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A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR
NONLINEAR OPTIMIZATION\ast 

PHILIP E. GILL\dagger , VYACHESLAV KUNGURTSEV\ddagger , AND DANIEL P. ROBINSON\S 

Abstract. In nonlinearly constrained optimization, penalty methods provide an effective strat-
egy for handling equality constraints, while barrier methods provide an effective approach for the
treatment of inequality constraints. A new algorithm for nonlinear optimization is proposed based
on minimizing a shifted primal-dual penalty-barrier function. Certain global convergence properties
are established. In particular, it is shown that a limit point of the sequence of iterates may always
be found that is either an infeasible stationary point or a complementary approximate Karush--
Kuhn--Tucker point ; i.e., it satisfies reasonable stopping criteria and is a Karush--Kuhn--Tucker point
under a regularity condition that is the weakest constraint qualification associated with sequential
optimality conditions. It is also shown that under suitable additional assumptions, the method is
equivalent to a shifted variant of the primal-dual path-following method in the neighborhood of a
solution. Numerical examples are provided that illustrate the performance of the method compared
to a widely used conventional interior-point method.
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1. Introduction. This paper presents a new primal-dual shifted penalty-barrier
method for solving nonlinear optimization problems of the form

minimize
x\in \BbbR n

f(x) subject to c(x) \geq 0,(NIP)

where c : \BbbR n \mapsto \rightarrow \BbbR m and f : \BbbR n \mapsto \rightarrow \BbbR are twice-continuously differentiable. Barrier
methods are a class of methods for solving (NIP) that involve the minimization of a
sequence of unconstrained barrier functions parameterized by a scalar barrier parame-
ter \mu (see, e.g., Frisch [18], Fiacco and McCormick [13], and Fiacco [12]). Each barrier
function includes a logarithmic barrier term that creates a positive singularity at the
boundary of the feasible region and enforces strict feasibility of the barrier function
minimizers. Reducing \mu to zero has the effect of allowing the barrier minimizers to
approach a solution of (NIP) from the interior of the feasible region. However, as
the barrier parameter decreases and the values of the constraints that are active at
the solution approach zero, the linear equations associated with solving each barrier
subproblem become increasingly ill-conditioned. Shifted barrier functions were intro-
duced to avoid this ill-conditioning by implicitly shifting the constraint boundary so
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1068 P. E. GILL, V. KUNGURTSEV, AND D. P. ROBINSON

that the barrier minimizers approach a solution without the need for the barrier pa-
rameter to go to zero. This idea was first proposed in the context of penalty-function
methods by Powell [35] and extended to barrier methods for linear programming by
Gill et al. [23] (see also Freund [17]). Shifted barrier functions are defined in terms of
Lagrange multiplier estimates and are analogous to augmented Lagrangian methods
for equality-constrained optimization. The advantages of an augmented Lagrangian
function over the quadratic penalty function for equality-constrained optimization mo-
tivated the class of modified barrier methods, which were proposed independently for
nonlinear optimization by Polyak [34]. Additional theoretical developments and nu-
merical results were given by Jensen and Polyak [30] and Nash, Polyak, and Sofer [32].
Conn, Gould, and Toint [7, 8] generalized the modified barrier function by exploit-
ing the close connection between shifted and modified barrier methods. Optimization
problems with a mixture of equality and inequality constraints may be solved by com-
bining a penalty or augmented Lagrangian method with a shifted/modified barrier
method. In this context, a number of authors have proposed the use of an augmented
Lagrangian method; see, e.g., Conn, Gould, and Toint [7, 8], Breitfeld and Shanno
[4, 5], and Goldfarb et al. [26].

It is well known that conventional barrier methods are closely related to path-
following interior methods (for a survey, see, e.g., Forsgren, Gill, and Wright [16]). If
x(\mu ) denotes a local minimizer of the barrier function with parameter \mu , then under
mild assumptions on f and c, x(\mu ) lies on a continuous path that approaches a solution
of (NIP) from the interior of the feasible region as \mu goes to zero. Points on this path
satisfy a system of nonlinear equations that may be interpreted as a set of perturbed
first-order optimality conditions for (NIP). Solving these equations using Newton's
method provides an alternative to solving the ill-conditioned equations associated with
a conventional barrier method. In this context, the barrier function may be regarded
as a merit function for forcing convergence of the sequence of Newton iterates of
the path-following method. For examples of this approach, see Byrd, Hribar, and
Nocedal [6], W\"achter and Biegler [37], Forsgren and Gill [15], and Gertz and Gill [19].

An important property of the path-following approach is that the barrier param-
eter \mu serves an auxiliary role as an implicit regularization parameter in the Newton
equations. This regularization plays a crucial role in the robustness of interior meth-
ods on ill-conditioned and ill-posed problems.

1.1. Contributions and organization of the paper. The following contribu-
tions are made to advance the state of the art in the design of algorithms for nonlinear
optimization: (i) A new shifted primal-dual penalty-barrier function is formulated and
analyzed. (ii) An algorithm is proposed based on using the penalty-barrier function as
a merit function for a primal-dual path-following method. It is shown that a specific
modified Newton method for the unconstrained minimization of the shifted primal-
dual penalty-barrier function generates search directions identical to those associated
with a shifted variant of the conventional path-following method. (iii) Under mild
assumptions (e.g., no Kurdyka--\Lojasiewicz type assumption is needed), it is shown
that there exists a limit point of the computed iterates that is either an infeasible sta-
tionary point, or a complementary approximate Karush--Kuhn--Tucker (KKT) point;
i.e., it satisfies reasonable stopping criteria and is a KKT point under a complementary
approximate KKT regularity condition. This regularity condition is the weakest con-
straint qualification associated with sequential optimality conditions. (iv) The method
maintains the positivity of certain variables, but it does not require a fraction-to-the-
boundary rule, which differentiates it from most other interior-point methods in the
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A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD 1069

literature. (v) Shifted barrier methods have the disadvantage that a reduction in the
shift necessary to ensure convergence may cause an iterate to become infeasible with
respect to a shifted constraint. In the proposed method, infeasible shifts are returned
to feasibility without any increase in the cost of an iteration.

The paper is organized into seven sections. The proposed primal-dual penalty-
barrier function is introduced in section 2. In section 3, a line-search algorithm is
presented for minimizing the shifted primal-dual penalty-barrier function for fixed
penalty and barrier parameters. The convergence of this algorithm is established
under certain assumptions. In section 4, an algorithm for solving problem (NIP)
is proposed that builds upon the work from section 3. Global convergence results
are also established. Section 5 focuses on the properties of a single iteration and
the computation of the primal-dual search direction. In particular, it is shown that
the computed direction is equivalent to the Newton step associated with a shifted
variant of the conventional primal-dual path-following equations. In section 6 an
implementation of the method is discussed, as well as some numerical examples that
illustrate the performance of the method. Finally, section 7 gives some conclusions
and topics for further work.

1.2. Notation and terminology. Given vectors x and y, the vector consisting
of x augmented by y is denoted by (x, y). The subscript i is appended to a vector
to denote the ith component of that vector, whereas the subscript k is appended
to a vector to denote its value during the kth iteration of an algorithm; e.g., xk

represents the value for x during the kth iteration, whereas [xk ]i denotes the ith
component of the vector xk. Given vectors a and b with the same dimension, the
vector with ith component aibi is denoted by a \cdot b. Similarly, min(a, b) is a vector
with components min(ai, bi). The vector e denotes the column vector of ones, and I
denotes the identity matrix. The dimensions of e and I are defined by the context.
The vector two-norm or its induced matrix norm are denoted by \| \cdot \| . The inertia of
a real symmetric matrix A, denoted by In(A), is the integer triple (a+, a - , a0) giving
the number of positive, negative, and zero eigenvalues of A. The vector g(x) is used
to denote \nabla f(x), the gradient of f(x). The matrix J(x) denotes the m\times n constraint
Jacobian, which has ith row \nabla ci(x)T . The Lagrangian function associated with (NIP)
is L(x, y) = f(x) - c(x)Ty, where y is the m-vector of dual variables. The Hessian of
the Lagrangian with respect to x is denoted by H(x, y) = \nabla 2f(x) - 

\sum m
i=1 yi\nabla 2ci(x).

Let \{ \alpha j\} j\geq 0 be a sequence of scalars, vectors, or matrices, and let \{ \beta j\} j\geq 0 be a
sequence of positive scalars. If there exist a positive constant \gamma such that \| \alpha j\| \leq \gamma \beta j ,
we write \alpha j = O

\bigl( 
\beta j

\bigr) 
. If there exists a sequence \{ \gamma j\} \rightarrow 0 such that \| \alpha j\| \leq \gamma j\beta j ,

we say that \alpha j = o(\beta j). If there exist a positive sequence \{ \sigma j\} \rightarrow 0 and a positive
constant \beta such that \beta j > \beta \sigma j , we write \beta j = \Omega (\sigma j).

2. A shifted primal-dual penalty-barrier function. In order to avoid the
need to find a strictly feasible point for the constraints of (NIP), each inequality
ci(x) \geq 0 is written in terms of an equality and a nonnegative slack variable ci(x) - si =
0 and si \geq 0, respectively. This gives the equivalent problem

minimize
x\in \BbbR n,s\in \BbbR m

f(x) subject to c(x) - s = 0, s \geq 0.(NIPs)
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1070 P. E. GILL, V. KUNGURTSEV, AND D. P. ROBINSON

The vector (x\ast , s\ast , y\ast , w\ast ) is called a first-order KKT point for problem (NIPs) when

c(x\ast ) - s\ast = 0, s\ast \geq 0,(2.1a)

g(x\ast ) - J(x\ast )Ty\ast = 0, y\ast  - w\ast = 0,(2.1b)

s\ast \cdot w\ast = 0, w\ast \geq 0.(2.1c)

The vectors y\ast and w\ast constitute the Lagrange multiplier vectors for, respectively,
the equality constraint c(x)  - s = 0 and nonnegativity constraint s \geq 0. The vector
(xk, sk, yk, wk) will be used to denote the kth primal-dual iterate computed by the
proposed algorithm, with the aim of giving limit points of

\bigl\{ 
(xk, sk, yk, wk)

\bigr\} \infty 
k=0

that

are first-order KKT points for problem (NIPs), i.e., limit points that satisfy (2.1).
An important concept related to the design of efficient algorithms for computing

first-order KKT points for problem (NIPs) is that of perturbed optimality conditions.
An appropriate set of perturbed conditions for (2.1) is given by

(2.2)

g(x) - J(x)Ty = 0, y  - w = 0,

c(x) - s = \mu \itP (y\itE  - y), s \geq 0,

s \cdot w = \mu \itB (w\itE  - w), w \geq 0,

where y\itE \in \BbbR m is an estimate of a Lagrange multiplier vector for the constraint c(x) - 
s = 0, w\itE \in \BbbR m is an estimate of a Lagrange multiplier for the constraint s \geq 0, and
the scalars \mu \itP and \mu \itB are positive penalty and barrier parameters, respectively. (The
interpretation of \mu \itP and \mu \itB as penalty and barrier parameters is discussed below.)
In the neighborhood of a first-order KKT point, it is well known that computing the
search direction as the solution of the Newton equations for a zero of the perturbed
optimality conditions provides the favorable local convergence rate associated with
Newton's method. At the same time, to ensure convergence to a first-order KKT

point from an arbitrary starting point, an algorithm must include a strategy for
deciding when one iterate is preferable to another. These considerations motivate the
formulation of the new shifted primal-dual penalty-barrier function

M(x, s, y,w ; y\itE , w\itE , \mu \itP , \mu \itB ) = f(x)\underbrace{}  \underbrace{}  
(A)

 - (c(x) - s)Ty\itE \underbrace{}  \underbrace{}  
(B)

+
1

2\mu \itP 
\| c(x) - s\| 2\underbrace{}  \underbrace{}  
(C)

+
1

2\mu \itP 
\| c(x) - s + \mu \itP (y  - y\itE )\| 2\underbrace{}  \underbrace{}  

(D)

 - 
m\sum 
i=1

\mu \itB w\itE 

i ln
\bigl( 
si + \mu \itB 

\bigr) 
\underbrace{}  \underbrace{}  

(E)

 - 
m\sum 
i=1

\mu \itB w\itE 

i ln
\bigl( 
wi(si + \mu \itB )

\bigr) 
\underbrace{}  \underbrace{}  

(F )

+

m\sum 
i=1

wi(si + \mu \itB )\underbrace{}  \underbrace{}  
(G)

.

