29],
[11] [25], [17], [15], [16], and elsewhere. Our treatment here was inspired by the
analysis given in Paige and Saunders [22] for the symmetric indefinite case.

We consider the solution of the problems

Ax = r0(7)

Atx̃ = r̃0(8)

by a preconditioned version of the biconjugate gradient method. Here A is an n× n
nonsingular matrix. Our real interest is in the solution of (7), but the system (8) is
also solved as a byproduct of the biconjugate gradient method. Implicitly we assume
x0 = x̃0 = 0.

Let

Vk = [v1 v2 · · · vk]

Wk = [w1 w2 · · ·wk]

be n× k matrices, k ≤ n, of rank k. We seek an approximate solution to (7) (respec-
tively (8)) in the subspaces spanned by the columns of Vk (respectively Wk) using the
Galerkin equations

W t
kAVkuk = W t

kr0(9)

V tkA
tWkũk = V tk r̃0(10)

and setting

xk = Vkuk(11)

x̃k = Wkũk(12)

When A is symmetric, positive definite and one chooses r0 = r̃0, and Vk = Wk,
then the Galerkin equations (9)-(10) and (11)-(12) become equivalent, and can be
found by formally minimizing the functional

f(uk) = (AVkuk − r0)tA−1(AVkuk − r0).

Let B be an n × n nonsingular preconditioner for A; in this derivation we are
not assuming that B is necessarily symmetric, positive definite. The Krylov subspace
corresponding to Vk is generated by the Lanczos process

v0 = 0

Bv1 = r0(13)

γjBvj+1 = Avj − αjBvj − βj−1Bvj−1

7

for j = 1, 2, . . ., and that corresponding to Wk is generated by

w0 = 0

Btw1 = r̃0(14)

γjB
twj+1 = Atwj − αjBtwj − βj−1B

twj−1

The normalization constant γ0 = 1; the γj for j ≥ 1 are nonzero scalars specified
later. The scalars αj βj for j ≥ 1 are defined by

αj =
wtjAvj

wtjBvj

βj = γj
wtj+1Bvj+1

wtjBvj
,

and are chosen so that Vk and Wk are biorthogonal in the sense that

W t
kBVk = Λk(15)

where Λk is a nonsingular diagonal matrix. For completeness, we set β0 = 1. Note that
the assumption that the Lanczos process does not fail is equivalent to the assumption
that Λk is nonsingular.

Rearranging (13) and (14), we have

AVk = BVk+1Tk+1Ek(16)

AtWk = BtWk+1Tk+1Ek(17)

where Tk is the k × k tridiagonal matrix

Tk =

α1 β1

γ1 α2 β2

. . .
. . .

. . .

γk−2 αk−1 βk−1

γk−1 αk

and Ek is the k + 1× k matrix

Ek =

[
Ik
0

]
and Ik is the k × k identity matrix.

From (16) and (17), it follows that

W t
kAVk = W t

kBVk+1Tk+1Ek

= ΛkTk

and similarly that

V tkA
TWk = ΛkTk.

From this it follows that the matrix ΛkTk is symmetric. Moreover, from Theorem 2.2
and Corollary 2.3, Tk can be factored as Tk = LkDkUk, where Lk is unit lower block

8

bidiagonal, Uk is unit upper block bidiagonal, and Dk is block diagonal with either
1 × 1 or 2 × 2 diagonal blocks. This factorization is defined as long as the Lanczos
process is well defined, even if Tk happens to be singular. From this factorization and
the fact that ΛkTk is symmetric, one can easily derive that ΛkTk has a triangular
factorization given by

ΛkTk = U tk (ΛkDk)Uk(18)

where U tk = ΛkLkΛ−1
k , and ΛkDk is symmetric and block diagonal.

We now define the sequences of direction vectors pk and p̃k by

Pk = [p1 p2 · · · pk]

= VkU
−1
k ,(19)

P̃k = [p̃1 p̃2 · · · p̃k]

= WkU
−1
k .(20)

Suppose that Tk is nonsingular. Then, from (9) and (10), we have Tkuk = e1.
Similarly, Tkũk = e1. Thus

xk = Vkuk

= VkT
−1
k e1

= PkD
−1
k L−1

k e1

= Pkck

x̃k = Wkũk

= WkT
−1
k e1

= P̃kck

where ck = D−1
k L−1

k e1.
We now derive the standard equations for the biconjugate gradient method. When

Tk is nonsingular, we define γk by (recall that γk was left arbitrary in (13) and (14))

γk = −(etkT
−1
k e1)−1.

Note that for this choice of γk, the structure of the lower triangular matrices Lk is
given by Corollary 2.4; in particular, all nonzero off diagonal elements of Lk which
are actually needed for the CSBCG algorithm are equal to −1.

Then

rk = r0 −Axk
= r0 −AVkuk
= r0 −BVk+1Tk+1Ekuk

= (r0 −BVke1)− (γke
t
kuk)Bvk+1

= −(γke
t
kT
−1
k e1)Bvk+1

= Bvk+1.

Similarly, we have

r̃k = r̃0 −Atx̃k
= Btwk+1,

9

showing that the Lanczos vectors are the preconditioned residuals. Thus we define

Rk = [r0 r1 · · · rk−1]

= BVk(21)

R̃k = [r̃0 r̃1 · · · r̃k−1]

= BtWk.(22)

Notice using (21)-(22) that the left and right “residuals” are defined even for iteration
steps for which Tk is singular, although the scaling is arbitrary for those steps.

From (15), we see that

W t
kRk = R̃tkVk = R̃tkB

−1Rk = Λk.(23)

Next note that, by using (18),

P̃ tkAPk = U−tk W t
kAVkU

−1
k

= U−tk ΛkTkU
−1
k(24)

= ΛkDk

showing the direction vectors are biconjugate. If all blocks are 1× 1, this is just the
usual relationship. If some blocks are 2×2, direction vectors corresponding to a 2×2
subspace are not biconjugate to each other. However, the biconjugate relationship is
maintained at the subspace level. Note that ΛkDk is symmetric.

