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Abstract— This paper presents a new probabilistic algorithm
for trajectory planning for autonomous vehicles (AV) in search
and security applications. The goal is to compute optimized
paths for the AVs in real time which maximize the probability
of locating a fixed target, subject to constraints on the vehicle
dynamics, within a prespecified time horizon. The likelihood of
not detecting the target is modeled in a probabilistic manner
based on approximate models of sensor acuity as a function
of the distance to (and, the speed of) the sensor vehicle.
For any possible vehicle path, a cost function is considered
that accumulates the overall likelihood of not locating the
target. Using an adjoint-based calculation, the gradient of this
cost with respect to the control inputs is determined. The
formulation of the cost function and the vehicle dynamics
are decoupled, facilitating easy extension of the framework
developed to other types of vehicles. The framework can also
account for a priori estimates of the probability distribution
of the target of interest. To accelerate convergence, we use
the projected-search limited-memory reduced Hessian (LRH-
B), a recently developed gradient-based optimization method
for constrained optimization; the LRH-B method significantly
outperforms existing optimization algorithms as implemented
in standard packages. Results indicate that our new framework
can efficiently coordinate the search over the domain, and that
LRH-B reduces the total computational cost during the search.

I. INTRODUCTION

Robot motion planning plays an integral role in the de-
ployment of autonomous vehicles and Mars rovers for search,
rescue, and discovery purposes.

The coverage algorithms for autonomous vehicles are
categorized into two main categories of algorithms:
(a) guarantee the complete coverage of search domain such

as algorithms for lawnmowers, harvesters, spray paint-
ing machines, window and floor cleaners [23], [9];

(b) attempt to maximize this coverage area, but can’t neces-
sarily assure complete converge such as algorithms for
search and rescue [17].

This work focuses on trajectory planning and coverage
algorithms which is attempting to maximize the coverage
area in a pre-specified time. In this context, the algorithms
are classified according to the methods implemented [13]:

A more recent survey of coverage algorithms in [13]
classifies algorithms according to the methods implemented,
including different types of cellular decomposition methods,
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grid-based method, and graph-based methods, and treats
algorithms developed for different environments, as well as
methods to maximize coverage area when complete coverage
is not possible.

Certain works [18], [21], [2] consider vehicles in coverage
planning with some considering the dynamics of the vehicle
in to account [8]. Generally trajectories becoming simple line
segments or curves over the search domain.

A few studies have involved probabilistic approaches to
determine the location of the target [10], [29], [19]; most
such studies have generated the search path using derivative-
free optimization methods and are not suitable for real-time
operation. A generalized probabilistic search framework is
proposed in [31] for the estimation of the location of the
target. The search strategy tests the sensing capabilities of
autonomous vehicles (AVs) at different heights and assumes
the complete or partial coverage of multiple cells. The path
that the AV follows is determined by selecting the neighbor-
ing cell that possesses maximum probability of containing
the target.

Although there is a large body of work on decomposing
the search environment for robot motion planning and es-
timating the location of a target, most planning algorithms
assume the motion of the vehicle to be from one cell to
another. In this approach, we take the dynamics of the
vehicle into consideration when optimizing the vehicle path.
This was also done in [25], in which an algorithm was
proposed for complete coverage in the binary framework
mentioned above, marking any region as observed or not
observed. An incremental sampling-based rapid information

Fig. 1. This toy robot is an example of a single axle two wheeled robot,
whose equations of motion can be used to plan its trajectory. This image
was taken from https://www.ucsdrobotics.org/mips

gain (RIG) algorithm is developed in [21], [25], [3] using
variations of the rapidly-exploring random tree (RRT) search
algorithm, which include iRRt, RRT*, and RRBT [27]. As
shown in a number of numerical experiments, the RIG
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algorithm explores the entire domain, and chooses the path
for which the information gain is maximized. The algorithm
is developed to plan paths under a specified budget, and the
constraints on the vehicle dynamics are implemented using
a steer function.