It is shown in section 5.3 that in the neighborhood of a minimizer of (NIPs) satisfying
certain second-order optimality conditions, the Newton equations for a zero of the
perturbed optimality conditions (2.2) are equivalent to the Newton equations for a
minimizer of M . Also, it is shown in section 3 that if the parameters y\itE , w\itE , \mu \itP , and
\mu \itB are updated appropriately, then stationary points of M have properties that may
be used in the formulation of a globally convergent algorithm for (NIPs).
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A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD 1071

Let S and W denote diagonal matrices with diagonal entries s and w (i.e., S =
diag(s) and W = diag(w)) such that si + \mu \itB > 0 and wi > 0. Define the positive-
definite matrices

D\itP = \mu \itP I and D\itB = (S + \mu \itB I)W - 1,

and auxiliary vectors

\pi \itY = \pi \itY (x, s) = y\itE  - 1

\mu \itP 

\bigl( 
c(x) - s

\bigr) 
and \pi \itW = \pi \itW (s) = \mu \itB (S + \mu \itB I) - 1w\itE .

Then \nabla M(x, s, y, w ; y\itE , w\itE , \mu \itP , \mu \itB ) may be written as

(2.3) \nabla M =

\left(    
g  - JT

\bigl( 
\pi \itY + (\pi \itY  - y)

\bigr) \bigl( 
\pi \itY  - y

\bigr) 
+
\bigl( 
\pi \itY  - \pi \itW 

\bigr) 
+
\bigl( 
w  - \pi \itW 

\bigr) 
 - D\itP (\pi \itY  - y)
 - D\itB (\pi \itW  - w)

\right)    ,

with g = g(x) and J = J(x). The purpose of writing the gradient \nabla M in this form
is to highlight the quantities \pi \itY  - y and \pi \itW  - w, which are important in the analy-
sis. Similarly, the penalty-barrier function Hessian \nabla 2M(x, s, y, w ; y\itE , w\itE , \mu \itP , \mu \itB ) is
written in the form

(2.4) \nabla 2M =

\left(    
H + 2JTD - 1

\itP J  - 2JTD - 1
\itP JT 0

 - 2D - 1
\itP J 2(D - 1

\itP + D - 1
\itB W - 1\Pi \itW )  - I I

J  - I D\itP 0
0 I 0 D\itB W

 - 1\Pi \itW 

\right)    ,

where H = H
\bigl( 
x, \pi \itY + (\pi \itY  - y)

\bigr) 
and \Pi \itW = diag(\pi \itW ).

In developing algorithms, the goal is to achieve rapid convergence to a solution
of (NIPs) without the need for \mu \itP and \mu \itB to go to zero. The underlying mechanism
for ensuring convergence is the minimization of M for fixed parameters. A suitable
line-search method is proposed in the next section.

3. Minimizing the shifted primal-dual penalty-barrier function. This
section concerns the minimization of M for fixed parameters y\itE , w\itE , \mu \itP , and \mu \itB . In
this case the notation can be simplified by omitting the reference to y\itE , w\itE , \mu \itP , and
\mu \itB when writing M , \nabla M, and \nabla 2M .

3.1. The algorithm. The method for minimizing M with fixed parameters is
given as Algorithm 3.1. At the start of iteration k, given the primal-dual iterate
vk = (xk, sk, yk, wk), the search direction \Delta vk = (\Delta xk, \Delta sk, \Delta yk, \Delta wk) is computed
by solving the linear system of equations

(3.1) H\itM 

k \Delta vk =  - \nabla M(vk),

where H\itM 

k is a positive-definite approximation of the matrix\nabla 2M(xk, sk, yk, wk). (The
definition of H\itM 

k and the properties of the (3.1) are discussed in section 5.) Once \Delta vk
has been computed, a line search is used to compute a step length \alpha k, such that
the next iterate vk+1 = vk + \alpha k\Delta vk sufficiently decreases the function M and keeps
important quantities positive (see steps 7--14 of Algorithm 3.1).

The analysis of subsection 3.2 below establishes that under typical assumptions,
limit points (x\ast , s\ast , y\ast , w\ast ) of the sequence

\bigl\{ 
(xk, sk, yk, wk)

\bigr\} \infty 
k=0

generated by min-
imizing M for fixed y\itE , w\itE , \mu \itP , and \mu \itB satisfy \nabla M(x\ast , s\ast , y\ast , w\ast ) = 0. However, the
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1072 P. E. GILL, V. KUNGURTSEV, AND D. P. ROBINSON

ultimate purpose is to use Algorithm 3.1 as the basis of a practical algorithm for the
solution of problem (NIPs). The slack-variable reset used in step 16 of Algorithm 3.1
plays a crucial role in the properties of this more general algorithm (an analogous
slack-variable reset is used in Gill, Murray, and Saunders [22]). The specific update
can be motivated by noting that \widehat sk+1, as defined in step 15 of Algorithm 3.1, is the
unique minimizer, with respect to s, of the sum of the terms (B), (C), (D), and (G)
in the definition of the function M . In particular, it follows from steps 15 and 16 of
Algorithm 3.1 that the value of sk+1 computed in step 16 satisfies

sk+1 \geq \widehat sk+1 = c(xk+1) - \mu \itP 
\bigl( 
y\itE + 1

2 (wk+1  - yk+1)
\bigr) 
,

which implies, after rearrangement, that

(3.2) c(xk+1) - sk+1 \leq \mu \itP 
\bigl( 
y\itE + 1

2 (wk+1  - yk+1)
\bigr) 
.

This inequality is crucial below when \mu \itP and y\itE are modified. In this situation, the
inequality (3.2) ensures that any limit point (x\ast , s\ast ) of the sequence \{ (xk, sk)\} satisfies
c(x\ast ) - s\ast \leq 0 if y\itE and wk+1  - yk+1 are bounded and \mu \itP converges to zero. This is
necessary to handle problems that are (locally) infeasible, which is a challenge for all
methods for nonconvex optimization. The slack update never causes M to increase,
which implies that M decreases monotonically (see Lemma 3.1).

Algorithm 3.1. Minimizing M for fixed parameters y\itE , w\itE , \mu \itP , and \mu \itB .

1: procedure MERIT(x0, s0, y0, w0)
2: Restrictions: s0 + \mu \itB e > 0, w0 > 0, and w\itE > 0;
3: Constants: \{ \eta , \gamma \} \in (0, 1);
4: Set v0 \leftarrow (x0, s0, y0, w0);
5: while \| \nabla M(vk)\| > 0 do
6: Choose H\itM 

k \succ 0, and then compute the search direction \Delta vk from (3.1);
7: Set \alpha k \leftarrow 1;
8: loop
9: if sk + \alpha k\Delta sk + \mu \itB e > 0 and wk + \alpha k\Delta wk > 0 then

10: if M(vk + \alpha k\Delta vk) \leq M(vk) + \eta \alpha k\nabla M(vk)T\Delta vk then \sansb \sansr \sanse \sansa \sansk ;
11: end if
12: Set \alpha k \leftarrow \gamma \alpha k;
13: end loop
14: Set vk+1 \leftarrow vk + \alpha k\Delta vk;
15: Set \widehat sk+1 \leftarrow c(xk+1) - \mu \itP 

\bigl( 
y\itE + 1

2 (wk+1  - yk+1)
\bigr) 
;

16: Perform a slack reset sk+1 \leftarrow max\{ sk+1, \widehat sk+1\} ;
17: Set vk+1 \leftarrow (xk+1, sk+1, yk+1, wk+1);
18: end while
19: end procedure

3.2. Convergence analysis. The convergence analysis of Algorithm 3.1 re-
quires assumptions on the differentiability of f and c, the properties of the positive-
definite matrix sequence \{ H\itM 

k \} in (3.1), and the sequence of computed iterates \{ xk\} .
Assumption 3.1. The functions f and c are twice continuously differentiable.

Assumption 3.2. The sequence of matrices
\bigl\{ 
H\itM 

k

\bigr\} 
k\geq 0

used in (3.1) is chosen to

be uniformly positive definite and bounded in norm.
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Assumption 3.3. The sequence of iterates \{ xk\} is contained in a bounded set.

The first result shows that the merit function is monotonically decreasing. It is
assumed throughout this section that Algorithm 3.1 generates an infinite sequence,
i.e., \nabla M(vk) \not = 0 for all k \geq 0.

Lemma 3.1. The sequence of iterates \{ vk\} satisfies M(vk+1) < M(vk) for all k.

Proof. The vector \Delta vk is a descent direction for M at vk, i.e., \nabla M(vk)T\Delta vk < 0,
if\nabla M(vk) is nonzero and the matrix H\itM 

k is positive definite. As H\itM 

k is positive definite
by Assumption 3.2 and \nabla M(vk) is assumed to be nonzero for all k \geq 0, the vector \Delta vk
is a descent direction for M at vk. This property implies that the line search performed
in Algorithm 3.1 produces an \alpha k such that the new point vk+1 = vk +\alpha k\Delta vk satisfies
M(vk+1) < M(vk). If follows that the only way the desired result cannot hold is if
the slack-reset procedure of step 16 of Algorithm 3.1 causes M to increase. The proof
is complete if it can be shown that this cannot happen.

The vector \widehat sk+1 used in the slack reset is the unique minimizer of the sum of the
terms (B), (C), (D), and (G) defining the function M , so that the sum of these terms
cannot increase. Also, (A) is independent of s, so that the term does not change.
The slack-reset procedure has the effect of possibly increasing the value of some of its
components, which means that (E) and (F) in the definition of M can only decrease.
In total, this implies that the slack reset can never increase the value of M , which
completes the proof.

Lemma 3.2. The sequence of iterates \{ vk\} =
\bigl\{ 

(xk, sk, yk, wk)
\bigr\} 
computed by Al-

gorithm 3.1 satisfies the following properties:
(i) The sequences \{ sk\} , \{ c(xk) - sk\} , \{ yk\} , and \{ wk\} are bounded.

(ii) For all i it holds that

lim inf
k\geq 0

[ sk + \mu \itB e ]i > 0 and lim inf
k\geq 0

[wk ]i > 0.

(iii) The sequences \{ \pi \itY (xk, sk)\} , \{ \pi \itW (sk)\} , and \{ \nabla M(vk)\} are bounded.
(iv) There exists a scalar Mlow such that M(xk, sk, yk, wk) \geq Mlow >  - \infty for all k.

Proof. For a proof by contradiction, assume that \{ sk\} is unbounded. As sk +
\mu \itB e > 0 by construction, there exist a subsequence \scrS and component i such that

(3.3) lim
k\in \scrS 

[ sk ]i =\infty and [ sk ]i \geq [ sk ]j for all j and k \in \scrS .

Next it will be shown that M must go to infinity on \scrS . It follows from (3.3), Assump-
tion 3.3, and the continuity of c that the term (A) in the definition of M is bounded
below for all k, that (B) cannot go to  - \infty any faster than \| sk\| on \scrS , and that (C)
converges to \infty on \scrS at the same rate as \| sk\| 2. It is also clear that (D) is bounded
below by zero. On the other hand, (E) goes to  - \infty on \scrS at the rate  - ln([ sk ]i +\mu \itB ).
Next, note that (G) is bounded below. Now, if (F) is bounded below on \scrS , then
the previous argument proves that M converges to infinity on \scrS , which contradicts
Lemma 3.1. Otherwise, if (F) goes to  - \infty on \scrS , there must exist a subsequence
\scrS 1 \subseteq \scrS and a component j (say) such that

lim
k\in \scrS 1

[ sk + \mu \itB e ]j [wk ]j =\infty and(3.4)

[ sk + \mu \itB e ]j [wk ]j \geq [ sk + \mu \itB e ]l[wk ]l for all l and k \in \scrS 1.(3.5)

Using these properties and the fact that wk > 0 and sk + \mu \itB e > 0 for all k by
construction in step 9 of Algorithm 3.1, it follows that (G) converges to\infty faster than
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1074 P. E. GILL, V. KUNGURTSEV, AND D. P. ROBINSON

(F) converges to  - \infty . Thus, M converges to \infty on \scrS 1, which contradicts Lemma 3.1.
We have thus proved that \{ sk\} is bounded, which is the first part of result (i). The
second part of (i), i.e., the uniform boundedness of \{ c(xk) - sk\} , follows from the first
result, the continuity of c, and Assumption 3.3.