The basic Lanczos iteration summarized in (16) may be rewritten in terms of the
residuals and direction vectors as

APkUk = Rk+1Tk+1Ek.(25)

We now assume that the lower right block of Tk+1 is 1 × 1. If it remains a 1 × 1
block or becomes the first member of a 2× 2 block in Tk+2, then the residual rk will
be updated on this step. Otherwise, if the lower right block of Tk+1 is 2 × 2, then
the residual will not be updated on this step by the biconjugate gradient method.
For steps when the residual is updated, the lower right block of Dk+1 is 1× 1, Dk is
nonsingular, and Dk+1Uk+1Ek = EkDkUk. Thus (25) can be written

APkD
−1
k = Rk+1Lk+1Ek.(26)

Similarly, from (17),

AtP̃kD
−1
k = R̃k+1Lk+1Ek.(27)

We also have from (19)-(20)

PkUk = B−1Rk,(28)

P̃kUk = B−tR̃k.(29)

Equations (26, 27) give the updates of rk and r̃k in the BCG algorithm in terms
of the entries in Dk and Lk+1. whereas equations (28), 29) give the updates for pk
and p̃k in terms of the entries of Uk. We next derive the inner product relationships
for computing these entries. Using (23)-(24), (28)-(29) and (18), we have

Uk = (P̃ tkAPk)−1
{
P̃ tkA(B−1Rk)

}
= (P̃ tkAPk)−1

{
P tkA

t(B−tR̃k)
}

(30)

= Λ−1
k LtkΛk

10

and from (23)-(24) and (26)-(27)

Λk = P tkR̃kLk = P̃ tkRkLk = R̃tkB
−1Rk.(31)

Equation (31) can be combined with (24) to obtain

D−1
k = (P̃ tkAPk)−1

{
P tkR̃kLk

}
= (P̃ tkAPk)−1

{
P̃ tkRkLk

}
(32)

= (P̃ tkAPk)−1
{
R̃tkB

−1Rk

}
.

The coefficients for the residual updates in (26)-(27) can be obtained from one of
the possibilities given in (32). Possibilities for computing coefficients for the direction
vector updates in (28)-(29) are given in in the first two lines of (30). One can also
obtain these coefficients as ratios of diagonal elements in Λk, using the last line of
(30) with some form of (31).

4. A Best Approximation Result. In this section, we prove a best approx-
imation result for the composite step biconjugate gradient method. Our analysis is
based on the the Lax-Milgram Theorem as developed by Babuška and Aziz in [1].

Let Vk = span〈v1, v2, . . . , vk〉 and Wk = span〈w1, w2, . . . , wk〉 denote the Krylov
subspaces generated by the Lanczos method in (13) and (14) respectively. Let

|||v|||2r = vtMrv(33)

|||w|||2` = wtM`w

where Mr and M` are symmetric and positive definite, denote the (possibly different)
norms associated with Vn ≡ Rn and Wn ≡ Rn. As in the other sections, we consider
the solution of (7).

Theorem 4.1. Suppose that for all v ∈ Vn and for all w ∈ Wn, we have

|wtAv| ≤ Γ|||v|||r|||w|||`,(34)

where Γ is a constant independent of v and w. Further, suppose that for those steps in
the composite step biconjugate gradient method in which we compute an approximation
xk, we have

inf
v ∈ Vk
|||v|||r = 1

sup
w ∈ Wk

|||w|||` ≤ 1

wtAv ≥ δk ≥ δ > 0(35)

Then

|||x− xk|||r ≤ (1 + Γ/δ) inf
v∈Vk

|||x− v|||r.(36)

Proof. Our proof is a simplified (and specialized) version of arguments used in
proving Theorems 5.2.1 and 6.2.1 in [1]. Inequality (35) is the famous Babuška-Brezzi
inf-sup condition as it applies to the current situation.

From the Galerkin equation (9) we have for w ∈ Wk,

wtA(x− xk) = 0.(37)

11

Let v ∈ Vk be arbitrary. Then from (37)

wtA(xk − v) = wtA(x− v)(38)

for all w ∈ Wk. We now take the sup of both sides of (38) for all |||w|||` ≤ 1. We
use (35) to bound the left hand side, noting xk − v ∈ Vk, and (34) to bound the right
hand side. Thus we obtain

δk|||xk − v|||r ≤ Γ|||x− v|||r.(39)

Using the triangle inequality and (39) we obtain

|||x− xk|||r ≤ |||x− v|||r + |||xk − v|||r ≤ (1 + Γ/δ)|||x− v|||r.(40)

Since v ∈ Vk in (40) is arbitrary, (36) follows immediately.
Corollary 4.2. Let (34) and (35) hold. Then

|||x̃− x̃k|||` ≤ (1 + Γ/δ) inf
w∈Wk

|||x̃− w|||`.(41)

Proof. The proof is analogous to the proof of Theorem 4.1.
Equation (34) is a standard continuity assumption for the linear operator A. The

inf-sup condition (35) asserts the nonsingularity of A for the case k = n, and of ΛkTk
for those steps in which we solve for an approximate solution xk. If v ∈ Vk, then
v = Vkv̂ for some v̂ ∈ Rk. Similarly, w = Wkŵ for for some ŵ ∈ Rk. We define
T̂k = ΛkTk. Then for this v and w,

wtAv = ŵtW t
kAVkv̂ = ŵtT̂kv̂

so that (35) could be formulated directly in terms of T̂k, although it is less convenient
for the proof.