In [18], a heuristic method is proposed for maximizing
the area covered (again, in a binary setting) using a AV
for which the turn rate is the only control variable. With
this approach, the path of the AV is chosen to maximize
the percentage of the search area that is covered. Two
constraints are imposed; the first limits the total energy
used by the AV, and the second specifies the final location
of the AV. The search algorithm directs the AV towards
the areas that have yet been covered, provided there is
enough energy for the AV to get back to the required final
location. Optimization of the cost function with respect to
constraints is performed using an off-the-shelf derivative-
free solver. Overall, this method for computing the optimal
coverage is robust, but has a number of disadvantages. First,
the method does not provide a cost function that can be
differentiated with respect to the control variables, which
prohibits the use of efficient derivative-based optimization
methods. Second, the method cannot be applied to ground
vehicles that must avoid obstacles. Finally, the formulation is
unable take advantage of a priori information about specific
regions of the search domain of heightened interest, which
is available in certain applications. In [11], the researchers
have proposed several search strategies developed using the
influence of natural systems. These strategies are shown to
require low computational expense. Their work also enables
the strategy to include information available before hand. The
algorithm has a termination criteria to determine if a target
is present or not and the time it takes the autonomous system
to decide whether a target is present in the domain or not is
also optimized. Numerous research studies have looked into
multi-agent search for target tracking, for instance [20], [22],
and [30] are some of the important works in this area.

The purpose of the present paper is to develop a method to
optimize a single vehicle’s path by maximizing the probabil-
ity of finding a target using model predictive control (MPC).
This algorithm can be applied to the Puffer robot [24],
BRUIE robot [5], Axel robort [28] and other single vehicle
robots that are designed to venture into outer space and in
scenarios where human intervention with the robot is limited.
A cost function is defined that accumulates the probability
of not finding the target for a given path, assuming the target
is somewhere within the domain of interest. The algorithm
then minimizes this cost function over a sequence of feasible
control inputs used to maneuver the vehicle. Note that the
cost function is an explicit function of the path taken, and the
optimization is performed with respect to the feasible control
inputs; we find this approach to be versatile and readily
extensible to suit a variety of different practical scenarios.
Further, the approach is differentiable, allowing exact com-
putation of the gradient, which facilitates implementation of
highly efficient gradient-based optimization methods. Strong
parallels can be drawn between our work and [7], where the

authors propose an optimal search strategy for a lost target
(both stationary and moving).

II. MATHEMATICAL MODEL

The aim is to determine a sequence of vehicle control in-
puts that minimize an objective function. We have developed
our optimization algorithm to minimize the probability of not
detecting the target, in turn maximizing the probability of
detecting the target. In this section, the equations of motion
of the robot and the objective function is formulated. For a
given target with unknown location, the objective function
is designed to give the probability of not locating the target
for a given sequence of control inputs.

A. Equations of motion

The vehicle is modeled as a nonholonomic system, which
is a point mass moving on a 2-dimensional plane. Equations
describing the dynamics is shown below,q̇x

q̇y
θ̇

=

u1 cosθ

u1 sinθ

u2

 . (1)

This model was taken from [26]. The control variables u1 and
u2 denote the velocity and turn rate of the robot respectively.
Variables qx(k) and qy(k) represent the co-ordinates of the
robot’s position at time step k. The scalar θ represents the
angle made by the robot with respect to the horizontal. The
vectors q1 and u1 are defined such that

q1 =

qx(1)
qy(1)
θ(1)

 , u1 =

(
u1(1)
u2(1)

)
.

Henceforth, Nsys(q,u) = 0 is used to represent the vehicular
system (1), where q represents the states q1, q2, . . . qN , and
u represents the sequence of control input vectors u1, u2,
. . . uN−1. An RK-4 integration scheme is used to march the
differential equation (1) forward in time, using a constant
timestep h, a total of N = T/h steps.

B. Objective function

Consider a square domain Ω ∈ R2. Assume the domain
is discretized using a uniform grid along the vertical and
horizontal directions (x and y are used to denote the location
of the grid points). The grid resolution may be selected by
the user, with a finer grid yielding more accurate results but
at higher computational cost.

The value of the cost function J(q(u)) is determined by
the path of the robot, i.e., a set of coordinates qx(k) and
qy(k), with k varying from 1 to N. These coordinates are
obtained by marching (1) for a sequence of inputs, u1 to
uN−1. The objective is defined in terms of the probability
of not locating the object for a set of observations made by
the robot. The robot takes an observation at each time step,
with the total number of observations denoted by N. The cost
function decreases monotonically with each observation.