Next, the third bound in part (i) will be established, i.e., \{ yk\} is bounded. For a
proof by contradiction, assume that there exist some subsequence \scrS and component
i such that

lim
k\in \scrS 

\bigm| \bigm| [ yk ]i
\bigm| \bigm| =\infty and

\bigm| \bigm| [ yk ]i
\bigm| \bigm| \geq \bigm| \bigm| [ yk ]j

\bigm| \bigm| for all j and k \in \scrS .

Using the arguments from the previous paragraph and the result established above
that \{ sk\} is bounded, it follows that (A), (B), and (C) are bounded below over all
k, and that (D) converges to \infty on \scrS at the rate of [ yk ]2i because it has already
been shown that \{ sk\} is bounded. Using the uniform boundedness of \{ sk\} a second
time and w\itE > 0, it may be deduced that (E) is bounded below. If (F) is bounded
below on \scrS , then as (G) is bounded below by zero we would conclude, in totality,
that limk\in \scrS M(vk) = \infty , which contradicts Lemma 3.1. Thus, (F) must converge to
 - \infty , which guarantees the existence of a subsequence \scrS 1 \subseteq \scrS and a component, say
j, that satisfies (3.4) and (3.5). For such k \in \scrS 1 and j it holds that (G) converges
to \infty faster than (F) converges to  - \infty , so that limk\in \scrS 1 M(vk) = \infty on \scrS 1, which
contradicts Lemma 3.1. Thus, \{ yk\} is bounded.

We now prove the final bound in part (i), i.e., that \{ wk\} is bounded. For a proof
by contradiction, assume that the set is unbounded, which implies---using that wk > 0
holds by construction of the line search in step 9 of Algorithm 3.1---the existence of
a subsequence \scrS and a component i such that

(3.6) lim
k\in \scrS 

[wk ]i =\infty and [wk ]i \geq [wk ]j for all j and k \in \scrS .

It follows that there exist a subsequence \scrS 1 \subseteq \scrS and set \scrJ \subseteq \{ 1, 2, . . . , m\} satisfying

(3.7) lim
k\in \scrS 1

[wk ]j =\infty for all j \in \scrJ and
\bigl\{ 

[wk ]j : j /\in \scrJ and k \in \scrS 1
\bigr\} 

is bounded.

Next, using arguments similar to those above and boundedness of \{ yk\} , we know that
(A), (B), (C), and (D) are bounded. Next, the sum of (E) and (F) is

(3.8) (E) + (F) =  - \mu \itB 

m\sum 
j=1

w\itE 

j

\bigl( 
2 ln([ sk + \mu \itB e ]j) + ln([wk ]j)

\bigr) 
.

Combining this with the definition of (G) and the result of Lemma 3.1 shows that

(3.9) [wk ]j [ sk + \mu \itB e ]j = O
\bigl( 

ln([wk ]i)
\bigr) 

for all 1 \leq j \leq m,

which can be seen to hold as follows. It follows from (3.6), the boundedness of
\{ sk\} , w\itE > 0, and (3.8) that (E) + (F) is bounded below by  - \mu \itB w\itE 

i ln([wk ]i) for
all sufficiently large k \in \scrS . Combining this with the boundedness of (A), (B), (C),
and (D) implies that (3.9) must hold, because otherwise the merit function M would
converge to infinity on \scrS , contradicting Lemma 3.1. Thus, (3.9) holds.

Using wk > 0 (which holds by construction) and the monotonicity of ln(\cdot ), it
follows from (3.9) that there exists a positive constant \kappa 1 such that

(3.10) ln
\bigl( 
[ sk + \mu \itB e ]j

\bigr) 
\leq ln

\biggl( 
\kappa 1 ln([wk ]i)

[wk ]j

\biggr) 
= ln(\kappa 1) + ln

\bigl( 
ln([wk ]i)

\bigr) 
 - ln([wk ]j)
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for all 1 \leq j \leq m and sufficiently large k. Then, a combination of (3.8), the bound-
edness of \{ sk\} , (3.7), w\itE > 0, and the bound (3.10) implies the existence of positive
constants \kappa 2 and \kappa 3 satisfying

(E) + (F) \geq  - \kappa 2  - \mu \itB 
\sum 
j\in \scrJ 

w\itE 

j

\bigl( 
2 ln([ sk + \mu \itB e ]j) + ln([wk ]j)

\bigr) 
\geq  - \kappa 2  - \mu \itB 

\sum 
j\in \scrJ 

w\itE 

j

\bigl( 
2 ln(\kappa i) + 2 ln

\bigl( 
ln([wk ]i)

\bigr) 
 - ln([wk ]j)

\bigr) 
\geq  - \kappa 3  - \mu \itB 

\sum 
j\in \scrJ 

w\itE 

j

\bigl( 
2 ln

\bigl( 
ln([wk ]i)

\bigr) 
 - ln([wk ]j)

\bigr) 
(3.11)

for all sufficiently large k. With the aim of bounding the summation in (3.11), define

\alpha =
[w\itE ]i

4\| w\itE \| 1
> 0,

which is well-defined because w\itE > 0. It follows from (3.6) and (3.7) that

2 ln
\bigl( 

ln
\bigl( 
[wk ]i

\bigr) \bigr) 
 - ln

\bigl( 
[wk ]j

\bigr) 
\leq \alpha ln

\bigl( 
[wk ]i

\bigr) 
for all j \in \scrJ and sufficiently large k \in \scrS 1. This bound, (3.11), and w\itE > 0 imply that

(E) + (F)

\geq  - \kappa 3 - \mu \itB w\itE 

i

\bigl( 
2 ln
\bigl( 

ln([wk ]i)
\bigr) 
 - ln([wk ]i)

\bigr) 
 - \mu \itB 

\sum 
j\in \scrJ ,j \not =i

w\itE 

j

\bigl( 
2 ln
\bigl( 

ln([wk ]i)
\bigr) 
 - ln([wk ]j)

\bigr) 
\geq  - \kappa 3  - \mu \itB w\itE 

i

\bigl( 
2 ln
\bigl( 

ln([wk ]i)
\bigr) 
 - ln([wk ]i)

\bigr) 
 - \mu \itB 

\sum 
j\in \scrJ ,j \not =i

w\itE 

j \alpha ln([wk ]i)

\geq  - \kappa 3  - \mu \itB w\itE 

i

\bigl( 
2 ln
\bigl( 

ln([wk ]i)
\bigr) 
 - ln([wk ]i)

\bigr) 
 - \mu \itB \alpha ln([wk ]i)\| w\itE \| 1

for all sufficiently large k \in \scrS 1. Combining this inequality with the choice of \alpha and

2 ln
\bigl( 

ln([wk ]i)
\bigr) 
 - ln([wk ]i) \leq  - 1

2 ln([wk ]i)

for all sufficiently large k \in \scrS (this follows from (3.6)), we obtain

(E) + (F) \geq  - \kappa 3 + 1
2\mu 

\itB w\itE 

i ln([wk ]i) - \mu \itB \alpha ln([wk ]i)\| w\itE \| 1
\geq  - \kappa 3 + \mu \itB 

\bigl( 
1
2w

\itE 

i  - \alpha \| w\itE \| 1
\bigr) 

ln([wk ]i)

=  - \kappa 3 + 1
4\mu 

\itB ln([wk ]i)

for all sufficiently large k \in \scrS 1. In particular, this inequality and (3.6) together give

lim
k\in \scrS 1

(E) + (F) =\infty .

It has already been established that the terms (A), (B), (C), and (D) are bounded,
and it is clear that (G) is bounded below by zero. It follows that M converges to
infinity on \scrS 1. As this contradicts Lemma 3.1, it must hold that \{ wk\} is bounded.

Part (ii) is also proved by contradiction. Suppose that
\bigl\{ 

[ sk+\mu \itB e ]i
\bigr\} 
\rightarrow 0 on some

subsequence \scrS and for some component i. As before, (A), (B), (C), and (D) are all
bounded from below over all k. We may also use w\itE > 0 and the fact that \{ sk\} and
\{ wk\} were proved to be bounded in part (i) to conclude that (E) and (F) converge
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to \infty on \scrS . Also, as already shown, the term (G) is bounded below. In summary, it
has been shown that limk\in \scrS M(vk) =\infty , which contradicts Lemma 3.1 and therefore
establishes that lim inf [ sk + \mu e ]i > 0 for all i. A similar argument may be used to
prove that lim inf [wk ]i > 0 for all i, which completes the proof.

Consider part (iii). The sequence
\bigl\{ 
\pi \itY (xk, sk)

\bigr\} 
is bounded as a consequence of

part (i) and the fact that y\itE and \mu \itP are fixed. Similarly, the sequence
\bigl\{ 
\pi \itW (sk)

\bigr\} 
is

bounded as a consequence of part (ii) and the fact that w\itE and \mu \itB are fixed. Lastly, the
sequence

\bigl\{ 
\nabla M(xk, sk, yk)

\bigr\} 
is bounded as a consequence of parts (i) and (ii), the uni-

form boundedness just established for
\bigl\{ 
\pi \itY (xk, sk)

\bigr\} 
and

\bigl\{ 
\pi \itW (sk)

\bigr\} 
, Assumptions 3.1

and 3.3, and the fact that y\itE , w\itE , \mu \itP , and \mu \itB are fixed.
For part (iv) it will be shown that each term in the definition of M is bounded

below. Term (A) is bounded below because of Assumptions 3.1 and 3.2. Term (B) is
bounded below as a consequence of part (i) and the fact that y\itE is kept fixed. Terms
(C) and (D) are both nonnegative and hence trivially bounded below. Terms (E) and
(F) can be seen to be bounded below by noting that \mu \itB and w\itE > 0 are held fixed,
and using the bounds established for part (i). Finally, it follows from part (ii) that
(G) is positive. The existence of the lower bound Mlow now follows.

Certain results hold when the gradients of M are bounded away from zero.

Lemma 3.3. If there exists a positive scalar \epsilon and a subsequence \scrS satisfying

(3.12) \| \nabla M(vk)\| \geq \epsilon for all k \in \scrS ,

then the following results must hold:
(i) The set

\bigl\{ 
\| \Delta vk\| 

\bigr\} 
k\in \scrS is bounded above and bounded away from zero.

(ii) There exists a positive scalar \delta such that \nabla M(vk)T\Delta vk \leq  - \delta for all k \in \scrS .
(iii) There exists a positive scalar \alpha min such that, for all k \in \scrS , the Armijo condition

in step 10 of Algorithm 3.1 is satisfied with \alpha k \geq \alpha min.

Proof. Part (i) follows from (3.12), Assumption 3.2, Lemma 3.2(iii), and the fact
that \Delta vk is computed from (3.1). For part (ii), first observe from (3.1) that

(3.13) \nabla M(vk)T\Delta vk =  - \Delta vTk H
\itM 

k \Delta vk \leq  - \lambda min(H\itM 

k )\| \Delta vk\| 22.

The existence of \delta in part (ii) now follows from (3.13), Assumption 3.2, and part (i).
For part (iii), a standard result of unconstrained optimization [33] is that the

Armijo condition is satisfied for all

(3.14) \alpha k = \Omega 

\biggl( 
 - \nabla M(vk)T\Delta vk
\| \Delta vk\| 2

\biggr) 
.

This result requires the Lipschitz continuity of \nabla M(v), which holds as a consequence
of Assumption 3.1 and Lemma 3.2(ii). The existence of the positive \alpha min of part (iii)
now follows from (3.14) and parts (i) and (ii).

The main convergence result follows.