The inf-sup condition gives a lower bound on the (generalized) singular values
of A and its restrictions to the subspaces Vk and Wk. To see this, we first consider
the case k = n for simplicity. A straightforward calculation shows that δn is a lower
bound on the generalized eigenvalues for

AtM−1
` Av = λ2Mrv(42)

or, equivalently,

AM−1
r Atw = λ2M`w.(43)

If k < n, a similar calculation shows δk is a lower bound for the eigenvalues of

T̂k(W t
kM`Wk)−1T̂kv̂ = λ2(V tkMrVk) v̂(44)

and

T̂k(V tkMrVk)−1T̂kŵ = λ2(W t
kM`Wk) ŵ.(45)

Finally, the continuity condition (34) gives an upper bound on the eigenvalues in
(42)-(43) (and (44)-(45) as well).

When A is symmetric and positive definite, a natural choice for Mr and M` is
Mr = M` = A. Then one has trivially Γ = δ = 1. Estimate (36) is not sharp for this

12

case (but only by a factor of 2), as it does not make use of the additional minimization
property present when A is symmetric and positive definite.

For the case of general nonsymmetric and indefinite A, the situation is less clear.
For any choice of Mr, we can take M` = AM−1

r At. This yields Γ = δn = 1, but
not necessarily simple estimates for δk for k < n. An obvious example of this type is
Mr = (AtA)1/2 and M` = (AAt)1/2. A potentially better choice is

Mr = BtWnΛ−1
n U tn(D̂2

n)1/2UnΛ−1
n W t

nB(46)

M` = BVnΛ−1
n U tn(D̂2

n)1/2UnΛ−1
n V tnB

t,

where D̂n = ΛnDn. With these definitions, Γ = δk = 1 for all k for which xk
is defined. Therefore, in these two norms, each iterate xk computed by CSBCG is
“optimal” to within a factor of 2 in error. Note that

A = BVnΛ−1
n T̂nΛ−1

n W t
nB

so that when A and B are symmetric and positive definite, and Vn = Wn as in the
conjugate gradient method, we have Mr = M` = A.

Let ek = x− xk and ẽk = x̃− x̃k denote the error. Then standard manipulations
[8] show that

ek = Pk(B−1A)e0(47)

where Pk is a polynomial of degree k such that Pk(0) = 1. An immediate consequence
of Theorem 4.1 is

Theorem 4.3. Let ek = x− xk as above. Then

|||ek|||r ≤ (1 + Γ/δ) inf
Pk

‖ Pk(M1/2
r B−1AM−1/2

r) ‖ |||e0|||r(48)

where the inf is taken over all polynomials of degree k such that Pk(0) = 1, and ‖ · ‖
is the usual `2 matrix norm.

Proof. Estimate (48) is an immediate consequence of Theorem 4.1 and (47).
Corollary 4.4. Let ẽk = x̃− x̃k as above. Then

|||ẽk|||` ≤ (1 + Γ/δ) inf
Pk

‖ Pk(M
1/2
` B−tAtM

−1/2
`) ‖ |||ẽ0|||`(49)

where the inf is taken over all polynomials of degree k such that Pk(0) = 1.
Proof. The proof is similar to Theorem 4.3.
It doesn’t seem possible to derive any simple estimates for the rate of convergence

without making further assumptions. For example, when A and B are symmetric and
positive definite and Mr = A, we must estimate ‖ Pk(A1/2B−1A1/2) ‖. The standard
approach is to use Chebyshev polynomials and bounds for the generalized Rayleigh
quotient ztAz/ztBz. This leads to the estimate

|||ek|||r ≤ 4

(√
K − 1√
K + 1

)k
|||e0|||r

where K is the (generalized) condition number of A1/2B−1A1/2. This is the standard
result [8], except for the factor 4, which is due to our use of Theorem 4.1.

13

For the general case, we note that

‖ Pk(M1/2
r B−1AM−1/2

r) ‖ = ‖M1/2
r Pk(B−1A)M−1/2

r ‖
= ‖ (M1/2

r Vn)Pk(Tn)(M1/2
r Vn)−1 ‖

giving some alternative formulations which might prove useful in obtaining bounds.
We note here the appearance of the nonsymmetric matrix Tn rather than the symmet-
ric matrix T̂n. For example, if the eigenvalues of Tn can be enclosed by an ellipse in
the complex plane which does not contain the origin, then an estimate for the rate of
convergence can again be made in terms scaled and translated Chebyshev polynomials
in the complex plane as in Manteuffel [19], [20].

Since Tn is real, its eigenvalues will be real or complex conjugate pairs. We assume
that all eigenvalues lie strictly in the right half of the complex plane, so that their
convex hull will not contain the origin. Suppose all the eigenvalues are enclosed in an
ellipse centered at the point d in the complex plane, with foci at d ± c. We assume
the ellipse does not contain the origin and that λ is an eigenvalue of Tn lying on the
boundary of the given ellipse. By symmetry, we may assume that d is real and that
c is either real or purely imaginary. Then Manteuffel’s estimates imply

|||ek|||r ≤ C
∣∣∣∣d− λ+ ((d− λ)2 − c2)1/2

d+ (d2 − c2)1/2

∣∣∣∣k |||e0|||r

where C is a constant independent of k. Manteuffel gives an algorithm for comput-
ing optimal choices of the parameters d and c from knowledge of the convex hull of
the spectrum of Tn. He used them as the basis of an adaptive Chebyshev acceler-
ation algorithm, whereas we require them for theoretical purposes only, to improve
our estimate for the rate of convergence of the composite step biconjugate gradient
method.