If the location of the target is (x,y), then the probability of
not finding the target at time step k is represented by φk(x,y).
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The optimization algorithm (described in a later section) aims
to reduce φ over all the grid points. The initial probability
distribution over the entire domain is represented by φ0. For
time steps k = 0 to k = N−1, the value of φ ∈ [0,1] at each
grid point is updated as

φk+1(x,y) = φk(x,y)
(

1−Pe−β (x−qx(k+1))2+(y−qy(k+1))2
)
,

(2)
where the scalars P and β are specified by the user to
reflect the sensor capabilities of the robot. In this current
work, we assume that the probability distribution between
two observations does not change. φ0 must be specified by
the user and can represent information that might be known
in advance. A numerical value of 1 for φ0(x1,y1) indicates
that at time step t = 0, if the target is present at (x1,y1), the
probability of the robot not locating it is 1. In other words,
the robot does not yet have any information about the target’s
presence at (x1,y1). If the user has no prior information about
the location of the target, then

φ0(x,y) = 1 ∀x,y ∈Ω. (3)

Although x and y assume discrete values, the quantities
qx and qy can take values over a continuous range. The
quantities qx(1) and qy(1) denote the starting point for
the robot’s search in the 2-dimensional plane and are also
specified by the user.

The proposed method does not restrict the robot to move
from one cell to another, although the cost function is loosely
based on cellular decomposition. With φ0 initialized, φN is
computed using (2) based on the robot’s trajectory. The cost
function is computed as follows,

J(q(u)) =
√

∑
x,y

φN(x,y)
2. (4)

Algorithm 1 The algorithm was developed to be suitable for
solving problems with hard box constraints on the control
variables. The structure of the algorithm makes it easily ap-
plicable in different scenarios. The criterion for convergence
can be decided by the user. A predefined tolerance on the
norm of the gradient with respect to the free variables is used
to determine when the algorithm terminates.

1) Initialize φ0 over the entire domain based on any prior
knowledge available and guess the initial sequence of
control inputs u.

2) Generate the robot’s trajectory, qx and qy by marching
the differential equations (1) using the most recent
control inputs.

3) Compute φ1 to φN as defined by (2), where N is the
number of steps the robot takes, and compute the cost
function J(q(u)) as specified in equation (4).

4) Obtain the gradient of the cost function using adjoint-
based methods as shown in Section III-A.

5) Apply LRH-B algorithm to find the optimized se-
quence of control inputs.

6) Repeat steps 2 to 5 until convergence is achieved.

The cost function is designed to evaluate how much informa-
tion over the domain is yet to be obtained. For instance, if the
robot’s path covers the whole domain sufficiently, then the
cost function J(q(u)) will be 0 which can be interpreted as,
no more information over the domain needs to be obtained.

In summary, each grid point is initialized with a value
that represents the probability of not finding the target at time
t = 0 if the target is present at that location, given by φ0(x,y).
Then, for a sequence of inputs, the trajectory of the robot
(expressed in terms of N steps) is computed by marching the
differential equations (1) with RK4, and the probability φN is
computed using (2). Finally the cost function J is computed
using (4).

It should be noted that the objective function is decoupled
from the dynamics of the vehicle, which makes the method
versatile in its application. This approach also allows the
user to specify a priori information about the domain. This
feature can be used to develop a path that induces the robot
to focus on those parts of the domain where no information
is available.

III. OPTIMIZATION

The optimization algorithm minimizes the cost function
with respect to u ∈ Rn,

min
u

J(q(u)) subject to ulower ≤ u≤ uupper, (5)

where J(q(u)) : Rn 7→ R.
We have implemented LRH-B algorithm for optimizing

the sequence of inputs. It is a model-based quasi-Newton
optimization method. That is, given u, the search direction p
is computed so that u+p minimizes some quadratic model of
J at u. During iteration i, a quasi-Newton method calculates
pi so that ui +pi minimizes the quadratic model

Qi(u) = J(q(ui))+∇J(q(ui))
T (u−ui)

+ 1
2 (u−ui)

T Hi (u−ui),

where ∇J(q(ui)) is the gradient, whose formulation is shown
below, and Hi is a symmetric positive-definite quasi-Newton
approximation of the Hessian ∇2J(q(ui)). Details of the
formulation and analysis of the LRH-B method are given
in [12].