Theorem 3.4. Under Assumptions 3.1--3.3, the sequence of iterates \{ vk\} satisfies
limk\rightarrow \infty \nabla M(vk) = 0.

Proof. The proof is by contradiction. Suppose there exist a constant \epsilon > 0 and
a subsequence \scrS such that \| \nabla M(vk)\| \geq \epsilon for all k \in \scrS . It follows from Lemmas 3.1
and 3.2(iv) that limk\rightarrow \infty M(vk) = Mmin >  - \infty . Using this result and the fact that
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the Armijo condition is satisfied for all k (see step 10 in Algorithm 3.1), it must follow
that

lim
k\rightarrow \infty 

\alpha k\nabla M(vk)T\Delta vk = 0,

which implies that limk\in \scrS \alpha k = 0 from Lemma 3.3(ii). This result and Lemma 3.3(iii)
imply that the inequality constraints enforced in step 9 of Algorithm 3.1 must have
restricted the step length. In particular, there must exist a subsequence \scrS 1 \subseteq \scrS and
a component i such that either

[ sk + \alpha k\Delta sk + \mu \itB e ]i > 0 and [ sk + (1/\gamma )\alpha k\Delta sk + \mu \itB e ]i \leq 0 for k \in \scrS 1

or

(3.15) [wk + \alpha k\Delta wk ]i > 0 and [wk + (1/\gamma )\alpha k\Delta wk ]i \leq 0 for k \in \scrS 1,

where \gamma \in (0, 1) is the Armijo parameter of Algorithm 3.1. As the same argument is
used for both cases, it may be assumed, without loss of generality, that (3.15) occurs.
It follows from Lemma 3.2(ii) that there exists some positive \epsilon such that

\epsilon < wk+1 = wk + \alpha k\Delta wk = wk + (1/\gamma )\alpha k\Delta wk  - (1/\gamma )\alpha k\Delta wk + \alpha k\Delta wk

for all sufficiently large k, so that with (3.15) it must hold that

wk + (1/\gamma )\alpha k\Delta wk > \epsilon + (1/\gamma )\alpha k\Delta wk  - \alpha k\Delta wk = \epsilon + \alpha k\Delta wk(1/\gamma  - 1) > 0

for all sufficiently large k \in \scrS 1, where the last inequality follows from limk\in \scrS \alpha k = 0
and Lemma 3.3(i). This contradicts (3.15) for all sufficiently large k \in \scrS 1.

4. Solving the nonlinear optimization problem. In this section a method
for solving the nonlinear optimization problem (NIPs) is formulated and analyzed.
The method builds upon the algorithm presented in section 3 for minimizing the
shifted primal-dual penalty-barrier function.

4.1. The algorithm. The proposed method is given in Algorithm 4.1. It com-
bines Algorithm 3.1 with strategies for adjusting the parameters that define the merit
function, which were fixed in Algorithm 3.1. The proposed strategy uses the distinc-
tion between O-iterations, M-iterations, and F-iterations, which are described below.

The definition of an O-iteration is based on the optimality conditions for problem
(NIPs). Progress towards optimality at vk+1 = (xk+1, sk+1, yk+1, wk+1) is defined in
terms of the following feasibility, stationarity, and complementarity measures:

\chi feas(vk+1) = \| c(xk+1) - sk+1\| ,
\chi stny(vk+1) = max

\bigl( 
\| g(xk+1) - J(xk+1)Tyk+1\| , \| yk+1  - wk+1\| 

\bigr) 
, and

\chi comp(vk+1, \mu 
\itB 

k) = \| min
\bigl( 
q1(vk+1), q2(vk+1, \mu 

\itB 

k)
\bigr) 
\| ,

where

q1(vk+1) = max
\bigl( 
| min(sk+1, wk+1, 0)| , | sk+1 \cdot wk+1| 

\bigr) 
and

q2(vk+1, \mu 
\itB 

k) = max
\bigl( 
\mu \itB 

ke, | min(sk+1 + \mu \itB 

ke, wk+1, 0)| , | (sk+1 + \mu \itB 

ke) \cdot wk+1| 
\bigr) 
.

A first-order KKT point vk+1 for problem (NIPs) satisfies \chi (vk+1, \mu 
\itB 

k) = 0, where

(4.1) \chi (v, \mu ) = \chi feas(v) + \chi stny(v) + \chi comp(v, \mu ).
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With these definitions in hand, the kth iteration is designated as an O-iteration if
\chi (vk+1, \mu 

\itB 

k) \leq \chi max
k , where \{ \chi max

k \} is a monotonically decreasing positive sequence.
At an O-iteration the parameters are updated as y\itE 

k+1 = yk+1, w\itE 

k+1 = wk+1, and

\chi max
k+1 = 1

2\chi 
max
k (see step 10). These updates ensure that \{ \chi max

k \} converges to zero if
infinitely many O-iterations occur. The point vk+1 is called an O-iterate.

If the condition for an O-iteration does not hold, a test is done to determine if
vk+1 = (xk+1, sk+1, yk+1, wk+1) is an approximate first-order solution of the problem

(4.2) minimize
v=(x,s,y,w)

M(v ; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k).

In particular, the kth iteration is called an M-iteration if vk+1 satisfies

\| \nabla xM(vk+1 ; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k)\| \infty \leq \tau k,(4.3a)

\| \nabla sM(vk+1 ; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k)\| \infty \leq \tau k,(4.3b)

\| \nabla yM(vk+1 ; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k)\| \infty \leq \tau k\| D\itP 

k+1\| \infty , and(4.3c)

\| \nabla wM(vk+1 ; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k)\| \infty \leq \tau k\| D\itB 

k+1\| \infty ,(4.3d)

where \tau k is a positive tolerance, D\itP 

k+1 = \mu \itP 

kI, and D\itB 

k+1 = (Sk+1 + \mu \itB 

kI)W - 1
k+1. (See

Lemma 4.6 for a justification of (4.3).) In this case, vk+1 is called an M-iterate because
it is an approximate first-order solution of (4.2). The multiplier estimates y\itE 

k+1 and
w\itE 

k+1 are defined by the safeguarded values

(4.4) y\itE 

k+1 = max
\bigl( 
 - ymaxe,min(yk+1, ymaxe)

\bigr) 
and w\itE 

k+1 = min(wk+1, wmaxe)

for some positive constants ymax and wmax. Next, step 13 checks if the condition

(4.5) \chi feas(vk+1) \leq \tau k

holds. If the condition holds, then \mu \itP 

k+1 \leftarrow \mu \itP 

k; otherwise, \mu \itP 

k+1 \leftarrow 1
2\mu 

\itP 

k to place more
emphasis on satisfying the constraint c(x) - s = 0 in subsequent iterations. Similarly,
step 17 checks the inequalities

(4.6) \chi comp(vk+1, \mu 
\itB 

k) \leq \tau k and sk+1 \geq  - \tau ke.

If these conditions hold, then \mu \itB 

k+1 \leftarrow \mu \itB 

k ; otherwise, \mu \itB 

k+1 \leftarrow 1
2\mu 

\itB 

k to place more
emphasis on achieving complementarity in subsequent iterations.

An iteration that is not an O- or M-iteration is called an F-iteration. In an
F-iteration none of the merit function parameters are changed, so that progress is
measured solely in terms of the reduction in the merit function.

4.2. Convergence analysis. Convergence of the iterates is established using
the properties of the complementary approximate KKT (CAKKT) condition proposed
by Andreani, Mart\'{\i}nez, and Svaiter [2], as described next.

Definition 4.1 (CAKKT condition). A feasible point (x\ast , s\ast ) (i.e., a point such
that s\ast \geq 0 and c(x\ast ) - s\ast = 0) is said to satisfy the CAKKT condition if there exists
a sequence \{ (xj , sj , uj , zj)\} with \{ xj\} \rightarrow x\ast and \{ sj\} \rightarrow s\ast such that

\{ g(xj) - J(xj)
Tuj\} \rightarrow 0,(4.7)

\{ uj  - zj\} \rightarrow 0,(4.8)

\{ zj\} \geq 0, and(4.9)

\{ zj \cdot sj\} \rightarrow 0.(4.10)

Any (x\ast , s\ast ) satisfying these conditions is called a CAKKT point.
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Algorithm 4.1. A shifted primal-dual penalty-barrier method.

1: procedure PDB(x0, s0, y0, w0)
2: Restrictions: s0 > 0 and w0 > 0;
3: Constants: \{ \eta , \gamma \} \subset (0, 1) and \{ ymax, wmax\} \subset (0,\infty );
4: Choose y\itE 

0 , w\itE 
0 > 0; \chi max

0 > 0; and \{ \mu \itP 
0 , \mu 

\itB 
0\} \subset (0,\infty );

5: Set v0 = (x0, s0, y0, w0); k \leftarrow 0;
6: while \| \nabla M(vk)\| > 0 do
7: (y\itE , w\itE , \mu \itP , \mu \itB )\leftarrow (y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k);
8: Compute vk+1 = (xk+1, sk+1, yk+1, wk+1) in steps 6--17 of Algorithm 3.1;
9: if \chi (vk+1, \mu 

\itB 

k) \leq \chi max
k then [O-iterate]

10: (\chi max
k+1, y

\itE 

k+1, w
\itE 

k+1, \mu 
\itP 

k+1, \mu 
\itB 

k+1, \tau k+1)\leftarrow ( 1
2\chi 

max
k , yk+1, wk+1, \mu 

\itP 

k, \mu 
\itB 

k , \tau k);
11: else if vk+1 satisfies (4.3) then [M-iterate]
12: Set (\chi max

k+1, \tau k+1) = (\chi max
k , 1

2\tau k); Set y\itE 

k+1 and w\itE 

k+1 using (4.4);

13: if \chi feas(vk+1) \leq \tau k then \mu \itP 

k+1 \leftarrow \mu \itP 

k else \mu \itP 

k+1 \leftarrow 1
2\mu 

\itP 

k end if
14: if \chi comp(vk+1, \mu 

\itB 

k) \leq \tau k and sk+1 \geq  - \tau ke then
15: \mu \itB 

k+1 \leftarrow \mu \itB 

k ;
16: else
17: \mu \itB 

k+1 \leftarrow 1
2\mu 

\itB 

k ; Reset sk+1 so that sk+1 + \mu \itB 

k+1e > 0;
18: end if
19: else [F-iterate]
20: (\chi max

k+1, y
\itE 

k+1, w
\itE 

k+1, \mu 
\itP 

k+1, \mu 
\itB 

k+1, \tau k+1)\leftarrow (\chi max
k , y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k , \tau k);
21: end if
22: end while
23: end procedure

The CAKKT condition is a sequential optimality condition that holds for every
local minimizer. Compared to other sequential conditions, it is relatively tight; i.e.,
there are relatively few CAKKT points that are not local minimizers. The mechanism
for relating a CAKKT point to a KKT point is given by CAKKT-regularity, which is
the weakest known constraint qualification that ensures the following result holds.

Theorem 4.2 (Andreani et al. [1, Theorem 4.3]). If (x\ast , s\ast ) is a CAKKT point
that satisfies CAKKT-regularity, then (x\ast , s\ast ) is a first-order KKT point for (NIPs).

The first part of the analysis concerns the conditions under which limit points of
the sequence \{ (xk, sk)\} are CAKKT points. As the results are tied to the different
iteration types, to facilitate referencing of the iterations during the analysis, we define

\scrO = \{ k : iteration k is an O-iteration\} ,
\scrM = \{ k : iteration k is an M-iteration\} , and

\scrF = \{ k : iteration k is an F-iteration\} .

The first part of the analysis establishes that limit points of the sequence of O-iterates
are CAKKT points.

Lemma 4.3. If | \scrO | =\infty , there exists at least one limit point (x\ast , s\ast ) of the infinite
sequence \{ (xk+1, sk+1)\} k\in \scrO , and any such limit point is a CAKKT point.