5. Implementation. In this section we consider some practical aspects of the
composite step biconjugate gradient algorithm. We assume that A, B, r0, r̃0, x0 = 0,
and x̃0 = 0 are given. An implementation of the composite step algorithm, based on

14

equations (26)-(29) is given by:

Algorithm CSBCG:
ψ0 =‖ r0 ‖
Bp1 = r0/ψ0; Btp̃1 = r̃0/ψ0

q1 = Ap1; q̃1 = Atp̃1

ρ1 = p̃t1r0

k ← 1
Begin LOOP:

σk = p̃tkqk
sk = σkrk−1 − ρkqk; s̃k = σkr̃k−1 − ρkq̃k
ξk =‖ sk ‖
Bzk+1 = sk/ξk; Btz̃k+1 = s̃k/ξk
yk+1 = Azk+1; ỹk+1 = Atz̃k+1

θk+1 = z̃tk+1sk
ζk+1 = z̃tk+1yk+1

If 1× 1 step, Then
αk = ρk/σk
ρk+1 = θk+1/σk
βk = ρk+1/ρk
xk = xk−1 + αkpk; x̃k = x̃k−1 + αkp̃k
rk = rk−1 − αkqk; r̃k = r̃k−1 − αkq̃k
ψk =‖ rk ‖
pk+1 = zk+1 + βkpk; p̃k+1 = z̃k+1 + βkp̃k
qk+1 = yk+1 + βkqk; q̃k+1 = ỹk+1 + βkq̃k
k ← k + 1

Else[
αk
αk+1

]
=

[
σk −θk+1/ρk

−θk+1/ρk ζk+1

]−1 [
ρk
0

]
xk+1 = xk−1 + αkpk + αk+1zk+1; x̃k+1 = x̃k−1 + αkp̃k + αk+1z̃k+1

rk+1 = rk−1 − αkqk − αk+1yk+1; r̃k+1 = r̃k−1 − αkq̃k − αk+1ỹk+1

ψk+1 =‖ rk+1 ‖
Bzk+2 = rk+1/ψk+1; Btz̃k+2 = r̃k+1/ψk+1

ρk+2 = z̃tk+2rk+1[
βk
βk+1

]
=

[
ρk+2/ρk

ρk+2σk/θk+1

]
pk+2 = zk+2 + βkpk + βk+1zk+1; p̃k+2 = z̃k+2 + βkp̃k + βk+1z̃k+1

qk+2 = Apk+2; q̃k+2 = Atp̃k+2

k ← k + 2
End If

End LOOP

At this point we make more precise the correspondence between the more abstract
matrix formulation of the CSBCG algorithm given in Section 3 and that given here.
For 2 × 2 steps, the two direction vectors used by CSBCG are pk and zk+1, (and
p̃k and z̃k+1) the current BCG direction vectors and the next Lanczos vectors. In
Section 3, it was more convenient to call them simply pk and pk+1 (respectively p̃k
and p̃k+1), but here that notation would lead to some confusion. Similarly, for 2× 2
steps, the two residual vectors in Rk are denoted sk and rk+1 rather than rk and rk+1,
and those in R̃k are denoted by s̃k and r̃k+1.

15

The residual update coefficients, denoted by αk here, are computed using the
third form of (32). These formulae are symmetrical with respect to their use of the
vectors corresponding to the systems for A and At, and reduce to the usual choices
for the regular conjugate gradient method when A and B are symmetric and r0 = r̃0.
For 1 × 1 steps, The diagonal block of P̃ tkAPk of (32) is given by σk here, and the

diagonal entry of R̃tkB
−1Rk = Λk in (32) is given by ρk.

For 2× 2 steps, the relevant 2× 2 block of P̃ tkAPk in (32) is given by[
p̃tkApk p̃tkAzk+1

z̃tk+1Apk z̃tk+1Azk+1

]
=

[
σk −θk+1/ρk

−θk+1/ρk ζk+1

]
.

The off diagonal entries of the 2× 2 block are computed using the identity

p̃tkAzk+1 = z̃tk+1Apk

= z̃tk+1qk

= −z̃tk+1(sk − σkrk−1)/ρk

= −θk/ρk.

. The relevant part of the diagonal matrix R̃tkB
−1Rk = Λk in (32) is given by[

r̃tk−1B
−1rk−1

s̃tkB
−1rk−1

]
=

[
ρk
0

]
.

The coefficients for the direction vector updates, here denoted by βk, are given
by the third form in (30), Uk = Λ−1

k LtkΛk; that is, as ratios of the diagonal elements
of Λk. As with the coefficients αk, these are symmetrical formulae which reduce to
the usual choice for the conjugate gradient algorithm in the symmetric case. For 2×2
steps we have [

βk
βk+1

]
=

[
ρk+2/ρk
ρk+2/ρk+1

]
where we have (formally) made the identification ρk+1 = θk+1/σk.

Note that the vectors sk, s̃k are scaled versions of rk, r̃k respectively (sk = σkrk
and s̃k = σkr̃k) when rk and r̃k are defined for the 1 × 1 update. Thus for 1 × 1
updates, these vectors could be computed from simple rescaling, rather than from
the more standard formulae given in algorithm CSBCG. Also note the nonstandard
update formulae for qk+1 and q̃k+1 for the case of a 1 × 1 step. These vectors are
updated by recurrence relations rather than the more standard qk+1 = Apk+1 in
order to save a matrix multiplication. Either yk+1 or ỹk+1 is required to compute
ζk+1, the (2, 2) element of the current 2 × 2 block. This element is typically needed
in the process of deciding whether to use a 1× 1 or 2× 2 update. Using a recurrence
relation for qk+1 and q̃k+1 allows us to recycle this matrix multiplication. Also note
that in this implementation, a 1 × 1 step requires one multiplication by A and one
by At, and one preconditioning by B and one by Bt. A 2 × 2 update requires two
of each of these matrix operations, and approximately twice as many inner products
and vector-scalar multiplications, so that the algorithm is balanced, in the sense that
a 2× 2 update costs approximately twice as much as a 1× 1 update. Thus there is no
significant efficiency advantage to be gained by chosing 1× 1 or 2× 2 steps. Finally,
we note that when A and B are symmetric, and r0 = r̃0, then, xk = x̃k, pk = p̃k,

16

etc., and algorithm CSBCG can be simplified to a composite step conjugate gradient
algorithm, saving about half of the computational work.

Before preconditioning, we scale the right hand sides such that the vector precon-
ditioned by B has unit length. We do this in a simple attempt to keep the components
of the direction vectors near the center of the floating point number range. The math-
ematical theory is clearly independent of such scalings.