The dynamical system Nsys(q,u) of the robot is differ-
entiable, and is used in developing the analytical gradient
required for the quadratic model (5). It is well known that
gradient-based approaches are more efficient and robust than
gradient-free methods (see, e.g., [16, Chapter 7], the fact
that we use gradient based approach improves our algorithm
considerably compared to commerical software packages, the
result of which is shown in the results section. The ability
to compute the gradient allows the use of quasi-Newton
methods to optimize the objective function.

A. Adjoint-based gradient method

As the objective function is not related explicitly to the
control variables, an adjoint method is used to compute the
gradient. This is done by constraining the objective function,
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with the constraint Nsys(q,u) = 0 and using the properties of
the Lagrangian function given by

L(q,u,λ ) = J(q(u))+λ
T Nsys(q,u). (6)

(For more details, the reader is referred to [6].) As Nsys(q,u)
is identically zero by construction, it follows that J(q(u)) =
L(q,u,λ ). The nonlinear system of equations Nsys(q,u) is
given by (1), and is marched forward using RK4.

The required gradient may be formulated as

dL
du

=
∂J
∂q

dq
du

+λ
T
[

∂Nsys

∂q
dq
du

+
dNsys

du

]
(7)

=
dq
du

[
∂J
∂q

+λ
T dNsys

dq

]
+λ

T dNsys

du
. (8)

In order to circumvent the computation of dx/du, the quan-
tity λ is forced to satisfy the equation

dNsys

dq
λ

T =− ∂J
∂q

AT
λ =− ∂J

∂q

T

,

(9)

where A =
∂Nsys

∂q

∣∣
q=q(t). Equation (9) is called the adjoint

equation.
With the knowledge of q for an input control sequence

from t = 0 to t = T , the vector λ can be found by marching
equation (9) backward in time with the initial value λ (T ) =
0. Once λ has been determined, the gradient is computed
from

dJ
du

= λ
T B, with B =

∂Nsys

∂u
∣∣
u=u(t). (10)

B. Solving the box-constrained optimization problem

The optimization problem (5) is solved using the LRH-
B package, which implements a projected-search method.
Given an initial point u and a continuously-differentiable
function J to be minimized, a projected-search method
repeatedly solves two subproblems: the first calculates a
search direction p∈Rn; the second performs a line search on
the piecewise-differentiable function ψ(α) = f (P(u+αp))
to compute a step length α , where P(u) is defined to be
the closest feasible point to u. (A line search of this type is
referred to as a projected line search.) Once α and p have
been found, the next iterate is given by P(u+αp) and the
process is repeated until a solution is located.

Solving a box-constrained minimization problem can be
regarded as solving two subproblems. The first seeks to
identify the optimal active set. Once the optimal active
set is identified, the second subproblem seeks to find the
unconstrained minimizer of J on the set of “free” variables
whose indices are not in the active set. Once the active set
is identified, the asymptotic convergence rate of the problem
is determined by the unconstrained method chosen in the
second subproblem.

LRH-B is an example of a reduced-Hessian (RH) quasi-
Newton method, which was first proposed by Gill and
Leonard [14]. By taking advantage of an implicit structure
contained in the approximate Hessian Hk, an RH method is

able to calculate the search direction from a much smaller
search space defined in terms of the set of search directions
computed in previous steps. In LRH-B the RH method is
implemented using a limited-memory framework [15], which
stores information about only the most recent m steps with
m� n.

LRH-B is designed to work well on problems for which
conventional line-search methods may require many itera-
tions to identify the bounds that are satisfied at a solution.
The method employs a line search that allows the user to
specify the accuracy of the step. Overall, LRH-B has been
shown to require fewer function evaluations than competing
methods for problems with box constraints (see [12]).

C. Constraints

Box constraints were imposed on both inputs u1 and u2.
The results were obtained for a strictly positive lower bound
for vehicle velocity. This value was chosen to mimic the
motion of an aircraft. The turn-rate variable u2 was bounded
by a maximum value θM and minimum value of −θM. The
vehicle was constrained such that its turn rate cannot exceed
a certain angle per unit of time.