Proof. Assumption 3.3 implies that there must exist at least one limit point of
\{ xk+1\} k\in \scrO . If x\ast is such a limit point, Assumption 3.1 implies the existence of
\scrK \subseteq \scrO such that \{ xk+1\} k\in \scrK \rightarrow x\ast and \{ c(xk+1)\} k\in \scrK \rightarrow c(x\ast ). As | \scrO | = \infty , the
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updating strategy of Algorithm 4.1 gives \{ \chi max
k \} \rightarrow 0. Furthermore, as \chi (vk+1, \mu 

\itB 

k) \leq 
\chi max
k for all k \in \scrK \subseteq \scrO , and \chi feas(vk+1) \leq \chi (vk+1, \mu 

\itB 

k) for all k, it follows that
\{ \chi feas(vk+1)\} k\in \scrK \rightarrow 0, i.e., \{ c(xk+1) - sk+1\} k\in \scrK \rightarrow 0. With the definition s\ast = c(x\ast ),
it follows that \{ sk+1\} k\in \scrK \rightarrow limk\in \scrK c(xk+1) = c(x\ast ) = s\ast , which implies that (x\ast , s\ast )
is feasible for the general constraints because c(x\ast ) - s\ast = 0. The remaining feasibility
condition s\ast \geq 0 is proved componentwise. Let i \in \{ 1, 2, . . . , m\} , and define

\scrQ 1 = \{ k : [q1(vk+1)]i \leq [q2(vk+1, \mu 
\itB 

k)]i\} and \scrQ 2 = \{ k : [q2(vk+1, \mu 
\itB 

k)]i < [q1(vk+1)]i\} ,

where q1 and q2 are used in the definition of \chi comp. If the set \scrK \cap \scrQ 1 is infinite,
then it follows from the inequalities \{ \chi comp(vk+1, \mu 

\itB 

k)\} k\in \scrK \leq \{ \chi (vk+1, \mu 
\itB 

k)\} k\in \scrK \leq 
\{ \chi max

k \} k\in \scrK \rightarrow 0 that [ s\ast ]i = lim\scrK \cap \scrQ 1
[ sk+1 ]i \geq 0. Using a similar argument, if the

set \scrK \cap \scrQ 2 is infinite, then [ s\ast ]i = lim\scrK \cap \scrQ 2
[ sk+1 ]i = lim\scrK \cap \scrQ 2

[ sk+1+\mu \itB 

ke ]i \geq 0, where
the second equality uses the limit \{ \mu \itB 

k\} k\in \scrK \cap \scrQ 2 \rightarrow 0 that follows from the definition
of \scrQ 2. Combining these two cases implies that [ s\ast ]i \geq 0, as claimed. It follows that
the limit point (x\ast , s\ast ) is feasible.

It remains to show that (x\ast , s\ast ) is a CAKKT point. Consider the sequence (xk+1,
\=sk+1, yk+1, wk+1)k\in \scrK as a candidate for the sequence used in Definition 4.1 to verify
that (x\ast , s\ast ) is a CAKKT point, where

[ \=sk+1 ]i =

\Biggl\{ 
[ sk+1 ]i if k \in \scrQ 1,

[ sk+1 + \mu \itB 

ke ]i if k \in \scrQ 2,

for each i \in \{ 1, 2, . . . , m\} . If \scrO \cap \scrQ 2 is finite, then it follows from the definition of
\=sk+1 and the limit \{ sk+1\} k\in \scrK \rightarrow s\ast that \{ [ \=sk+1 ]i\} k\in \scrK \rightarrow [ s\ast ]i. On the other hand,
if \scrO \cap \scrQ 2 is infinite, then the definitions of \scrQ 2 and \chi comp(vk+1, \mu 

\itB 

k), together with the
limit \{ \chi comp(vk+1, \mu 

\itB 

k)\} k\in \scrK \rightarrow 0, imply that \{ \mu \itB 

k\} \rightarrow 0, giving \{ [ \=sk+1 ]i\} k\in \scrK \rightarrow [ s\ast ]i.
As the choice of i was arbitrary, these cases taken together imply that \{ \=sk+1\} k\in \scrK \rightarrow s\ast .

The next step is to show that \{ (xk+1, \=sk+1, yk+1, wk+1)\} k\in \scrK satisfies the con-
ditions required by Definition 4.1. It follows from the limit \{ \chi (vk+1, \mu 

\itB 

k)\} k\in \scrK \rightarrow 0
established above that \{ \chi stny(vk+1) + \chi comp(vk+1, \mu 

\itB 

k)\} k\in \scrK \leq \{ \chi (vk+1, \mu 
\itB 

k)\} k\in \scrK \rightarrow 0.

This implies that \{ gk+1  - JT
k+1yk+1\} k\in \scrK \rightarrow 0 and \{ yk+1  - wk+1\} k\in \scrK \rightarrow 0, which

establishes that conditions (4.7) and (4.8) hold. Step 9 of Algorithm 3.1 enforces the
nonnegativity of wk+1 for all k, which implies that (4.9) is satisfied for \{ wk\} k\in \scrK . Fi-
nally, it must be shown that (4.10) holds, i.e., that \{ wk+1\cdot \=sk+1\} k\in \scrK \rightarrow 0. Consider the
ith components of sk, \=sk, and wk. If the set \scrK \cap \scrQ 1 is infinite, the definitions of \=sk+1,
q1(vk+1), and \chi comp(vk+1, \mu 

\itB 

k), together with the limit \{ \chi comp(vk+1, \mu 
\itB 

k)\} k\in \scrK \rightarrow 0,
imply that \{ [wk+1 \cdot \=sk+1 ]i\} \scrK \cap \scrQ 1

\rightarrow 0. Similarly, if the set \scrK \cap \scrQ 2 is infinite, then
the definitions of \=sk+1, q2(vk+1, \mu 

\itB 

k), and \chi comp(vk+1, \mu 
\itB 

k), together with the limit
\{ \chi comp(vk+1, \mu 

\itB 

k)\} k\in \scrK \rightarrow 0, imply that \{ [wk+1 \cdot \=sk+1 ]i\} k\in \scrK \cap \scrQ 2 \rightarrow 0. These two cases
lead to the conclusion that \{ wk+1 \cdot \=sk+1\} k\in \scrK \rightarrow 0, which implies that condition (4.10)
is satisfied. This concludes the proof that (x\ast , s\ast ) is a CAKKT point.

In the complementary case | \scrO | < \infty , it will be shown that every limit point of
\{ (xk+1, sk+1)\} k\in \scrM is infeasible with respect to the constraint c(x) - s = 0 but solves
the least-infeasibility problem

(4.11) minimize
x,s

1
2\| c(x) - s\| 22 subject to s \geq 0.

The first-order KKT conditions for problem (4.11) are

J(x\ast )T
\bigl( 
c(x\ast ) - s\ast 

\bigr) 
= 0, s\ast \geq 0,(4.12a)

s\ast \cdot 
\bigl( 
c(x\ast ) - s\ast 

\bigr) 
= 0, c(x\ast ) - s\ast \leq 0.(4.12b)
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These conditions define an infeasible stationary point.

Definition 4.4 (infeasible stationary point). The pair (x\ast , s\ast ) is an infeasible
stationary point if c(x\ast ) - s\ast \not = 0 and (x\ast , s\ast ) satisfies the optimality conditions (4.12).

The first result shows that the set of M-iterations is infinite whenever the set of
O-iterations is finite.

Lemma 4.5. If | \scrO | <\infty , then | \scrM | =\infty .

Proof. The proof is by contradiction. Suppose that | \scrM | < \infty , in which case
| \scrO \cup \scrM | < \infty . It follows from the definition of Algorithm 4.1 that k \in \scrF for all k
sufficiently large, which implies that there must exist an iteration index kF such that

(4.13) k \in \scrF , y\itE 

k = y\itE , and (\tau k, w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k) = (\tau , w\itE , \mu \itP , \mu \itB ) > 0

for all k \geq kF . This means that the iterates computed by Algorithm 4.1 are the
same as those computed by Algorithm 3.1 for all k \geq kF . In this case Theorem 3.4,
Lemma 3.2(i), and Lemma 3.2(ii) can be applied to show that (4.3) is satisfied for
all k sufficiently large. This would mean, in view of step 11 of Algorithm 4.1, that
k \in \scrM for all sufficiently large k \geq kF , which contradicts (4.13) since \scrF \cap \scrM = \emptyset .

The next lemma justifies the use of the quantities on the right-hand side of (4.3).
In order to simplify the notation, we introduce the quantities

(4.14) \pi \itY 

k+1 = y\itE 

k  - 
1

\mu \itP 

k

\bigl( 
c(xk+1) - sk+1

\bigr) 
and \pi \itW 

k+1 = \mu \itB 

k(Sk+1 + \mu \itB 

kI) - 1w\itE 

k ,

with Sk+1 = diag(sk+1) associated with the gradient of the merit function in (2.3).

Lemma 4.6. If | \scrM | =\infty , then

lim
k\in \scrM 

| \pi \itY 

k+1 - yk+1| = lim
k\in \scrM 

| \pi \itW 

k+1 - wk+1| = lim
k\in \scrM 

| \pi \itY 

k+1 - \pi \itW 

k+1| = lim
k\in \scrM 

| yk+1 - wk+1| = 0.

Proof. It follows from (2.3), (4.3c), and (4.3d) that

(4.15) | \pi \itY 

k+1  - yk+1| \leq \tau k and | \pi \itW 

k+1  - wk+1| \leq \tau k.

As | \scrM | = \infty by assumption, step 12 of Algorithm 4.1 implies that limk\rightarrow \infty \tau k = 0.
Combining this with (4.15) establishes the first two limits in the result. The limit
limk\rightarrow \infty \tau k = 0 may then be combined with (2.3), (4.15), and (4.3b) to show that

(4.16) lim
k\in \scrM 

| \pi \itY 

k+1  - \pi \itW 

k+1| = 0,

which is the third limit in the result. Finally, as limk\rightarrow \infty \tau k = 0, it follows from the
limit (4.16) and bounds (4.15) that

0 = lim
k\in \scrM 

| \pi \itY 

k+1  - \pi \itW 

k+1| = lim
k\in \scrM 

| (\pi \itY 

k+1  - yk+1) + (yk+1  - wk+1) + (wk+1  - \pi \itW 

k+1)| 

= lim
k\in \scrM 

| yk+1  - wk+1| .

This establishes the last of the four limits.

The next lemma shows that if the set of O-iterations is finite, then any limit point
of the sequence \{ (xk+1, sk+1)\} k\in \scrM is infeasible with respect to c(x) - s = 0.

Lemma 4.7. If | \scrO | <\infty , then every limit point (x\ast , s\ast ) of the iterate subsequence
\{ (xk+1, sk+1)\} k\in \scrM satisfies c(x\ast ) - s\ast \not = 0.
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Proof. Let (x\ast , s\ast ) be a limit point of (the necessarily infinite) sequence \scrM ; i.e.,
there exists a subsequence \scrK \subseteq \scrM such that limk\in \scrK (xk+1, sk+1) = (x\ast , s\ast ). For a
proof by contradiction, assume that c(x\ast ) - s\ast = 0, which implies that

(4.17) lim
k\in \scrK 

\| c(xk+1) - sk+1\| = 0.

A combination of the assumption that | \scrO | < \infty , the result of Lemma 4.5, and
the updates of Algorithm 4.1 establishes that limk\rightarrow \infty \tau k = 0 and

(4.18) \chi max
k = \chi max > 0 for all sufficiently large k \in \scrK .

Using | \scrO | <\infty together with Lemma 4.6, the fact that \scrK \subseteq \scrM , and step 9 of the line
search of Algorithm 3.1 gives

(4.19) lim
k\in \scrK 

\| yk+1  - wk+1\| = 0, and wk+1 > 0 for all k \geq 0.

Next, it can be observed from the definitions of \pi \itY 

k+1 and \nabla xM that

gk+1  - JT
k+1yk+1 = gk+1  - JT

k+1(2\pi \itY 

k+1 + yk+1  - 2\pi \itY 

k+1)

= gk+1  - JT
k+1

\bigl( 
2\pi \itY 

k+1  - yk+1

\bigr) 
 - 2JT

k+1(yk+1  - \pi \itY 

k+1)

= \nabla xM(vk+1; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k) - 2JT
k+1(yk+1  - \pi \itY 

k+1),

which, combined with \{ xk+1\} k\in \scrK \rightarrow x\ast , limk\rightarrow \infty \tau k = 0, (4.3a), and Lemma 4.6, gives

(4.20) lim
k\in \scrK 

(gk+1  - JT
k+1yk+1) = 0.