We next consider the issue of deciding between 1×1 and 2×2 updates. Our goal
is to choose the step size which maximizes numerical stability. We have experimented
with several decision processes based on the sizes of the elements in the 2× 2 matrix[

σk −θk+1/ρk
−θk+1/ρk ζk+1

]
and deciding locally whether to choose the 1 × 1 pivot σk or to use the matrix itself
as a 2 × 2 pivot. Such schemes usually make reasonable decisions with respect to
the matrix factorization, but, based on our numerical experience, are somewhat less
satisfying with respect to the behavior of the CSBCG algorithm itself. Thus we are
led to develop a heuristic based on the magnitudes of the residuals. If the (potential)
residual from a 1× 1 update satisfies ‖ rk ‖≤‖ rk−1 ‖, then we choose a 1× 1 update.
Otherwise, we consider the (potential) residual rk+1 for a 2× 2 update, and choose a
2 × 2 update if ‖ rk+1 ‖<‖ rk ‖. We don’t directly compute rk and rk+1 but rather
scaled versions to guard against small pivots. Thus we have ‖ rk ‖ |σk| = ξk. ‖ rk+1 ‖
is not immediately available, but we compute (as necessary) a scaled version, where
the scaling factor is the determinant of the 2× 2 pivot. The following code fragment
implements our test:

If ξk ≤ ψk−1|σk|, Then
1× 1 Step

Else
δk = σkζk+1 − (θk+1/ρk)2

νk+1 =‖ δkrk−1 − ρkζk+1qk − θk+1yk+1 ‖
If νk+1|σk| ≤ ξk|δk|, Then

2× 2 Step
Else

1× 1 Step
End If

End If

This test mathematically simplifies to choosing a 2× 2 update when

‖ rk ‖> max {‖ rk−1 ‖, ‖ rk+1 ‖} .(50)

When (50) is satisfied, taking two 1× 1 steps would result in a “spike” in the conver-
gence history of the residual norm. By making a 2× 2 update in such circumstances,
we effectively cut off such spikes. We emphasize that CSBCG does not make the
residual norm decrease monotonically, i.e. it can’t eliminate all spikes, only those
that are due the small pivots in Tk.

A second implementation issue concerns the choice of basis vectors for the two
dimensional subspaces used in 2× 2 update steps. The “natural” choice is (pk, zk+1)
and (p̃k, z̃k+1) that we used in algorithm CSBCG. This basis consists of the k-th
direction vectors for the biconjugate gradient iteration, and the (k + 1)-st Lanczos

17

vectors. However, there is clearly a great deal of freedom is choosing the basis for
these spaces. One interesting class of basis vectors that we have considered are those
of the form (pk + τzk+1, zk+1 + ωpk) and (p̃k + τ z̃k+1, z̃k+1 + ωp̃k), where τ 6= ω−1

is chosen such that the resulting 2× 2 matrix in Algorithm CSBCG will be diagonal.
This requires that

(p̃k + τ z̃k+1)tA(zk+1 + ωpk) = τζk+1 + ωσk − (1 + τω)θk+1/ρk = 0

giving a one parameter family of basis vectors.
One member of this family corresponds to the choice τ = 0, ω = θk+1/(ρkσk).

For this choice, the basis vectors are (pk, pk+1) and (p̃k, p̃k+1), the direction vectors
for the standard biconjugate gradient method. Using this choice of basis vectors,
algorithm CSBCG becomes

Algorithm CSBCG/BCG:
ψ0 =‖ r0 ‖
Bp1 = r0/ψ0; Btp̃1 = r̃0/ψ0

q1 = Ap1; q̃1 = Atp̃1

ρ1 = p̃t1r0

k ← 1
Begin LOOP:

σk = p̃tkqk
sk = σkrk−1 − ρkqk; s̃k = σkr̃k−1 − ρkq̃k
ξk =‖ sk ‖
Bzk+1 = sk/ξk; Btz̃k+1 = s̃k/ξk
θk+1 = z̃tk+1sk
ρk+1 = θk+1/σk
βk = ρk+1/ρk
pk+1 = zk+1 + βkpk; p̃k+1 = z̃k+1 + βkp̃k
qk+1 = Apk+1; q̃k+1 = Atp̃k+1

If 1× 1 step, Then
αk = ρk/σk
xk = xk−1 + αkpk; x̃k = x̃k−1 + αkp̃k
rk = rk−1 − αkqk; r̃k = r̃k−1 − αkq̃k
ψk =‖ rk ‖
k ← k + 1

Else
σk+1 = p̃tk+1qk+1[

αk
αk+1

]
= σ−1

k

[
ρk

θk+1/σk+1

]
xk+1 = xk−1 + (αkpk + αk+1pk+1); x̃k+1 = x̃k−1 + (αkp̃k + αk+1p̃k+1)
rk+1 = rk−1 − (αkqk + αk+1qk+1); r̃k+1 = r̃k−1 − (αkq̃k + αk+1q̃k+1)
ψk+1 =‖ rk+1 ‖
Bzk+2 = rk+1/ψk+1; Btz̃k+2 = r̃k+1/ψk+1

ρk+2 = z̃tk+2rk+1

βk+1 = ρk+2/ρk+1

pk+2 = zk+2 + βk+1pk+1; p̃k+2 = z̃k+2 + βk+1p̃k+1

qk+2 = Apk+2; q̃k+2 = Atp̃k+2

k ← k + 2
End If

End LOOP

18

Initially, this may appear to be a poor choice. After all, pk+1 and p̃k+1 are com-
puted using the small pivot σk, and it is the division by σk we seek to avoid in making
a 2×2 update. Furthermore, since (50) is satisfied for a 2×2 update, there is certainly
strong cancellation in the computation of αkqk + αk+1qk+1 in the 2 × 2 update step
in algorithm CBBCG/BCG. At the moment we do not have a theoretical justification
for this choice, but can only say that despite our own misgivings, empirically it has
proven to be a very robust choice. We will present some evidence of this in the next
section. In any event, the simplifications afforded by this choice of basis vectors help
make clear the connection between the CSBCG method and the standard biconjugate
gradient method.