IV. RESULTS

All the results shown are obtained using dimensionless
values. The domain extends from 1 to 4 in both the vertical
and horizontal directions. The grid sizes vary from 0.25 to
1. Also, in all the results presented here, the robot starts
from the position (1,1). A finer grid would result in more
accurate optimal trajectories with higher computation costs.
The scalars P and β of (2) were set to 1 and 0.5 respectively.
These values specify the ”observational capability” of the
robot.

Fig. 2. Path for unconstrained problem

Note that an asterisk ”∗” indicates a way-point of the
vehicle. The dashed lines depict a trajectory plan, the actual
trajectory may vary from this plan because of inaccuracies in
the numerical solutions. Figure 5 alone shows the motion of
the robot and actual information gain. Note that the algorithm
stops once the norm of the gradient with respect to the free
variables falls below a predefined tolerance.
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Figure 2 is a solution obtained for the unconstrained
problem. This trajectory could be an example for what one
would come up with using simply intuition. This result
reinforces the algorithm’s capability in providing optimal
trajectories using mathematical formulation. It should be
noted that the non-convexity of the problem implies that the
algorithm may provide different trajectories for the same set
of parameters.

The result shown in Figure 3 is for the path planned when
φ0 was initialized with a value of 1 over the entire domain,
assuming that the user had no prior information over the
whole domain. The optimized sequence of inputs given by
the algorithm results in a path as shown. Correspondingly,
the surface depicted in Figure 3 represents the probability
distribution of not locating the object over the entire domain
for this trajectory plan. For example, if the target is located
at (4,2.5) then the probability of not locating the target is
0.1481 (fallen down from the numberical value 1) when this
trajectory is executed. The algorithm attempts to make the
surface flat at zero, which would result in probability values
of not locating the target to be zero everywhere. However,
this is not possible because of the restricted number of steps
(or observations) that the robot can take.

The freedom to assign initial values of φ over the entire
domain may be utilized to take advantage of any information
that might be available before hand. For example, Figure 4
shows the trajectory obtained in a scenario for which com-
plete information is known, i.e. φ0=0 over the area extending
from coordinates 2.75 to 4 in both the vertical and horizontal
direction, with φ0=1 everywhere else. The resulting trajectory
focuses only on areas for which no information is available.
At the end of the trajectory the probability values over
areas where information is known is zero (as they were at
the beginning). Moreover, the probability values have been
optimally reduced in areas where the robot must search.

Figure 5 illustrates how information is gained when the
robot follows a path obtained from the algorithm. This set
of pictures illustrates what happens as the robot moves. The
degree of ”whiteness” indicates how much information is
available (an explanation is given in Section II-B). Regions
where complete information has been obtained are marked in
white. The color black indicates regions where no informa-
tion has been obtained. Figure 5 indicates that the computed
trajectory controls the robot in a way that progressively
increases information gain over the entire domain.

Figure 6 shows results obtained for a domain ranging from
1 to 4 in both vertical and horizontal directions. The grid
size is chosen to be 0.5, which gives a total of 49 grid
points. Based on equations (2), (3) and (4), the numerical
value of the cost function is initially 49. The algorithm was
applied to two scenarios. In the first, the robot is allowed
to take 20 steps, and in the second, the robot is allowed to
take 40 steps. In the first scenario, the control inputs are
initialized using random values. The cost function converges
to 4.122 (reduced from 49). It is obvious that the computation
required to optimize a trajectory for 20 steps is much less
than that needed for the 40-step scenario.

The optimal path for the 20-step scenario can be used
to accelerate the computation for the 40-step scenario. In
this case, the results obtained for the first scenario can be
interpolated and used as initial input for the second scenario.
As expected, the resulting trajectory is similar to the one
obtained for the first scenario. The cost function converged
to 0.5686 for the second scenario. This example shows that
a good guess can be obtained for initial inputs in cases
where significant computation is required for the calculation
of trajectories based on a small number of steps.