Next, we show that s\ast \geq 0, which will imply that (x\ast , s\ast ) is feasible because of
the assumption that c(x\ast ) - s\ast = 0. The line search (Algorithm 3.1, steps 7--14) gives
sk+1 + \mu \itB 

ke > 0 for all k. If limk\rightarrow \infty \mu \itB 

k = 0, then s\ast = limk\in \scrK sk+1 \geq  - limk\in \scrK \mu \itB 

ke =
0. On the other hand, if limk\rightarrow \infty \mu \itB 

k \not = 0, then step 17 of Algorithm 4.1 is executed a
finite number of times, \mu \itB 

k = \mu \itB > 0, and (4.6) holds for all k \in \scrM sufficiently large.
Taking limits over k \in \scrM in (4.6) and using limk\rightarrow \infty \tau k = 0 gives s\ast \geq 0.

The proof that limk\in \scrK \chi comp(vk+1, \mu 
\itB 

k) = 0 involves two cases.

Case 1. limk\rightarrow \infty \mu \itB 

k \not = 0. In this case, \mu \itB 

k = \mu \itB > 0 for all sufficiently large k.
Combining this with | \scrM | = \infty and the update to \tau k in step 17 of Algorithm 4.1, it
must be that (4.6) holds for all sufficiently large k \in \scrK , i.e., that \chi comp(vk+1, \mu 

\itB 

k) \leq \tau k
for all sufficiently large k \in \scrK . As limk\rightarrow \infty \tau k =0, we have limk\in \scrK \chi comp(vk+1, \mu 

\itB 

k)=0.

Case 2. limk\rightarrow \infty \mu \itB 

k = 0. Lemma 4.6 implies that limk\in \scrK (\pi \itW 

k+1 - wk+1) = 0. The
sequence \{ Sk+1 + \mu \itB 

kI\} k\in \scrK is bounded because \{ \mu \itB 

k\} is positive and monotonically
decreasing and limk\in \scrK sk+1 = s\ast , which means by the definition of \pi \itW 

k+1 that

(4.21) 0 = lim
k\in \scrK 

(Sk+1 + \mu \itB 

kI)(\pi \itW 

k+1  - wk+1) = lim
k\in \scrK 

\bigl( 
\mu \itB 

kw
\itE 

k  - (Sk+1 + \mu \itB 

kI)wk+1

\bigr) 
.

Moreover, as | \scrO | <\infty and wk > 0 for all k by construction, the updating strategy for
w\itE 

k in Algorithm 4.1 guarantees that \{ w\itE 

k\} is bounded over all k (see (4.4)). It then
follows from (4.21), the uniform boundedness of \{ w\itE 

k\} , and limk\rightarrow \infty \mu \itB 

k = 0 that

(4.22) 0 = lim
k\in \scrK 

\bigl( 
[ sk+1 ]i + \mu \itB 

k

\bigr) 
[wk+1 ]i.

There are two subcases.
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Subcase 2a. [ s\ast ]i>0 for some i. As limk\in \scrK [ sk+1 ]i =[ s\ast ]i>0 and limk\rightarrow \infty \mu \itB 

k = 0,
it follows from (4.22) that limk\in \scrK [wk+1 ]i = 0. Combining these limits allows us to
conclude that limk\in \scrK [ q1(vk+1) ]i = 0, which is the desired result for this case.

Subcase 2b. [ s\ast ]i = 0 for some i. In this case, it follows from limk\rightarrow \infty \mu \itB 

k = 0,
(4.22), wk+1 > 0 (see step 9 of Algorithm 3.1), and limk\in \scrK [ sk+1 ]i = [ s\ast ]i = 0 that
limk\in \scrK [ q2(vk+1, \mu 

\itB 

k) ]i = 0, which is the desired result for this case.
As one of the two subcases above must occur for each component i, it follows that

limk\in \scrK \chi comp(vk+1, \mu 
\itB 

k) = 0, which completes the proof for Case 2.
Under the assumption c(x\ast )  - s\ast = 0, it has been shown that (4.17), (4.19),

(4.20), and the limit limk\in \scrK \chi comp(vk+1, \mu 
\itB 

k) = 0 hold. Collectively, these results
imply that limk\in \scrK \chi (vk+1, \mu 

\itB 

k) = 0. This limit, together with the inequality (4.18)
and the condition checked in step 9 of Algorithm 4.1, gives k \in \scrO for all k \in \scrK \subseteq \scrM 
sufficiently large. This is a contradiction because \scrO \cap \scrM = \emptyset , which establishes the
desired result that c(x\ast ) - s\ast \not = 0.

The next result shows that if the number of O-iterations is finite, then all limit
points of the set of M-iterations are infeasible stationary points.

Lemma 4.8. If | \scrO | < \infty , then there exists at least one limit point (x\ast , s\ast ) of
the infinite sequence \{ (xk+1, sk+1)\} k\in \scrM , and any such limit point is an infeasible
stationary point as given by Definition 4.4.

Proof. If | \scrO | < \infty , then Lemma 4.5 implies that | \scrM | = \infty . Moreover, the
updating strategy of Algorithm 4.1 forces \{ y\itE 

k\} and \{ w\itE 

k\} to be bounded (see (4.4)).
The next step is to show that \{ sk+1\} k\in \scrM is bounded.

For a proof by contradiction, suppose that \{ sk+1\} k\in \scrM is unbounded. It follows
that there must be a component i and a subsequence\scrK \subseteq \scrM for which \{ [ sk+1 ]i\} k\in \scrK \rightarrow 
\infty . This implies that \{ [\pi \itW 

k+1 ]i\} k\in \scrK \rightarrow 0 (see (4.14)) because \{ w\itE 

k\} is bounded
and \{ \mu \itB 

k\} is positive and monotonically decreasing. These results, together with
Lemma 4.6, give \{ [\pi \itY 

k+1 ]i\} k\in \scrK \rightarrow 0. However, this limit, together with the bounded-
ness of \{ y\itE 

k\} and the assumption that \{ [ sk+1 ]i\} k\in \scrK \rightarrow \infty , implies \{ [ c(xk+1) ]i\} k\in \scrK \rightarrow 
\infty , which is impossible when Assumptions 3.3 and 3.1 hold. Thus, it must be the
case that \{ sk+1\} k\in \scrM is bounded.

The boundedness of \{ sk+1\} k\in \scrM and Assumption 3.3 ensure the existence of at
least one limit point of \{ (xk+1, sk+1)\} k\in \scrM . If (x\ast , s\ast ) is any such limit point, there
must be a subsequence \scrK \subseteq \scrM such that \{ (xk+1, sk+1)\} k\in \scrK \rightarrow (x\ast , s\ast ). It remains
to show that (x\ast , s\ast ) is an infeasible stationary point (i.e., that (x\ast , s\ast ) satisfies the
optimality conditions (4.12a)--(4.12b)).

As | \scrO | <\infty , it follows from Lemma 4.7 that c(x\ast ) - s\ast \not = 0. Combining this with
\{ \tau k\} \rightarrow 0, which holds because \scrK \subseteq \scrM is infinite (on such iterations, \tau k is reduced
by a factor of two), it follows that the condition (4.5) of step 13 of Algorithm 4.1 will
not hold for all sufficiently large k \in \scrK \subseteq \scrM . The subsequent updates ensure that
\{ \mu \itP 

k\} \rightarrow 0, which, combined with (3.2), the boundedness of \{ y\itE 

k\} , and Lemma 4.6,
gives \bigl\{ 

c(xk+1) - sk+1

\bigr\} 
k\in \scrK \leq 

\bigl\{ 
\mu \itP 

k(y\itE 

k + 1
2 (wk+1  - yk+1))

\bigr\} 
k\in \scrK \rightarrow 0.

This implies that c(x\ast ) - s\ast \leq 0, and the second condition in (4.12b) holds.
The next part of the proof is to establish that s\ast \geq 0, which is the inequality

condition of (4.12a). The test in step 14 of Algorithm 4.1 (i.e., testing whether
(4.6) holds) is checked infinitely often because | \scrM | = \infty . If (4.6) is satisfied finitely
many times, then the update \mu \itB 

k+1 = 1
2\mu 

\itB 

k forces \{ \mu \itB 

k+1\} \rightarrow 0. Combining this with
sk+1 + \mu \itB 

ke > 0, which is enforced by step 9 of Algorithm 3.1, shows that s\ast \geq 0, as
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1084 P. E. GILL, V. KUNGURTSEV, AND D. P. ROBINSON

claimed. On the other hand, if (4.6) is satisfied for all sufficiently large k \in \scrM , then
\mu \itB 

k+1 = \mu \itB > 0 for all sufficiently large k, and limk\in \scrK \chi comp(vk+1, \mu 
\itB 

k) = 0 because
\{ \tau k\} \rightarrow 0. It follows from these two facts that s\ast \geq 0, as claimed.

For a proof of the equality condition of (4.12a) observe that the gradients must
satisfy \{ \nabla xM(vk+1 ; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k)\} k\in \scrK \rightarrow 0 because condition (4.3) is satisfied for all
k \in \scrM (cf. step 11 of Algorithm 4.1). Multiplying \nabla xM(vk+1 ; y\itE 

k , w
\itE 

k , \mu 
\itP 

k, \mu 
\itB 

k) by \mu \itP 

k

and applying the definition of \pi \itY 

k+1 from (4.14) yields\bigl\{ 
\mu \itP 

kg(xk+1) - J(xk+1)T
\bigl( 
\mu \itP 

k\pi 
\itY 

k+1 + \mu \itP 

k(\pi \itY 

k+1  - yk+1)
\bigr) \bigr\} 

k\in \scrK \rightarrow 0.

Combining this with \{ xk+1\} k\in \scrK \rightarrow x\ast , \{ \mu \itP 

k\} \rightarrow 0, and the result of Lemma 4.6 yields\bigl\{ 
 - J(xk+1)T (\mu \itP 

k\pi 
\itY 

k+1)
\bigr\} 
k\in \scrK =

\bigl\{ 
 - J(xk+1)T (\mu \itP 

ky
\itE 

k  - c(xk+1) + sk+1)
\bigr\} 
k\in \scrK \rightarrow 0.

Using this limit in conjunction with the boundedness of \{ y\itE 

k\} , the fact that \{ \mu \itP 

k\} \rightarrow 0,
and \{ (xk+1, sk+1\} k\in \scrK \rightarrow (x\ast , s\ast ) establishes that the first condition of (4.12a) holds.

It remains to show that the complementarity condition of (4.12b) holds. From
Lemma 4.6 it must be the case that \{ \pi \itW 

k+1  - \pi \itY 

k+1\} k\in \scrK \rightarrow 0. Also, the limiting value
does not change if the sequence is multiplied (term by term) by the bounded sequence
\{ \mu \itP 

k(Sk+1 + \mu \itB 

kI)\} k\in \scrK (recall that \{ sk+1\} k\in \scrK \rightarrow s\ast ). This yields\bigl\{ 
\mu \itB 

k\mu 
\itP 

kw
\itE 

k  - \mu \itP 

k(Sk+1 + \mu \itB 

kI)y\itE 

k + (Sk+1 + \mu \itB 

kI)(c(xk+1) - sk+1)
\bigr\} 
k\in \scrK \rightarrow 0.

This limit, together with the limits \{ \mu \itP 

k\} \rightarrow 0 and \{ sk+1\} k\in \scrK \rightarrow s\ast and the bounded-
ness of \{ y\itE 

k\} and \{ w\itE 

k\} , implies that

(4.23)
\bigl\{ 

(Sk+1 + \mu \itB 

kI)(c(xk+1) - sk+1)
\bigr\} 
k\in \scrK \rightarrow 0.