Another set of basis vectors corresponds to the choice ω = 0, τ = θk+1/(ρkζk+1).
We will call this the Look Ahead Lanczos basis. A version of algorithm CSBCG using
this basis is given below.

19

Algorithm CSBCG/LAL:
ψ0 =‖ r0 ‖
Bp1 = r0/ψ0; Btp̃1 = r̃0/ψ0

q1 = Ap1; q̃1 = Atp̃1

ρ1 = p̃t1r0

k ← 1
Begin LOOP:

σk = p̃tkqk
sk = σkrk−1 − ρkqk; s̃k = σkr̃k−1 − ρkq̃k
ξk =‖ sk ‖
Bzk+1 = sk/ξk; Btz̃k+1 = s̃k/ξk
yk+1 = Azk+1; ỹk+1 = Atz̃k+1

θk+1 = z̃tk+1sk
ζk+1 = z̃tk+1yk+1

If 1× 1 step, Then
αk = ρk/σk
ρk+1 = θk+1/σk
βk = ρk+1/ρk
xk = xk−1 + αkpk; x̃k = x̃k−1 + αkp̃k
rk = rk−1 − αkqk; r̃k = r̃k−1 − αkq̃k
ψk =‖ rk ‖
pk+1 = zk+1 + βkpk; p̃k+1 = z̃k+1 + βkp̃k
qk+1 = yk+1 + βkqk; q̃k+1 = ỹk+1 + βkq̃k
k ← k + 1

Else
τk+1 = θk+1/(ρkζk+1)

fk = pk + τk+1zk+1; f̃k = p̃k + τk+1z̃k+1

gk = qk + τk+1yk+1; g̃k = q̃k + τk+1ỹk+1

µk = f̃ tkgk
αk = ρk/µk
xk+1 = xk−1 + αkfk; x̃k+1 = x̃k−1 + αkf̃k
rk+1 = rk−1 − αkgk; r̃k+1 = r̃k−1 − αkg̃k
ψk+1 =‖ rk+1 ‖
Bzk+2 = rk+1/ψk+1; Btz̃k+2 = r̃k+1/ψk+1

ρk+2 = z̃tk+2rk+1[
βk
βk+1

]
=

[
ρk+2/ρk

ρk+2µk/θk+1

]
pk+2 = zk+2 + βkfk + βk+1zk+1; p̃k+2 = z̃k+2 + βkf̃k + βk+1z̃k+1

qk+2 = Apk+2; q̃k+2 = Atp̃k+2

k ← k + 2
End If

End LOOP

This choice has several interesting properties. First, for 2 × 2 update steps, the
residuals are updated using only one of the basis vectors. In some sense this minimizes
the potential for cancellation, in contrast to algorithm CSBCG/BCG. Also for this
choice, as well as other cases where pk and p̃k are not chosen as basis vectors, the
matrix ΛkTk in (18) becomes truly block tridiagonal, with an additional off diagonal

20

entry (bulge) in the second co-diagonal band to mark each 2 × 2 update. This is a
characteristic property of the Look Ahead Lanczos method, and helps make clear the
connection between CSBCG and the Look Ahead Lanczos process [24], [21], [12].

6. The Effect Of Roundoff Error. In this section, we will present a few
numerical results for the CSBCG methods discussed in Section 5. Here we will focus
mainly on one aspect of the numerical behavior, the properties of CSBCG with respect
to roundoff error. In exact arithmetic, CSBCG computes selected iterates of BCG and
hence has the same convergence rate as BCG. Several more general illustrations of
the effectiveness of the CSBCG method are given in [4]. In [27], biconjugate gradient
and many related methods [26], [28], [21], [11] [10], [12], [13] are compared on a series
of test problems.

All of our examples concern the model convection diffusion equation

−∆u+ βux = 1

in Ω = (0, 1) × (0, 1) with the Dirichlet boundary condition u = 0 on ∂Ω. This
problem is discretized on an adaptively created triangulation with 492 vertices [2]
using continuous piecewise linear finite elements and Petrov-Galerkin methods based
on the divergence-free upwinding scheme described in [3]. The standard nodal basis
functions were used for the finite element space. We consider the cases β = 10,
leading to a relatively easy problem, and β = 100, leading to a more difficult problem.
Although many good preconditioners are available for this problem, we used none
(B = I) because we are mainly interested in studying the effects of roundoff error.

For each problem (β = 10 and β = 100) we generated six different minimum
degree orderings [14] of the equations using the minimum degree routine from [2].
Because of the wide variety of tie breaking strategies and the nonuniqueness of a min-
imum degree ordering, a minimum degree code called with a minimum degree ordering
often won’t recognize it as such, but instead will return with a different minimum de-
gree ordering. This property was used to generate the six different orderings. One
linear system differs from another by a permutation make P which converts Ax = r
into (PAP t)(Px) = (Pr). Since B = I, such permutations can have no effect on the
preconditioning. The only significant effects are on the ordering of the calculations
in forming the products Av and Atṽ, and in the ordering of the sums in the inner
products used in computing parameters for the algorithms. To enhance the effect of
roundoff, all calculations were performed in single precision arithmetic, except where
otherwise noted. All calculations were done on a DECstation 5000/240 using the
standard F77 compiler.

We compared four different algorithms: the composite step methods CSBCG,
CSBCG/BCG, and CSBCG/LAL as given in Section 5, and the standard biconjugate
gradient method (BCG). The algorithm BCG was implemented using the same code
as for CSBCG/BCG, with the pivot test modified to always choose 1 × 1 update
steps. Mathematically, the three CSBCG variants should produce identical iterates,
and these should be a subset of the iterates produced by BCG. Any further differences
must therefore be attributed to roundoff.