Early detection

A modification to the probability distribution (2) allows
the computation of trajectories that locate the target at an
earlier time, i.e., early detection is prioritized. This modifi-
cation results in a trajectory plan that will direct the robot
to observe as large a portion of the domain as possible
in a short amount of time and make finer observations for
the remainder of the time. This modification is achieved by
appropriately weighting the influence of robot’s observation
on the cost function. Let kearly denote a preassigned time less
than the total time before which detection is preferred. Then
for k > kearly, consider the probability distribution

φk+1(x,y)= φk(x,y)×
(

1−Pe−β

(
x−qx(k+1)

)2
+
(

y−qy(k+1)
)2)γ

,

where γ is a constant, 0 < γ < 1, that is used to diminish the
importance of observations made after time kearly. Note that
the gradient should be modified accordingly to implement
this formulation. It is also possible to use multiple such
variables for different time periods in order to support early
detection.

The trajectory plan in Figure 7 was obtained for a robot
that was allowed to use 60 time steps. The parameter kearly
was set to 30 and γ was set to 0.25. In the first half of the
trajectory, the robot attempts to look at a larger portion of
the domain compared to the second half, thereby enabling
early detection. Also, after the 30th time step, the steps are
smaller because the observations have a smaller impact on
reducing the cost function.

Optimization algorithm performance

Figures 8 shows the comparison of LRH-B optimization
algorithm to interior point method optimization 1 based on
number of function evaluations. It is clearly evident that
LRH-B is far superior compared to fmincon and attains a
minima much earlier. Similar conditions on Hessian approx-
imation was used in fmincon to make the comparison as
close as possible.

V. CONCLUSIONS

This work presents a new algorithm for trajectory planning
in order to maximize the probability of locating a fixed
target, which takes into account the vehicle dynamics. The
algorithm implements a recently-developed gradient-based

1The MATLAB’s fmincon implementation was used.
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Fig. 3. Probability distribution after robot completes trajectory. Numbers indicate the sequence of steps taken.

Fig. 4. Trajectory generated when some prior information is known.

Fig. 5. A red circle indicates the position of the robot. With each step
taken, the cost function is reduced, i.e., more information is obtained.

optimization method for box-constrained optimization that
outperforms other currently available methods.

The likelihood of not detecting the target is modeled in
a probabilistic manner based on sensor models and as a
function of the distance to the vehicle. We considered a
cost function that accumulates the overall likelihood of not
locating the target for any given vehicle path. The optimal
path for finding the target is then computed by minimizing
this cost function, subject to upper and lower bounds on the
control variables. We incorporate an adjoint-based method
to compute the gradient of the cost function with respect
to the control variables. For rapid convergence, this paper
leverages a state of the art limited-memory reduced Hessian
(LRH-B) optimization method that is remarkably efficient
for bound-constrained optimization problems. We showed
different optimized paths for a ground-based autonomous
vehicle for different input conditions and compare the speed
of convergence with a standard optimization package.

The algorithm developed is quite versatile, and readily
extends to a variety of related formulations. The vehicle
dynamics and formulation of the cost function are decoupled,
allowing the simple implementation of other types of vehicle
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Fig. 6. (a) Trajectory for 20 steps. (b) Trajectory for 40 steps using the input obtained from 20 steps. The background color represents the numerical
value of the probability of not locating the object if it is present there.
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Fig. 7. Trajectory plan when early target location is preferred.
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Fig. 8. Comparison of performance of LRH-B to MATLAB’s fmincon solver in terms of function evaluations. Blue line corresponds to results obtained
using MATLAB’s fmincon and orange line corresponds to results obtained using LRH-B (a) 90 grids points. (b) 169 grid points.

dynamics. Another property of the method is that a priori in-
formation can be used to focus the search on important parts
of the domain. Related algorithms for locating moving targets
are under development. It is being designed by implementing
a continuously evolving probability distribution, whereas
in this paper we assumed that the probability distribution
remains constant unless an observation is made (since the
target is stationary).

Future work will extend this work to the moving target
detection. We will develop similar algorithms with multiple
vehicles to enable multi agent searches. This work is limited
to a box-constraint search domain; however, the search

domain can be a nonconvex domain. We will combine aug-
mented Lagrangian methods with LRH-B to handle nonlinear
constraints. Also, we will include modifications designed
to increase the probability of finding a global (rather than
local) minimizer of J. For example, the global optimization
method of [1] can provide a course-grid global solution that
may be used to initialize a fine-grid local optimization. This
refinement scheme would be similar to the method used to
compute the results of Figure 6. Future work will also focus
on the formulation of algorithms for computing trajectories
that can avoid obstacles in the domain similar to [4].
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