As c(x\ast ) - s\ast \not = 0, there must exist a constraint index i such that [ c(x\ast ) - s\ast ]i \not = 0.
Combining this with \{ (xk+1, sk+1)\} k\in \scrK \rightarrow (x\ast , s\ast ) and (4.23) shows that \{ [ sk+1 ]i +
\mu \itB 

k\} k\in \scrK \rightarrow 0. As s\ast is nonnegative, it follows that \{ \mu \itB 

k\} k\in \scrK \rightarrow 0, However, as \{ \mu \itB 

k\} 
is a monotonically decreasing sequence, it must hold that \{ \mu \itB 

k\} \rightarrow 0. Using this fact,
(4.23), and \{ (xk+1, sk+1)\} k\in \scrK \rightarrow (x\ast , s\ast ), it follows that s\ast \cdot 

\bigl( 
c(x\ast ) - s\ast 

\bigr) 
= 0, and the

first condition in (4.12b) holds. This completes the proof.

The overall convergence result can now be established.

Theorem 4.9. Under Assumptions 3.1--3.3, one of the following occurs:
(i) | \scrO | = \infty , limit points of \{ (xk+1, sk+1)\} k\in \scrO exist, and every such limit point

(x\ast , s\ast ) is a CAKKT point for problem (NIPs). If, in addition, CAKKT-
regularity holds at (x\ast , s\ast ), then (x\ast , s\ast ) is a KKT point for problem (NIPs).

(ii) | \scrO | <\infty , | \scrM | =\infty , limit points of \{ (xk+1, sk+1)\} k\in \scrM exist, and every such
limit point (x\ast , s\ast ) is an infeasible stationary point.

Proof. Part (i) follows from Lemma 4.3 and Theorem 4.2. Part (ii) follows from
Lemma 4.8. Also, it is clear that only one of these two cases must occur.

5. The modified-Newton equations. This section concerns the properties of
the modified-Newton equations H\itM 

k \Delta vk =  - \nabla M(vk) of (3.1). Subsection 5.1 focuses
on the properties of the modified-Newton matrix, while subsection 5.2 discusses an
efficient method for solving the resulting modified-Newton equations for the primal-
dual search direction. Finally, subsection 5.3 establishes the relationship between
the computed search direction and a shifted variant of the conventional primal-dual
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path-following equations. As this section is concerned with details of only a single
iteration, the notation is simplified by omitting the dependence on the iteration k.
In particular, we write v = vk, y\itE = y\itE 

k , w\itE = w\itE 

k , \pi \itY = \pi \itY 

k , \pi \itW = \pi \itW 

k , \Delta v = \Delta vk,
c = c(xk), J = J(xk), g = g(xk), D\itP = \mu \itP 

kI, D\itB = (Sk + \mu \itB 

kI)W - 1
k , and H\itM = H\itM 

k .

5.1. Definition of the modified-Newton matrix. The choice of H\itM in the
equations H\itM \Delta v =  - \nabla M(v) is based on making two modifications to \nabla 2M . The first
involves substituting y for \pi \itY and w for \pi \itW in (2.4). (Lemma 4.6 and the discussion
of subsection 5.3 below provide justification for this choice.) The second modification

is to replace the modified Hessian H(x, y) by a symmetric \widehat H such that \widehat H \approx H(x, y)
and H\itM is positive definite. These modifications give an H\itM in the form

(5.1) H\itM =

\left(    
\widehat H + 2JTD - 1

\itP J  - 2JTD - 1
\itP JT 0

 - 2D - 1
\itP J 2(D - 1

\itP + D - 1
\itB )  - I I

J  - I D\itP 0
0 I 0 D\itB 

\right)    .

Practical conditions for the choice of a positive-definite \widehat H are based on the next result,
which is established in [21].

Theorem 5.1. The matrix H\itM in (5.1) is positive definite if and only if

(5.2) In(K) = In(n,m, 0), where K =

\biggl( \widehat H JT

J  - (D\itB + D\itP )

\biggr) 
,

which holds if and only if \widehat H + JT(D\itP + D\itB ) - 1JT is positive definite.

There are a number of alternative approaches for choosing \widehat H based on computing
a factorization of the (n+m)\times (n+m) matrix K (5.2) (see, e.g., Gill and Robinson [24,
section 4], Forsgren [14], Forsgren and Gill [15], Gould [27], Gill and Wong [25],

and W\"achter and Biegler [37]). All of these methods use \widehat H = H(x, y) if this gives

a sufficiently positive-definite H\itM . The next result shows that \widehat H = H(x, y) gives
a positive-definite H\itM in a sufficiently small neighborhood of a solution satisfying
second-order sufficient optimality conditions and strict complementarity. The proof
may be found in [21].

Theorem 5.2. The matrix H\itM in (5.1) with the choice \widehat H = H(x, y) is positive
definite for all u = (x, s, y, w, y\itE , w\itE , \mu \itP , \mu \itB ) sufficiently close to u\ast = (x\ast , s\ast , y\ast ,
w\ast , y\ast , w\ast , 0, 0), when (x\ast , s\ast , y\ast , w\ast ) is a solution of problem (NIPs) that satisfies
second-order sufficient optimality conditions and strict complementarity.

5.2. Solving the modified-Newton equations. The modified-Newton equa-
tions (3.1) defined with H\itM from (5.1) should not be solved directly because of the
potential for numerical instability. Instead, an equivalent transformed system should
be solved based on the transformation

T =

\left(    
I 0  - 2JTD - 1

\itP 0
0 I 2D - 1

\itP  - 2D - 1
\itB 

0 0 I 0
0 0 0 W

\right)    .

As T is nonsingular, the modified-Newton direction \Delta v from (3.1) satisfies

TH\itM \Delta v =  - T\nabla M(x, s, y, w; y\itE , w\itE , \mu \itP , \mu \itB ),
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1086 P. E. GILL, V. KUNGURTSEV, AND D. P. ROBINSON

which, upon multiplication and application of the identity WD\itB = S + \mu \itB I, yields

(5.3)

\left(    
\widehat H 0  - JT 0
0 0 I  - I
J  - I D\itP 0
0 W 0 S + \mu \itB I

\right)    
\left(    
\Delta x
\Delta s
\Delta y
\Delta w

\right)    =  - 

\left(    
g  - JTy
y  - w

c - s + \mu \itP (y  - y\itE )
s \cdot w + \mu \itB (w  - w\itE )

\right)    .

The solution of this transformed system may be found by solving two sets of equations,
one diagonal and the other of order n+m. To see this, first observe that the equations
(5.3) may be written in the form

(5.4)

\left(    
\widehat H 0  - JT 0
0 0 I  - I
J  - I D\itP 0
0 I 0 D\itB 

\right)    
\left(    
\Delta x
\Delta s
\Delta y
\Delta w

\right)    =  - 

\left(    
g  - JTy
y  - w

c - s + \mu \itP (y  - y\itE )
W - 1

\bigl( 
s \cdot w + \mu \itB (w  - w\itE )

\bigr) 
\right)    .

The solution of (5.4) is given by

(5.5) \Delta w = y  - w + \Delta y and \Delta s =  - W - 1
\bigl( 
s \cdot (y + \Delta y) + \mu \itB (y + \Delta y  - w\itE )

\bigr) 
,

where \Delta x and \Delta y satisfy the equations\biggl( \widehat H  - JT

J D\itP + D\itB 

\biggr) \biggl( 
\Delta x

\Delta y

\biggr) 
=  - 

\biggl( 
g  - JT y

c - s + \mu \itP (y  - y\itE ) + W - 1
\bigl( 
s \cdot y + \mu \itB (y  - w\itE )

\bigr) \biggr) 
or, equivalently, the symmetric equations

(5.6)

\Biggl( \widehat H JT

J  - (D\itP + D\itB )

\Biggr) \biggl( 
\Delta x

 - \Delta y

\biggr) 
=  - 

\biggl( 
g  - JTy

D\itP (y  - \pi \itY ) + D\itB 

\bigl( 
y  - \pi \itW 

\bigr) \biggr) .

Solving this (n+m)\times (n+m) symmetric system is the dominant cost of an iteration.
The identity w + \Delta w = y + \Delta y implies that if the initial values satisfy y0 = w0 and
y\itE 
0 = w\itE 

0 , and the positive safeguarding values in (4.4) satisfy ymax = wmax, then all
subsequent iterates will satisfy w = y.

5.3. Relationship to primal-dual path-following. Consider the perturbed
optimality conditions (2.2) and their associated primal-dual path-following equations

F (x, s, y, w ; y\itE , w\itE , \mu \itP , \mu \itB ) =

\left(    
g(x) - J(x)Ty

y  - w
c(x) - s + \mu \itP (y  - y\itE )
s \cdot w + \mu \itB (w  - w\itE )

\right)    =

\left(    
0
0
0
0

\right)    .

A zero (x, s, y, w) of F satisfying s > 0 and w > 0 approximates a solution to problem
(NIPs), with the approximation becoming increasingly accurate as both \mu \itP (y - y\itE )\rightarrow 
0 and \mu \itB (w  - w\itE ) \rightarrow 0. If v = (x, s, y, w) is a given approximate zero of F such
that s + \mu \itB e > 0 and w > 0, the Newton equations for the change in variables
\Delta v = (\Delta x,\Delta s,\Delta y,\Delta w) are given by F \prime (v)\Delta v =  - F (v), i.e.,\left(    

H(x, y) 0  - J(x)T 0
0 0 I  - I

J(x)  - I \mu \itP I 0
0 W 0 S + \mu \itB I

\right)    
\left(    
\Delta x
\Delta s
\Delta y
\Delta w

\right)    =  - 

\left(    
g(x) - J(x)Ty

y  - w
c(x) - s + \mu \itP (y  - y\itE )
s \cdot w + \mu \itB (w  - w\itE )

\right)    .D
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These equations are identical to the modified-Newton equations (5.3) for minimizing

M when \widehat H = H(x, y). Theorem 5.2 shows that the choice \widehat H = H(x, y) is allowed in
the neighborhood of a solution satisfying certain second-order optimality conditions,
and it follows that the modified-Newton direction used in the proposed method is
equivalent asymptotically to the shifted primal-dual path-following directions.

5.4. Infeasible shifted constraints. In Algorithm 4.1 it is necessary to reduce
the value of the barrier parameter \mu \itB during an M-iteration if the slacks are not
sufficiently feasible or the complementarity condition is not sufficiently satisfied (see
step 17 of Algorithm 4.1). In addition, as the initial values of \mu \itP and \mu \itB may be larger
than the minimum values needed to give a positive-definite H\itM 

k (5.1) at a solution,
it is prudent to reduce \mu \itP and \mu \itB if a sequence of iterations occurs in which H\itM 

k

is not positive definite. However, reducing the value of \mu \itB reduces the value of the
constraint shift, which may cause a slack variable to become infeasible with respect
to its shifted bound. In this section we define a minor modification of the method
that treats this situation. For reasons discussed below, it is assumed that a barrier
parameter \mu \itB 

i is associated with every constraint si \geq 0, i.e., \mu \itB is an m-vector with
positive components. Suppose that \mu \itB 

i and \=\mu \itB 
i denote a shift before and after it is

reduced, with si + \mu \itB 
i > 0 and si + \=\mu \itB 

i \leq 0. The variable si can be returned to
feasibility by imposing a temporary equality constraint si = 0. This constraint is
enforced by the primal-dual augmented Lagrangian term until | ci(x)| is sufficiently
small that ci(x) >  - \=\mu \itB 

i , at which point si is assigned the value si = ci(x) and allowed
to move. On being freed, the value of wi is reinitialized as max\{ yi, \epsilon \} , where \epsilon is a
small positive constant. At a given iteration, if m\itX slacks are fixed, then mF = m - m\itX 

slacks are free to move. In those iterations for which some of the slack variables are
fixed, the problem being solved has the form

(5.7) minimize
x\in \BbbR n,s\in \BbbR m

f(x) subject to c(x) - s = 0, L\itX s = 0, LFs \geq 0,

where L\itX and LF are m\itX \times m and mF \times m matrices formed from rows of the identity
matrix Im in such a way that L\itX s and LFs give the ``fixed"" and ``free"" components
of s. While a slack is fixed, its associated barrier term is omitted from the shifted
primal-dual merit function.