We chose to measure error in the H1(Ω) norm, given by

‖ u ‖2H1=

∫
Ω

|∇u|2 + u2 dx.

If U ∈ Rn corresponds of the finite element function uh, then there is an n × n

21

(stiffness) matrix M such that∫
Ω

|∇uh|2 + u2
h dx = U tMU =‖ U ‖2M .

We begin with the initial conditions x0 = x̃0 = 0 and r0 = r̃0. We iterated either
200 steps (where a step could be either 1 × 1 or 2 × 2) or until the error xk − x∞
satisfied

‖ xk − x∞ ‖M≤ 10−4 ‖ x∞ ‖M .

We measured the number of correct digits by the formula

digits = − log10

{
‖ xk − x∞ ‖M
‖ x∞ ‖M

}
.(51)

In Table 1, we record the results for the case β = 10.

Table 1
Results for β = 10.

i BCG CSBCG CSBCG/BCG CSBCG/LAL
iterations digits iterations digits iterations digits iterations digits

1 41 4.48 23/9 4.48 23/9 4.48 23/9 4.48
2 32 4.48 23/9 4.43 23/9 4.48 23/9 4.48
3 32 4.48 23/9 4.48 23/9 4.48 23/9 4.48
4 32 4.48 23/9 4.48 23/9 4.48 23/9 4.48
5 32 4.48 23/9 4.48 23/9 4.47 23/9 4.47
6 32 4.48 23/9 4.48 23/9 4.48 23/9 4.48

The index i refers to different minimum degree orderings. For the composite step
methods, under the column labeled “iterations”, we record the total number of steps,
and the number of 2× 2 steps. In this example, all the composite step methods took
23 steps, of which 9 were 2 × 2 steps, for the equivalent of 23 + 9 = 32 steps of the
standard biconjugate gradient method.

There is really not much surprise in these results. All six problems were the same
system of equations up to the application of a permutation matrix. All methods did
approximately the same amount of computation and all obtained essentially the same
answers, the sole exception being the BCG method for the first ordering.

In Table 2, we present the results for the case β = 100, the more difficult problem.

Here we note that there are substantial differences in the behavior of the algo-
rithms. In the cases when an algorithm took 200 steps without satisfying (51), we
included, in parenthesis, the number of correct digits at the 200-th step. In these
cases, the procedure had stalled sometime before step 200, and was no longer making
significant progress towards a solution.

One rather striking feature of the results is the extent to which convergence de-
pends of the ordering of the equations. Different orderings introduce different roundoff
errors into the computation of inner products, which in turn influences the update
coefficients based on those inner products. This seems to have affected all the algo-
rithms.

22

Table 2
Results for β = 100.

i BCG CSBCG CSBCG/BCG CSBCG/LAL
iterations digits iterations digits iterations digits iterations digits

1 72 4.21 200/21 (2.97) 58/18 4.01 200/24 (1.49)
2 77 4.05 200/28 (0.89) 46/19 4.07 200/22 (1.38)
3 71 4.07 200/39 (-0.26) 56/24 4.26 200/17 (0.32)
4 96 4.11 71/26 4.04 92/31 4.12 200/17 (-1.53)
5 75 4.16 200/17 (-0.15) 54/17 4.11 200/25 (-1.02)
6 120 4.34 200/28 (-0.62) 54/20 4.15 200/9 (-1.78)

For this example, the standard BCG algorithm looks surprisingly good. Despite
a very erratic and oscillatory convergence behavior, it is in fact working steadily
toward convergence. This observation is consistent with the behavior of the BCG
algorithm in the extensive tests of Tong in [27]. It is unknown to us how the iterates
of the algorithm compare to those computed in exact arithmetic, but we doubt that
they are close. On the other hand, failure to compute accurate direction vectors,
poor approximation of a Krylov subspace, loss of orthogonality and near failures in
the Lanczos process do not necessarily translate into failure of the BCG algorithm,
since the only quantity of interest obtained from the calculation is the solution vector
xk. And it seems, at least in this case, the BCG does a good job of computing an
approximation to x, while perhaps doing a poor job in other respects.

Among the CSBCG algorithms, the CSBCG/BCG variant seems to be the most
robust on this problem. We attribute this to the fact that this implementation is
closest to the standard BCG algorithm in its computation of subspaces, and whatever
good properties are inherent in these spaces seem to be inherited by the CSBCG/BCG
variant. On the other hand, the convergence history of the CSBCG/BCG algorithm,
while not monotonic, does not have the severe oscillations of the BCG method; the
spikes have been clipped by the criteria (50).

The other two CSBCG variants do not perform well on this problem. The reader
should not infer from this that these algorithms are inferior. With good precondition-
ers, double precision arithmetic, etc., one would expect them to perform comparably
to CSBCG/BCG. Since this is the scenario in which such procedures are typically
used, the effects of roundoff error will tend to be minimized. In Table 3, we report
the results for the second problem using double precision arithmetic.

Table 3
Results for β = 100, double precision

i BCG CSBCG CSBCG/BCG CSBCG/LAL
iterations digits iterations digits iterations digits iterations digits

1 51 4.39 37/14 4.13 39/13 4.39 37/14 4.47
2 51 4.39 37/14 4.10 37/14 4.34 34/17 4.21
3 51 4.41 38/14 4.42 39/13 4.36 35/16 4.35
4 51 4.42 36/15 4.00 37/14 4.29 35/16 4.08
5 51 4.32 37/14 4.22 38/13 4.43 37/14 4.40
6 52 4.42 36/16 4.17 38/13 4.35 36/15 4.39

23

Here we see that all methods solve all problems in the equivalent of 51-52 BCG
steps. However, the convergence histories differ for different orderings, and between
different variants for the same ordering, so roundoff error still is having some influence.

It is also likely that the behavior of all methods with respect to roundoff error
could be improved. For example, in the CSBCG/LAL algorithm, the coefficient βk+1

for 2× 2 update steps is computed by the formula

βk+1 = ρk+2µk/θk+1.(52)

We experimented with replacing (52) with the mathematically equivalent formula

βk+1 = ρk+2σk/θk+1 − ρk+2θk+1/(ρ
2
kζk+1).(53)

leaving all other aspects of the implementation unchanged. The results of this single
change, which affects only the 2× 2 updates, are reported in Table 4.

Table 4
CSBCG/LAL using different formulae for βk+1

i CSBCG/LAL CSBCG/LAL
using (52) using (53)

iterations digits iterations digits
1 200/24 (1.49) 200/42 (1.73)
2 200/22 (1.38) 58/20 4.40
3 200/17 (0.32) 51/19 4.04
4 200/17 (-1.53) 57/24 4.22
5 200/25 (-1.02) 53/20 4.00
6 200/9 (-1.78) 55/20 4.26

Here we see a decided improvement in the behavior of CSBCG/LAL. We do not
know if (53) is generally better then (52) with respect to roundoff error. Indeed,
our initial intuition suggested that (52) would be superior. However, the point of
this demonstration is less to suggest a particular algorithm or formula than it is
to illustrate the sensitivity of BCG-like algorithms to roundoff error, with slightly
different implementations producing drastically different results in situations where
roundoff error plays a significant role. CSBCG algorithms are especially vulnerable
because of the large number of choices one has in their implementation. One has the
choice of criteria for deciding between 1 × 1 and 2 × 2 update steps, the choice of
basis for the 2× 2 updates, as well as a multitude of reasonable looking formulae for
computing the update coefficients. As in the case of the BCG algorithm, it might be
that the “best” algorithm is not one which necessarily produces the “correct” sequence
of direction vectors, good approximation of the Krylov spaces, or even satisfies the
biorthogonality properties best; it is the method which produces the best xk at the
least cost.

REFERENCES

[1] A. K. Aziz and I. Babuška, Part I, survey lectures on the mathematical foundations of the
finite element method, in The Mathematical Foundations of the Finite Element Method
with Applications to Partial Differential Equations, Academic Press, New York, 1972,
pp. 1–362.

[2] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations,
Users’ Guide 6.0, Frontiers in Applied Mathematics, SIAM, 1990.

24

[3] R. E. Bank, J. F. Bürgler, W. Fichtner, and R. K. Smith, Some upwinding techniques for
finite element approximations of convection-diffusion equations, Numer. Math., 58 (1990),
pp. 185–202.

[4] R. E. Bank and T. F. Chan, A composite step bi-conjugate gradient algorithm for nonsym-
metric linear systems, tech. report, University of California, 1992.

[5] C. Brezinski and H. Sadok, Lanczos-type algorithms for solving systems of linear equations,
Appl. Num. Math., 11 (1993), pp. 443–473.

[6] C. Brezinski, M. R. Zaglia, and H. Sadok, A breakdown-free Lanczos type algorithm for
solving linear systems, Numer. Math., 63 (1992), pp. 29–38.

[7] J. R. Bunch, Partial pivoting strategies for symmetric matrices, SIAM J. Numer. Anal., 11
(1974), pp. 521–528.

[8] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method
for the numerical o solution of elliptic partial differential equations, in Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, 1976, pp. 309–332.

[9] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis, Lec-
ture Notes on Mathematics 506, G. A. Watson, ed., Springer-Verlag, Berlin, 1976, pp. 73–
89.

[10] R. W. Freund, A transpose-free quasi-minimum residual algorithm for non-Hermitian linear
systems, Tech. Report 91.18, RIACS, Nasa Ames Research Ceneter, Moffett Field, 1991.

[11] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems,
Tech. Report NA-91-05, Computer Science Department, Stanford University, 1991.

[12] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-
ahead Lanczos algorithm for non-hermitian matrices, Tech. Report 91.09, RIACS, Nasa
Ames Research Ceneter, Moffett Field, 1991.

[13] R. W. Freund and N. M. Nachtigal, QMR: a quasi residual residual method for non-
Hermetian linear systems, Numer. Math., (to appear).

[14] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[15] M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algo-
rithms, part II, Tech. Report 90-16, IPS Research Report, ETH Zürich, 1990.

[16] , The unsymmetric Lanczoz algorithms and their relations to Páde approximation, con-
tinued fractions and the QD algorithm, in Preliminary Proceedings of the Copper Mountain
Conference on Iterative Methods, 1990.

[17] , A completed theory of the unsymmetric Lanczos process and related algorithms, part I,
SIAM J. Mat. Anal. Appl., 13 (1992), pp. 594–639.

[18] W. Joubert, Lanczos methods for the solution of nonsymmetric systems of linear equations,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 926–943.

[19] T. A. Manteuffel, An Iterative Method for Solving Nonsymmetric Linear Systems with Dy-
namic Estimation of Parameters, PhD thesis, University if Illinois, Urbana, 1975.

[20] , The Tchebychev iteration for nonsymmetric linear systems, Numer. Math., 28 (1977),
pp. 307–327.

[21] N. M. Nachtigal, A Look-Ahead Variant of the Lanczos Algorithm and its Application to the
Quasi-Minimum Residual Methods for Non-Hermitian Linear Systems, PhD thesis, MIT,
Cambridge, 1991.

[22] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[23] B. N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 567–593.

[24] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsym-
metric matrices, Mat. of Comp., 44 (1985), pp. 105–124.

[25] Y. Saad, The Lanczos biorthogonalization algorithm and other oblique projection methods for
solving large unsymmetric systems, SIAM J. Numer. Anal., 19 (1982), pp. 485–506.

[26] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Stat. Comput., 10 (1989), pp. 36–52.

[27] C. H. Tong, A comparative study of preconditioned Lanczos methods for nonsymmetric linear
systems, Tech. Report SAND91-8402 UC-404, Sandia National Laboratories, Albuquerque,
1992.

[28] H. A. Van Der Vorst, BI-CGSTAB: A fast and smoothly converging variant of BI-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., (to appear).

[29] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

25