The shifted primal-dual modified-Newton equations for problem (5.7) are given in
(5.8)--(5.10) and (5.11) below (for details on how the equations are derived, see Gill,
Kungurtsev, and Robinson [20]). In the following discussion, \mu \itB denotes a vector
of shifts with the appropriate values of \mu \itB 

i or \=\mu \itB 
i . Any feasible s can be written

uniquely as s = LT
F s\itF , where s\itF is the n\itF -vector of free slacks. If wF and w\itX denote

Lagrange multipliers for the constraints L\itX s = 0 and LFs \geq 0, given x and s such
that [ sF + \mu \itB ]i > 0, the solution of the modified-Newton equations for problem (5.7)
can be written in terms of the quantities

D\itP = \mu \itP I, \pi \itY = y\itE  - 1

\mu \itP 

\bigl( 
c(x) - s

\bigr) 
,

D\itB = (S\itF + D\itB 

\mu )W - 1
F , \pi \itW 

F = \mu \itB \cdot (S\itF + D\itB 

\mu ) - 1w\itE 

F ,

where D\itB 
\mu = diag(\mu \itB ), SF = diag(sF ), WF = diag(wF ), and IF is the identity matrix

of order nF . Given these definitions, the equations for \Delta s, \Delta wF , and \Delta w\itX analogous
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to (5.5) and (5.6) are given by

\widehat y = y + \Delta y, \Delta s\itF =  - D\itB 

\bigl( 
L\itF \widehat y  - \pi \itW 

F

\bigr) 
, \Delta s = LT

F \Delta s\itF ,(5.8)

\Delta w\itX = L\itX \widehat y  - w\itX ,(5.9) \widehat s = s + \Delta s, \Delta w\itF =  - (S\itF + D\itB 

\mu ) - 1
\bigl( 
w\itF \cdot (L\itF \widehat s + \mu \itB ) - \mu \itB \cdot w\itE 

F

\bigr) 
,(5.10)

where \Delta x and \Delta y satisfy the equations

(5.11)

\biggl( 
H JT

J  - (D\itP + \=D\itB )

\biggr) \biggl( 
\Delta x
 - \Delta y

\biggr) 
=  - 

\biggl( 
g  - JTy

D\itP (y  - \pi \itY ) + \=D\itB 

\bigl( 
y  - LT

F \pi 
\itW 
F

\bigr) \biggr) ,

with \=D\itB = LT
F D\itB L\itF . As the matrix D\itP + \=D\itB is diagonal, the treatment of an infeasible

shifted constraint requires no significant additional computation (cf. (5.6)).

6. Implementation details and numerical testing. Numerical results are
given for a simple MATLAB implementation of procedure PDB (Algorithm 4.1). Re-
sults were obtained for 140 problems from the CUTEst test collection (see Bongartz
et al. [3] and Gould, Orban, and Toint [28]). The problems consist of the CUTEst
implementations of all but two of the 126 problems from the Hock and Schittkowski
(HS) test set [29], and 16 problems from the COPS test set [9, 11]. The two excluded
problems are hs87, which is nonsmooth, and hs99exp, which is poorly scaled.

6.1. The implementation. Each CUTEst problem may be written in the form

minimize
x

f(x) subject to

\biggl( 
\ell \itX 

\ell \itS 

\biggr) 
\leq 
\biggl( 

x
c(x)

\biggr) 
\leq 
\biggl( 
u\itX 

u\itS 

\biggr) 
,

where c : \BbbR n \mapsto \rightarrow \BbbR m, f : \BbbR n \mapsto \rightarrow \BbbR , and (\ell \itX , \ell \itS ) and (u\itX , u\itS ) are constant vectors of
lower and upper bounds. In this format, a fixed variable or an equality constraint has
the same value for its upper and lower bounds. A variable or constraint with no upper
or lower limit is indicated by a bound of \pm 1020. For Algorithm 4.1, each problem was
converted to the equivalent form

(6.1)

minimize
x\in \BbbR n,s\in \BbbR m

f(x)

subject to c(x) - s = 0, L\itX s = h\itX , \ell \itS \leq L\itL s, L\itU s \leq u\itS ,

E\itX x = b\itX , \ell \itX \leq E\itL x, E\itU x \leq u\itX ,

where s is a vector of slack variables. The quantity E\itX denotes an n\itX \times n matrix
formed from n\itX independent rows of In. Similarly, E\itL and E\itU denote matrices formed
from subsets of In such that ET

\itX E\itL = 0, ET
\itX E\itU = 0, i.e., a variable is either fixed or

free to move, possibly bounded by an upper or lower bound. Note that a variable
xj need not be subject to a lower or upper bound, or it may be bounded below and
above, in which case ej is not a row of E\itX , E\itL , or E\itU . Analogous definitions hold for
L\itX , L\itL , and L\itU as subsets of rows of Im, although a given sj must be either fixed
or restricted by an upper or lower bound, i.e., there are no unrestricted slacks. The
bound constraints involving E\itX and L\itX are enforced explicitly as in section 5.4. The
modified-Newton equations for problem (6.1) are derived by Gill, Kungurtsev, and
Robinson [20]. As is the case for problem (5.7), the principal work at each iteration
is the solution of a perturbed reduced KKT system analogous to (5.11).

The problem format (6.1) must be extended to allow for the possibility of a
variable or slack becoming infeasible with respect to its shifted bound. An infeasible
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slack variable is treated as in the previous section by temporarily fixing it on its
bound. An infeasible variable is treated by imposing the bound indirectly using the
primal-dual augmented Lagrangian. If xj is infeasible with respect to \ell \itX j  - \mu \itB 

j , the
constraint xj  - \ell \itX j = 0 is included as a temporary penalty term in M , i.e.,

 - v\itE 

j (xj  - \ell \itX j ) +
1

2\mu \itA 
j

(xj  - \ell \itX j )2 +
1

2\mu \itA 
j

\bigl( 
xj  - \ell \itX j + \mu \itA 

j (vj  - v\itE 

j )
\bigr) 
2,

where v\itE 
j is an estimate of the multiplier for the constraint xj = \ell \itX j , and \mu \itA 

j is a penalty
parameter chosen so that \mu \itA 

j < \=\mu \itB 
j . The initial values of vj and v\itE 

j are vj = zj and v\itE 
j =

z\itE 
j , where zj > 0 is the dual variable associated with the constraint xj \geq \ell \itX j . (These

quantities appear in the perturbed primal-dual optimality conditions associated with
problem format (6.1).) While xj is infeasible, its associated barrier term is omitted
from the shifted primal-dual merit function. Once xj returns to feasibility for the
shifted bound, the shifted barrier term replaces the temporary penalty term in the
definition of M, with zj and z\itE 

j initialized from vj and v\itE 
j . For the purpose of deriving

the KKT equations, this scheme implies that additional constraints Ax  - b = 0 are
imposed, where A is a matrix of positive and negative rows of In, and bj is either \ell \itX j
or  - u\itX 

j . The effect of imposing the constraints Ax - b = 0 is to add a diagonal matrix

ATD\itA 
\mu A = AT diag(\mu \itA )A to the H-block of the reduced KKT equations analogous to

(5.6) (see Gill, Kungurtsev, and Robinson [20] for more details).
Two alternative methods were used to modify the H-block of a KKT matrix with

fewer than n positive eigenvalues, with the choice of method depending on the size
of the problem. For the HS problems, H was modified during the calculation of the
LDLT factorization using the inertia controlling LDLT factorization of Forsgren [14]
and Forsgren and Gill [15]. For the COPS problems the Hessian was modified using
the method of W\"achter and Biegler [38, Algorithm IC, p. 36], which factors the KKT

matrix with \delta In added to H. At any given iteration the \delta is increased from zero if
necessary until the inertia of the KKT matrix is correct. Each (possibly perturbed)
KKT matrix was factored using the MATLAB built-in command LDL, which uses the
routine MA57.

6.2. Algorithm parameters and termination conditions. The MATLAB
implementation was initialized with parameter values given in Table 1, which were
chosen based on the empirical performance on the entire collection of problems. The
primal-dual vector (x0, y0) was chosen as the default values supplied by CUTEst,
although the code immediately projects x0 onto the feasible region to ensure feasibility
with respect to the bounds on x. The iterates were terminated at a point satisfying
the condition

(6.2) \| \chi (vk)\| \infty < \tau stop,

where \chi (v) is the optimality measure (4.1) defined in terms of problem (6.1).

Table 1
Control parameters and initial values for Algorithm 4.1.

Parameter Value Parameter Value Parameter Value Parameter Value

ymax/wmax 1.0e+5 \tau stop 1.0e-4 \mu \itP 
0 1.0 \chi max

0 1.0e+3

\eta 1.0e-2 \tau 0 0.5 \mu \itB 
0 1.0e-4 \gamma 1.0e-3D
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Fig. 1. Performance profiles and outperforming factors for function evaluations.

6.3. Numerical results. Figure 1 gives the performance profiles and bar graphs
that compare the number of function evaluations needed by PDB and the interior-point
solver IPOPT [36, 38] on the CUTEst HS and COPS test problems. In each case, the
left figure gives performance profiles for the total number of function evaluations.
(For a description of how performance profiles should be interpreted, see Dolan and
Mor\'e [10].) The right figure gives the ``outperforming factor"" bar graphs proposed
by Morales [31]. On the x-axis, each bar corresponds to a particular test problem,
with the problems listed in ascending order for the HS problems and alphabetical
order camshape, catmix, chain, channel, elec, gasoil, glider, marine, methanol,
minsurfo, pinene, polygon, robotarm, rocket, steering, and torsion1 for the
COPS problems. The y-axis indicates the factor (log2 scaled) by which one solver
outperformed the other. A bar in the positive region indicates that PDB outperformed
IPOPT. A negative dark gray bar means IPOPT performed better. A negative light gray
bar denotes that PDB was unable to satisfy the termination criteria in 500 iterations.
The results indicate that, overall, the simple MATLAB code PDB usually requires
fewer function evaluations than IPOPT but is slightly less robust. Algorithm PDB was
able to satisfy the optimality measure for 137 (98\%) of the 140 test problems (see [20,
Tables 2 and 3] for detailed results for each problem). In each of the three COPS

D
ow

nl
oa

de
d 

07
/0

1/
20

 to
 1

32
.2

39
.1

45
.2

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD 1091

``failures"" glider, robotarm, and rocket, the iterates were terminated at a point
where the KKT matrix was nearly singular. In these three cases, respectively 100\%,
99\%, and 98\% of the iterations required the Hessian to be modified. For the 124 HS

problems, a grand total of 90\% of the iterations computed were O-iterates, and 7\%
of the iterations computed were F-iterates. An M-iterate was computed in only 55 of
the iterations required to solve all 124 HS problems. Overall, 41 of the 124 problems
required the Hessian of the Lagrangian to be modified. For the COPS problems a
grand total of 72\% of the iterations computed were O-iterates, 26\% computed were
F-iterates, and there were 16 M-iterations. The Hessian was modified in 73\% of the
iterates. The results illustrate the crucial importance of an effective modification
scheme when the KKT matrix does not have the correct inertia.

7. Conclusions. A new primal-dual shifted penalty-barrier function has been
formulated and analyzed for solving inequality-constrained nonlinear optimization
problems. This function is proposed as a merit function for a primal-dual algorithm
for nonlinear optimization with favorable convergence properties. In particular, it
has been shown that a limit point of the sequence of iterates may always be found
that is either an infeasible stationary point or a complementary approximate KKT

point; i.e., it satisfies reasonable stopping criteria and is a KKT point under the
cone continuity property, which is the weakest constraint qualification associated with
sequential optimality conditions. At each step of the algorithm, a regularized KKT

system is solved to obtain a descent direction for the merit function. Under suitable
additional assumptions the method is equivalent to a shifted variant of the primal-
dual path-following method in the neighborhood of a solution. Preliminary numerical
experiments indicate that the primal-dual shifted penalty-barrier function provides
an effective way of ensuring global convergence. The results also illustrate the crucial
importance of an effective modification scheme when the KKT matrix does not have
the correct inertia.

Acknowledgment. The authors would like to thank three referees for construc-
tive comments that significantly improved the presentation.
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